File: demo_contact_2D.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (263 lines) | stat: -rw-r--r-- 9,650 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
#
# This demo demonstrates how to solve a contact problem between
# two stacked cubes.
# The bottom cube is fixed at the bottom surface
# The top cube has a force applied normal to its to surface.
# A slip condition is implemented at the interface of the cube.
# Additional constraints to avoid tangential movement is
# added to the to left corner of the top cube.
from __future__ import annotations

import warnings
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path

from mpi4py import MPI
from petsc4py import PETSc

import numpy as np
import scipy.sparse.linalg
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import Constant, dirichletbc, form, functionspace, locate_dofs_geometrical
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector, set_bc
from dolfinx.io import XDMFFile
from dolfinx.log import LogLevel, set_log_level
from dolfinx.mesh import locate_entities_boundary, meshtags
from ufl import Identity, Measure, TestFunction, TrialFunction, dx, grad, inner, sym, tr

from create_and_export_mesh import gmsh_2D_stacked, mesh_2D_dolfin
from dolfinx_mpc import LinearProblem, MultiPointConstraint
from dolfinx_mpc.utils import (
    compare_mpc_lhs,
    compare_mpc_rhs,
    facet_normal_approximation,
    gather_PETScMatrix,
    gather_PETScVector,
    gather_transformation_matrix,
    log_info,
    rigid_motions_nullspace,
    rotation_matrix,
)

set_log_level(LogLevel.ERROR)


def demo_stacked_cubes(
    outfile: XDMFFile,
    theta: float,
    gmsh: bool = True,
    quad: bool = False,
    compare: bool = False,
    res: float = 0.1,
):
    log_info(f"Run theta:{theta:.2f}, Quad: {quad}, Gmsh {gmsh}, Res {res:.2e}")

    celltype = "quadrilateral" if quad else "triangle"
    meshdir = Path("meshes")
    meshdir.mkdir(exist_ok=True, parents=True)
    if gmsh:
        mesh, mt = gmsh_2D_stacked(celltype, theta)
        mesh.name = f"mesh_{celltype}_{theta:.2f}_gmsh"

    else:
        if default_real_type == np.float32:
            warnings.warn("Demo does not run for single float precision due to limited xdmf support")
            exit(0)
        mesh_name = "mesh"
        filename = meshdir / f"mesh_{celltype}_{theta:.2f}.xdmf"

        mesh_2D_dolfin(celltype, theta)
        with XDMFFile(MPI.COMM_WORLD, filename, "r") as xdmf:
            mesh = xdmf.read_mesh(name=mesh_name)
            mesh.name = f"mesh_{celltype}_{theta:.2f}"
            tdim = mesh.topology.dim
            fdim = tdim - 1
            mesh.topology.create_connectivity(tdim, tdim)
            mesh.topology.create_connectivity(fdim, tdim)
            mt = xdmf.read_meshtags(mesh, name="facet_tags")

    # Helper until meshtags can be read in from xdmf
    V = functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))
    r_matrix = rotation_matrix([0, 0, 1], theta)
    g_vec = np.dot(r_matrix, [0, -1.25e2, 0])
    g = Constant(mesh, default_scalar_type(g_vec[:2]))

    def bottom_corner(x):
        return np.isclose(x, [[0], [0], [0]], atol=5e2 * np.finfo(default_scalar_type).resolution).all(axis=0)

    # Fix bottom corner
    bc_value = np.array((0,) * mesh.geometry.dim, dtype=default_scalar_type)  # type: ignore
    bottom_dofs = locate_dofs_geometrical(V, bottom_corner)
    bc_bottom = dirichletbc(bc_value, bottom_dofs, V)
    bcs = [bc_bottom]

    # Elasticity parameters
    E = 1.0e3
    nu = 0
    mu = Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
    lmbda = Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))

    # Stress computation
    def sigma(v):
        return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    rhs = inner(Constant(mesh, default_scalar_type((0, 0))), v) * dx + inner(g, v) * ds  # type: ignore
    tol = float(5e2 * np.finfo(default_scalar_type).resolution)

    def left_corner(x):
        return np.isclose(x.T, np.dot(r_matrix, [0, 2, 0]), atol=tol).all(axis=1)

