File: demo_contact_3D.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (300 lines) | stat: -rw-r--r-- 10,866 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
#
# Multi point constraint problem for linear elasticity with slip conditions
# between two cubes.
from __future__ import annotations

import warnings
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path

from mpi4py import MPI
from petsc4py import PETSc

import dolfinx.fem as fem
import numpy as np
import scipy.sparse.linalg
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType
from ufl import Identity, TestFunction, TrialFunction, dx, grad, inner, sym, tr

from create_and_export_mesh import gmsh_3D_stacked, mesh_3D_dolfin
from dolfinx_mpc import MultiPointConstraint, apply_lifting, assemble_matrix, assemble_vector
from dolfinx_mpc.utils import (
    compare_mpc_lhs,
    compare_mpc_rhs,
    create_normal_approximation,
    gather_PETScMatrix,
    gather_PETScVector,
    gather_transformation_matrix,
    log_info,
    rigid_motions_nullspace,
    rotation_matrix,
)


def demo_stacked_cubes(
    outfile: XDMFFile,
    theta: float,
    gmsh: bool = False,
    ct: CellType = CellType.tetrahedron,
    compare: bool = True,
    res: float = 0.1,
    noslip: bool = False,
):
    celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
    type_ext = "no_slip" if noslip else "slip"
    mesh_ext = "_gmsh_" if gmsh else "_"
    log_info(f"Run theta:{theta:.2f}, Cell: {celltype}, GMSH {gmsh}, Noslip: {noslip}")

    # Read in mesh
    if gmsh:
        # Offset one box for partial contact
        if noslip:
            offset = 0.235
        else:
            offset = 0.0
        mesh, mt = gmsh_3D_stacked(celltype, theta, res, offset=offset)
        tdim = mesh.topology.dim
        fdim = tdim - 1
        mesh.topology.create_connectivity(tdim, tdim)
        mesh.topology.create_connectivity(fdim, tdim)
    else:
        if default_real_type == np.float32:
            warnings.warn("Demo does not run for single float precision due to limited xdmf support")
            exit(0)
        mesh_3D_dolfin(theta, ct, celltype, res)
        MPI.COMM_WORLD.barrier()
        with XDMFFile(MPI.COMM_WORLD, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf:
            mesh = xdmf.read_mesh(name="mesh")
            tdim = mesh.topology.dim
            fdim = tdim - 1
            mesh.topology.create_connectivity(tdim, tdim)
            mesh.topology.create_connectivity(fdim, tdim)
            mt = xdmf.read_meshtags(mesh, "facet_tags")
    mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext}{mesh_ext}"

    # Create functionspaces
    V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))

    # Define boundary conditions

    # Bottom boundary is fixed in all directions
    bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))
    u_bc = np.array((0,) * mesh.geometry.dim, dtype=default_scalar_type)
    bc_bottom = fem.dirichletbc(u_bc, bottom_dofs, V)

    g_vec = np.array([0, 0, -4.25e-1], dtype=default_scalar_type)
    if not noslip:
        # Helper for orienting traction
        r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, g_vec).astype(default_scalar_type)

    top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = fem.dirichletbc(g_vec, top_dofs, V)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = 1.0e3
    nu = 0
    mu = fem.Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
    lmbda = fem.Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))

    # Stress computation
    def sigma(v):
        return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    # NOTE: Traction deactivated until we have a way of fixing nullspace
    # g = fem.Constant(mesh, default_scalar_type(g_vec))
    # ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    rhs = inner(fem.Constant(mesh, default_scalar_type((0, 0, 0))), v) * dx
    # + inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)
    mpc = MultiPointConstraint(V)
    tol = float(5e3 * np.finfo(default_scalar_type).resolution)
    if noslip:
        with Timer("~~Contact: Create non-elastic constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9, eps2=tol, allow_missing_masters=True)

    else:
        with Timer("~Contact: Create contact constraint"):
            nh = create_normal_approximation(V, mt, 4)
            mpc.create_contact_slip_condition(mt, 4, 9, nh, eps2=tol)

    with Timer("~~Contact: Add data and finialize MPC"):
        mpc.finalize()
    num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
    # Create null-space
    null_space = rigid_motions_nullspace(mpc.function_space)
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    with Timer(f"~~Contact: Assemble matrix ({num_dofs})"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer(f"~~Contact: Assemble vector ({num_dofs})"):
        b = assemble_vector(linear_form, mpc)

