1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
#
# This demo demonstrates how to solve a contact problem between
# two stacked cubes.
# The bottom cube is fixed at the bottom surface
# The top cube has a force applied normal to its to surface.
# A slip condition is implemented at the interface of the cube.
# Additional constraints to avoid tangential movement is
# added to the to left corner of the top cube.
from __future__ import annotations
import warnings
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc
import numpy as np
import scipy.sparse.linalg
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import Constant, dirichletbc, form, functionspace, locate_dofs_geometrical
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector, set_bc
from dolfinx.io import XDMFFile
from dolfinx.log import LogLevel, set_log_level
from dolfinx.mesh import locate_entities_boundary, meshtags
from ufl import Identity, Measure, TestFunction, TrialFunction, dx, grad, inner, sym, tr
from create_and_export_mesh import gmsh_2D_stacked, mesh_2D_dolfin
from dolfinx_mpc import LinearProblem, MultiPointConstraint
from dolfinx_mpc.utils import (
compare_mpc_lhs,
compare_mpc_rhs,
facet_normal_approximation,
gather_PETScMatrix,
gather_PETScVector,
gather_transformation_matrix,
log_info,
rigid_motions_nullspace,
rotation_matrix,
)
set_log_level(LogLevel.ERROR)
def demo_stacked_cubes(
outfile: XDMFFile,
theta: float,
gmsh: bool = True,
quad: bool = False,
compare: bool = False,
res: float = 0.1,
):
log_info(f"Run theta:{theta:.2f}, Quad: {quad}, Gmsh {gmsh}, Res {res:.2e}")
celltype = "quadrilateral" if quad else "triangle"
meshdir = Path("meshes")
meshdir.mkdir(exist_ok=True, parents=True)
if gmsh:
mesh, mt = gmsh_2D_stacked(celltype, theta)
mesh.name = f"mesh_{celltype}_{theta:.2f}_gmsh"
else:
if default_real_type == np.float32:
warnings.warn("Demo does not run for single float precision due to limited xdmf support")
exit(0)
mesh_name = "mesh"
filename = meshdir / f"mesh_{celltype}_{theta:.2f}.xdmf"
mesh_2D_dolfin(celltype, theta)
with XDMFFile(MPI.COMM_WORLD, filename, "r") as xdmf:
mesh = xdmf.read_mesh(name=mesh_name)
mesh.name = f"mesh_{celltype}_{theta:.2f}"
tdim = mesh.topology.dim
fdim = tdim - 1
mesh.topology.create_connectivity(tdim, tdim)
mesh.topology.create_connectivity(fdim, tdim)
mt = xdmf.read_meshtags(mesh, name="facet_tags")
# Helper until meshtags can be read in from xdmf
V = functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))
r_matrix = rotation_matrix([0, 0, 1], theta)
g_vec = np.dot(r_matrix, [0, -1.25e2, 0])
g = Constant(mesh, default_scalar_type(g_vec[:2]))
def bottom_corner(x):
return np.isclose(x, [[0], [0], [0]], atol=5e2 * np.finfo(default_scalar_type).resolution).all(axis=0)
# Fix bottom corner
bc_value = np.array((0,) * mesh.geometry.dim, dtype=default_scalar_type) # type: ignore
bottom_dofs = locate_dofs_geometrical(V, bottom_corner)
bc_bottom = dirichletbc(bc_value, bottom_dofs, V)
bcs = [bc_bottom]
# Elasticity parameters
E = 1.0e3
nu = 0
mu = Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
lmbda = Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))
# Stress computation
def sigma(v):
return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), grad(v)) * dx
ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
rhs = inner(Constant(mesh, default_scalar_type((0, 0))), v) * dx + inner(g, v) * ds # type: ignore
tol = float(5e2 * np.finfo(default_scalar_type).resolution)
def left_corner(x):
return np.isclose(x.T, np.dot(r_matrix, [0, 2, 0]), atol=tol).all(axis=1)
# Create multi point constraint
mpc = MultiPointConstraint(V)
with Timer("~Contact: Create contact constraint"):
mpc.create_contact_inelastic_condition(mt, 4, 9, eps2=tol, allow_missing_masters=True)
with Timer("~Contact: Add non-slip condition at bottom interface"):
bottom_normal = facet_normal_approximation(V, mt, 5)