    # Create multi point constraint
    mpc = MultiPointConstraint(V)

    with Timer("~Contact: Create contact constraint"):
        mpc.create_contact_inelastic_condition(mt, 4, 9, eps2=tol, allow_missing_masters=True)
    with Timer("~Contact: Add non-slip condition at bottom interface"):
        bottom_normal = facet_normal_approximation(V, mt, 5)
        mpc.create_slip_constraint(V, (mt, 5), bottom_normal, bcs=bcs)

    with Timer("~Contact: Add tangential constraint at one point"):
        vertex = locate_entities_boundary(mesh, 0, left_corner)

        tangent = facet_normal_approximation(V, mt, 3, tangent=True)
        mtv = meshtags(mesh, 0, vertex, np.full(len(vertex), 6, dtype=np.int32))
        mpc.create_slip_constraint(V, (mtv, 6), tangent, bcs=bcs)

    mpc.finalize()
    tol = float(5e2 * np.finfo(default_scalar_type).resolution)
    petsc_options = {
        "ksp_rtol": tol,
        "ksp_atol": tol,
        "ksp_error_if_not_converged": True,
        "pc_type": "gamg",
        "pc_gamg_type": "agg",
        "pc_gamg_square_graph": 2,
        "pc_gamg_threshold": 0.02,
        "pc_gamg_coarse_eq_limit": 1000,
        "pc_gamg_sym_graph": True,
        "mg_levels_ksp_type": "chebyshev",
        "mg_levels_pc_type": "jacobi",
        "mg_levels_esteig_ksp_type": "cg",
        #  , "help": None, "ksp_view": None
    }

    # Solve Linear problem
    problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)

    # Build near nullspace
    null_space = rigid_motions_nullspace(mpc.function_space)
    problem.A.setNearNullSpace(null_space)
    u_h = problem.solve()

    it = problem.solver.getIterationNumber()
    if MPI.COMM_WORLD.rank == 0:
        print("Number of iterations: {0:d}".format(it))

    unorm = u_h.x.petsc_vec.norm()
    if MPI.COMM_WORLD.rank == 0:
        print(f"Norm of u: {unorm}")
    # Write solution to file
    ext = "_gmsh" if gmsh else ""
    u_h.name = "u_mpc_{0:s}_{1:.2f}{2:s}".format(celltype, theta, ext)

    outfile.write_mesh(mesh)
    outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    if not compare:
        return
    log_info("Solving reference problem with global matrix (using numpy)")
    with Timer("~MPC: Reference problem"):
        # Generate reference matrices and unconstrained solution
        A_org = assemble_matrix(form(a), bcs)
        A_org.assemble()
        L_org = assemble_vector(form(rhs))
        apply_lifting(L_org, [form(a)], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
        set_bc(L_org, bcs)

    root = 0
    with Timer("~MPC: Verification"):
        compare_mpc_lhs(A_org, problem.A, mpc, root=root)
        compare_mpc_rhs(L_org, problem.b, mpc, root=root)
        # Gather LHS, RHS and solution on one process
        A_csr = gather_PETScMatrix(A_org, root=root)
        K = gather_transformation_matrix(mpc, root=root)
        L_np = gather_PETScVector(L_org, root=root)
        u_mpc = gather_PETScVector(u_h.x.petsc_vec, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            np.testing.assert_allclose(uh_numpy, u_mpc, rtol=tol, atol=tol)
    L_org.destroy()
    A_org.destroy()


if __name__ == "__main__":
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--res", default=0.1, type=np.float64, dest="res", help="Resolution of Mesh")
    parser.add_argument(
        "--theta",
        default=np.pi / 3,
        type=np.float64,
        dest="theta",
        help="Rotation angle around axis [1, 1, 0]",
    )
    quad = parser.add_mutually_exclusive_group(required=False)
    quad.add_argument("--quad", dest="quad", action="store_true", help="Use quadrilateral mesh", default=False)
    gmsh = parser.add_mutually_exclusive_group(required=False)
    gmsh.add_argument(
        "--gmsh",
        dest="gmsh",
        action="store_true",
        help="Gmsh mesh instead of built-in grid",
        default=False,
    )
    comp = parser.add_mutually_exclusive_group(required=False)
    comp.add_argument(
        "--compare",
        dest="compare",
        action="store_true",
        help="Compare with global solution",
        default=False,
    )
    time = parser.add_mutually_exclusive_group(required=False)
    time.add_argument("--timing", dest="timing", action="store_true", help="List timings", default=False)

    args = parser.parse_args()

    # Create results file
    outdir = Path("results")
    outdir.mkdir(parents=True, exist_ok=True)
    outfile = XDMFFile(MPI.COMM_WORLD, outdir / "demo_contact_2D.xdmf", "w")

    # Run demo for input parameters
    demo_stacked_cubes(
        outfile,
        theta=args.theta,
        gmsh=args.gmsh,
        quad=args.quad,
        compare=args.compare,
        res=args.res,
    )

    outfile.close()
    if args.timing:
        list_timings(MPI.COMM_WORLD, [TimingType.wall])