    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
    fem.petsc.set_bc(b, bcs)
    # Solve Linear problem
    opts = PETSc.Options()  # type: ignore
    opts["ksp_rtol"] = 1.0e-8
    opts["pc_type"] = "gamg"
    opts["pc_gamg_type"] = "agg"
    opts["pc_gamg_coarse_eq_limit"] = 1000
    opts["pc_gamg_sym_graph"] = True
    opts["mg_levels_ksp_type"] = "chebyshev"
    opts["mg_levels_pc_type"] = "jacobi"
    opts["mg_levels_esteig_ksp_type"] = "cg"
    opts["matptap_via"] = "scalable"
    opts["pc_gamg_square_graph"] = 2
    opts["pc_gamg_threshold"] = 1e-2
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Create functionspace and build near nullspace
    A.setNearNullSpace(null_space)
    solver = PETSc.KSP().create(mesh.comm)  # type: ignore
    solver.setOperators(A)
    solver.setFromOptions()

    u_h = fem.Function(mpc.function_space)
    with Timer("~~Contact: Solve"):
        solver.solve(b, u_h.x.petsc_vec)
        u_h.x.scatter_forward()

    with Timer("~~Contact: Backsubstitution"):
        mpc.backsubstitution(u_h)

    it = solver.getIterationNumber()
    unorm = u_h.x.petsc_vec.norm()
    num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
    if mesh.comm.rank == 0:
        num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
        print(f"Number of dofs: {num_dofs}")
        print(f"Number of slaves: {num_slaves}")
        print(f"Number of iterations: {it}")
        print(f"Norm of u {unorm:.5e}")

    # Write solution to file
    u_h.name = f"u_{celltype}_{theta:.2f}{mesh_ext}{type_ext}"
    outfile.write_mesh(mesh)
    outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
    outfile.close()

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    if not compare:
        b.destroy()
        solver.destroy()
        return

    log_info("Solving reference problem with global matrix (using scipy)")
    with Timer("~~Contact: Reference problem"):
        A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
        A_org.assemble()
        L_org = fem.petsc.assemble_vector(linear_form)
        fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
        fem.petsc.set_bc(L_org, bcs)

    root = 0
    with Timer("~~Contact: Compare LHS, RHS and solution"):
        compare_mpc_lhs(A_org, A, mpc, root=root)
        compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = gather_PETScMatrix(A_org, root=root)
        K = gather_transformation_matrix(mpc, root=root)
        L_np = gather_PETScVector(L_org, root=root)
        u_mpc = gather_PETScVector(u_h.x.petsc_vec, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(mesh.comm, [TimingType.wall])
    b.destroy()
    L_org.destroy()
    solver.destroy()


if __name__ == "__main__":
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--res", default=0.1, type=np.float64, dest="res", help="Resolution of Mesh")
    parser.add_argument(
        "--theta",
        default=np.pi / 3,
        type=np.float64,
        dest="theta",
        help="Rotation angle around axis [1, 1, 0]",
    )
    hex = parser.add_mutually_exclusive_group(required=False)
    hex.add_argument("--hex", dest="hex", action="store_true", help="Use hexahedron mesh", default=False)
    slip = parser.add_mutually_exclusive_group(required=False)
    slip.add_argument(
        "--no-slip",
        dest="noslip",
        action="store_true",
        help="Use no-slip constraint",
        default=False,
    )
    gmsh = parser.add_mutually_exclusive_group(required=False)
    gmsh.add_argument(
        "--gmsh",
        dest="gmsh",
        action="store_true",
        help="Gmsh mesh instead of built-in grid",
        default=False,
    )
    comp = parser.add_mutually_exclusive_group(required=False)
    comp.add_argument(
        "--compare",
        dest="compare",
        action="store_true",
        help="Compare with global solution",
        default=False,
    )
    time = parser.add_mutually_exclusive_group(required=False)
    time.add_argument("--timing", dest="timing", action="store_true", help="List timings", default=False)

    args = parser.parse_args()
    outdir = Path("results")
    outdir.mkdir(exist_ok=True, parents=True)
    outfile = XDMFFile(MPI.COMM_WORLD, outdir / "demo_contact_3D.xdmf", "w")

    ct = CellType.hexahedron if args.hex else CellType.tetrahedron

    demo_stacked_cubes(
        outfile,
        theta=args.theta,
        gmsh=args.gmsh,
        ct=ct,
        compare=args.compare,
        res=args.res,
        noslip=args.noslip,
    )

    outfile.close()

    log_info("Simulation finished")
    if args.timing:
        list_timings(MPI.COMM_WORLD, [TimingType.wall])