mpc.create_slip_constraint(V, (mt, 5), bottom_normal, bcs=bcs)
with Timer("~Contact: Add tangential constraint at one point"):
vertex = locate_entities_boundary(mesh, 0, left_corner)
tangent = facet_normal_approximation(V, mt, 3, tangent=True)
mtv = meshtags(mesh, 0, vertex, np.full(len(vertex), 6, dtype=np.int32))
mpc.create_slip_constraint(V, (mtv, 6), tangent, bcs=bcs)
mpc.finalize()
tol = float(5e2 * np.finfo(default_scalar_type).resolution)
petsc_options = {
"ksp_rtol": tol,
"ksp_atol": tol,
"ksp_error_if_not_converged": True,
"pc_type": "gamg",
"pc_gamg_type": "agg",
"pc_gamg_square_graph": 2,
"pc_gamg_threshold": 0.02,
"pc_gamg_coarse_eq_limit": 1000,
"pc_gamg_sym_graph": True,
"mg_levels_ksp_type": "chebyshev",
"mg_levels_pc_type": "jacobi",
"mg_levels_esteig_ksp_type": "cg",
# , "help": None, "ksp_view": None
}
# Solve Linear problem
problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)
# Build near nullspace
null_space = rigid_motions_nullspace(mpc.function_space)
problem.A.setNearNullSpace(null_space)
u_h = problem.solve()
it = problem.solver.getIterationNumber()
if MPI.COMM_WORLD.rank == 0:
print("Number of iterations: {0:d}".format(it))
unorm = u_h.x.petsc_vec.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"Norm of u: {unorm}")
# Write solution to file
ext = "_gmsh" if gmsh else ""
u_h.name = "u_mpc_{0:s}_{1:.2f}{2:s}".format(celltype, theta, ext)
outfile.write_mesh(mesh)
outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
# Solve the MPC problem using a global transformation matrix
# and numpy solvers to get reference values
if not compare:
return
log_info("Solving reference problem with global matrix (using numpy)")
with Timer("~MPC: Reference problem"):
# Generate reference matrices and unconstrained solution
A_org = assemble_matrix(form(a), bcs)
A_org.assemble()
L_org = assemble_vector(form(rhs))
apply_lifting(L_org, [form(a)], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
set_bc(L_org, bcs)
root = 0
with Timer("~MPC: Verification"):
compare_mpc_lhs(A_org, problem.A, mpc, root=root)
compare_mpc_rhs(L_org, problem.b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = gather_PETScMatrix(A_org, root=root)
K = gather_transformation_matrix(mpc, root=root)
L_np = gather_PETScVector(L_org, root=root)
u_mpc = gather_PETScVector(u_h.x.petsc_vec, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
np.testing.assert_allclose(uh_numpy, u_mpc, rtol=tol, atol=tol)
L_org.destroy()
A_org.destroy()
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--res", default=0.1, type=np.float64, dest="res", help="Resolution of Mesh")
parser.add_argument(
"--theta",
default=np.pi / 3,
type=np.float64,
dest="theta",
help="Rotation angle around axis [1, 1, 0]",
)
quad = parser.add_mutually_exclusive_group(required=False)
quad.add_argument("--quad", dest="quad", action="store_true", help="Use quadrilateral mesh", default=False)
gmsh = parser.add_mutually_exclusive_group(required=False)
gmsh.add_argument(
"--gmsh",
dest="gmsh",
action="store_true",
help="Gmsh mesh instead of built-in grid",
default=False,
)
comp = parser.add_mutually_exclusive_group(required=False)
comp.add_argument(
"--compare",
dest="compare",
action="store_true",
help="Compare with global solution",
default=False,
)
time = parser.add_mutually_exclusive_group(required=False)
time.add_argument("--timing", dest="timing", action="store_true", help="List timings", default=False)
args = parser.parse_args()
# Create results file
outdir = Path("results")
outdir.mkdir(parents=True, exist_ok=True)
outfile = XDMFFile(MPI.COMM_WORLD, outdir / "demo_contact_2D.xdmf", "w")
# Run demo for input parameters
demo_stacked_cubes(
outfile,
theta=args.theta,
gmsh=args.gmsh,
quad=args.quad,
compare=args.compare,
res=args.res,
)
outfile.close()
if args.timing:
list_timings(MPI.COMM_WORLD, [TimingType.wall])
|