1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
#
# Multi point constraint problem for linear elasticity with slip conditions
# between two cubes.
from __future__ import annotations
import warnings
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.fem as fem
import numpy as np
import scipy.sparse.linalg
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType
from ufl import Identity, TestFunction, TrialFunction, dx, grad, inner, sym, tr
from create_and_export_mesh import gmsh_3D_stacked, mesh_3D_dolfin
from dolfinx_mpc import MultiPointConstraint, apply_lifting, assemble_matrix, assemble_vector
from dolfinx_mpc.utils import (
compare_mpc_lhs,
compare_mpc_rhs,
create_normal_approximation,
gather_PETScMatrix,
gather_PETScVector,
gather_transformation_matrix,
log_info,
rigid_motions_nullspace,
rotation_matrix,
)
def demo_stacked_cubes(
outfile: XDMFFile,
theta: float,
gmsh: bool = False,
ct: CellType = CellType.tetrahedron,
compare: bool = True,
res: float = 0.1,
noslip: bool = False,
):
celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
type_ext = "no_slip" if noslip else "slip"
mesh_ext = "_gmsh_" if gmsh else "_"
log_info(f"Run theta:{theta:.2f}, Cell: {celltype}, GMSH {gmsh}, Noslip: {noslip}")
# Read in mesh
if gmsh:
# Offset one box for partial contact
if noslip:
offset = 0.235
else:
offset = 0.0
mesh, mt = gmsh_3D_stacked(celltype, theta, res, offset=offset)
tdim = mesh.topology.dim
fdim = tdim - 1
mesh.topology.create_connectivity(tdim, tdim)
mesh.topology.create_connectivity(fdim, tdim)
else:
if default_real_type == np.float32:
warnings.warn("Demo does not run for single float precision due to limited xdmf support")
exit(0)
mesh_3D_dolfin(theta, ct, celltype, res)
MPI.COMM_WORLD.barrier()
with XDMFFile(MPI.COMM_WORLD, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf:
mesh = xdmf.read_mesh(name="mesh")
tdim = mesh.topology.dim
fdim = tdim - 1
mesh.topology.create_connectivity(tdim, tdim)
mesh.topology.create_connectivity(fdim, tdim)
mt = xdmf.read_meshtags(mesh, "facet_tags")
mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext}{mesh_ext}"
# Create functionspaces
V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))
# Define boundary conditions
# Bottom boundary is fixed in all directions
bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))
u_bc = np.array((0,) * mesh.geometry.dim, dtype=default_scalar_type)
bc_bottom = fem.dirichletbc(u_bc, bottom_dofs, V)
g_vec = np.array([0, 0, -4.25e-1], dtype=default_scalar_type)
if not noslip:
# Helper for orienting traction
r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)
# Top boundary has a given deformation normal to the interface
g_vec = np.dot(r_matrix, g_vec).astype(default_scalar_type)
top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))
bc_top = fem.dirichletbc(g_vec, top_dofs, V)
bcs = [bc_bottom, bc_top]
# Elasticity parameters
E = 1.0e3
nu = 0
mu = fem.Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
lmbda = fem.Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))
# Stress computation
def sigma(v):
return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), grad(v)) * dx
# NOTE: Traction deactivated until we have a way of fixing nullspace
# g = fem.Constant(mesh, default_scalar_type(g_vec))
# ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
rhs = inner(fem.Constant(mesh, default_scalar_type((0, 0, 0))), v) * dx
# + inner(g, v) * ds
bilinear_form = fem.form(a)
linear_form = fem.form(rhs)
mpc = MultiPointConstraint(V)
tol = float(5e3 * np.finfo(default_scalar_type).resolution)
if noslip:
with Timer("~~Contact: Create non-elastic constraint"):
mpc.create_contact_inelastic_condition(mt, 4, 9, eps2=tol, allow_missing_masters=True)
else:
with Timer("~Contact: Create contact constraint"):
nh = create_normal_approximation(V, mt, 4)
mpc.create_contact_slip_condition(mt, 4, 9, nh, eps2=tol)
with Timer("~~Contact: Add data and finialize MPC"):
mpc.finalize()
num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
# Create null-space
null_space = rigid_motions_nullspace(mpc.function_space)
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
with Timer(f"~~Contact: Assemble matrix ({num_dofs})"):
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
with Timer(f"~~Contact: Assemble vector ({num_dofs})"):
b = assemble_vector(linear_form, mpc)
apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
fem.petsc.set_bc(b, bcs)
# Solve Linear problem
opts = PETSc.Options() # type: ignore
opts["ksp_rtol"] = 1.0e-8
opts["pc_type"] = "gamg"
opts["pc_gamg_type"] = "agg"
opts["pc_gamg_coarse_eq_limit"] = 1000
opts["pc_gamg_sym_graph"] = True
opts["mg_levels_ksp_type"] = "chebyshev"
opts["mg_levels_pc_type"] = "jacobi"
opts["mg_levels_esteig_ksp_type"] = "cg"
opts["matptap_via"] = "scalable"
opts["pc_gamg_square_graph"] = 2
opts["pc_gamg_threshold"] = 1e-2
# opts["help"] = None # List all available options
# opts["ksp_view"] = None # List progress of solver
# Create functionspace and build near nullspace
A.setNearNullSpace(null_space)
solver = PETSc.KSP().create(mesh.comm) # type: ignore
solver.setOperators(A)
solver.setFromOptions()
u_h = fem.Function(mpc.function_space)
with Timer("~~Contact: Solve"):
solver.solve(b, u_h.x.petsc_vec)
u_h.x.scatter_forward()
with Timer("~~Contact: Backsubstitution"):
mpc.backsubstitution(u_h)
it = solver.getIterationNumber()
unorm = u_h.x.petsc_vec.norm()
num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
if mesh.comm.rank == 0:
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
print(f"Number of dofs: {num_dofs}")
print(f"Number of slaves: {num_slaves}")
print(f"Number of iterations: {it}")
print(f"Norm of u {unorm:.5e}")
# Write solution to file
u_h.name = f"u_{celltype}_{theta:.2f}{mesh_ext}{type_ext}"
outfile.write_mesh(mesh)
outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
outfile.close()
# Solve the MPC problem using a global transformation matrix
# and numpy solvers to get reference values
if not compare:
b.destroy()
solver.destroy()
return
log_info("Solving reference problem with global matrix (using scipy)")
with Timer("~~Contact: Reference problem"):
A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
A_org.assemble()
L_org = fem.petsc.assemble_vector(linear_form)
fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
fem.petsc.set_bc(L_org, bcs)
root = 0
with Timer("~~Contact: Compare LHS, RHS and solution"):
compare_mpc_lhs(A_org, A, mpc, root=root)
compare_mpc_rhs(L_org, b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = gather_PETScMatrix(A_org, root=root)
K = gather_transformation_matrix(mpc, root=root)
L_np = gather_PETScVector(L_org, root=root)
u_mpc = gather_PETScVector(u_h.x.petsc_vec, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
assert np.allclose(uh_numpy, u_mpc)
list_timings(mesh.comm, [TimingType.wall])
b.destroy()
L_org.destroy()
solver.destroy()
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--res", default=0.1, type=np.float64, dest="res", help="Resolution of Mesh")
parser.add_argument(
"--theta",
default=np.pi / 3,
type=np.float64,
dest="theta",
help="Rotation angle around axis [1, 1, 0]",
)
hex = parser.add_mutually_exclusive_group(required=False)
hex.add_argument("--hex", dest="hex", action="store_true", help="Use hexahedron mesh", default=False)
slip = parser.add_mutually_exclusive_group(required=False)
slip.add_argument(
"--no-slip",
dest="noslip",
action="store_true",
help="Use no-slip constraint",
default=False,
)
gmsh = parser.add_mutually_exclusive_group(required=False)
gmsh.add_argument(
"--gmsh",
dest="gmsh",
action="store_true",
help="Gmsh mesh instead of built-in grid",
default=False,
)
comp = parser.add_mutually_exclusive_group(required=False)
comp.add_argument(
"--compare",
dest="compare",
action="store_true",
help="Compare with global solution",
default=False,
)
time = parser.add_mutually_exclusive_group(required=False)
time.add_argument("--timing", dest="timing", action="store_true", help="List timings", default=False)
args = parser.parse_args()
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)
outfile = XDMFFile(MPI.COMM_WORLD, outdir / "demo_contact_3D.xdmf", "w")
ct = CellType.hexahedron if args.hex else CellType.tetrahedron
demo_stacked_cubes(
outfile,
theta=args.theta,
gmsh=args.gmsh,
ct=ct,
compare=args.compare,
res=args.res,
noslip=args.noslip,
)
outfile.close()
log_info("Simulation finished")
if args.timing:
list_timings(MPI.COMM_WORLD, [TimingType.wall])
|