File: demo_elasticity_disconnect.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (237 lines) | stat: -rw-r--r-- 7,692 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
#
# Create constraint between two bodies that are not in contact
from __future__ import annotations

from pathlib import Path

from mpi4py import MPI

import basix.ufl
import gmsh
import numpy as np
from dolfinx import default_real_type, default_scalar_type
from dolfinx.fem import Constant, Function, dirichletbc, functionspace, locate_dofs_topological
from dolfinx.io import XDMFFile, gmshio
from ufl import (
    Identity,
    Measure,
    SpatialCoordinate,
    TestFunction,
    TrialFunction,
    as_vector,
    grad,
    inner,
    sym,
    tr,
)

from dolfinx_mpc import LinearProblem, MultiPointConstraint
from dolfinx_mpc.utils import (
    create_point_to_point_constraint,
    determine_closest_block,
    rigid_motions_nullspace,
)

# Mesh parameters for creating a mesh consisting of two spheres,
# Sphere(r2)\Sphere(r1) and Sphere(r_0)
r0, r0_tag = 0.4, 1
r1, r1_tag = 0.5, 2
r2, r2_tag = 0.8, 3
outer_tag = 1
inner_tag = 2
assert r0 < r1 and r1 < r2


gmsh.initialize()
if MPI.COMM_WORLD.rank == 0:
    gmsh.clear()

    # Create Sphere(r2)\Sphere(r1)
    p0 = gmsh.model.occ.addPoint(0, 0, 0)
    outer_sphere = gmsh.model.occ.addSphere(0, 0, 0, r2)
    mid_sphere = gmsh.model.occ.addSphere(0, 0, 0, r1)
    hollow_sphere = gmsh.model.occ.cut([(3, outer_sphere)], [(3, mid_sphere)])
    # Create Sphere(r0)
    inner_sphere = gmsh.model.occ.addSphere(0, 0, 0, r0)

    gmsh.model.occ.synchronize()

    # Add physical tags for volumes
    gmsh.model.addPhysicalGroup(hollow_sphere[0][0][0], [hollow_sphere[0][0][1]], tag=outer_tag)
    gmsh.model.setPhysicalName(hollow_sphere[0][0][0], 1, "Hollow sphere")
    gmsh.model.addPhysicalGroup(3, [inner_sphere], tag=inner_tag)
    gmsh.model.setPhysicalName(3, 2, "Inner sphere")

    # Add physical tags for surfaces
    r1_surface, r2_surface = [], []
    hollow_boundary = gmsh.model.getBoundary(hollow_sphere[0], oriented=False)
    inner_boundary = gmsh.model.getBoundary([(3, inner_sphere)], oriented=False)
    for boundary in hollow_boundary:
        bbox = gmsh.model.getBoundingBox(boundary[0], boundary[1])
        if np.isclose(max(bbox), r1):
            r1_surface.append(boundary[1])
        elif np.isclose(max(bbox), r2):
            r2_surface.append(boundary[1])
    gmsh.model.addPhysicalGroup(inner_boundary[0][0], [inner_boundary[0][1]], r0_tag)
    gmsh.model.setPhysicalName(inner_boundary[0][0], r0_tag, "Inner boundary")
    gmsh.model.addPhysicalGroup(2, r1_surface, r1_tag)
    gmsh.model.setPhysicalName(2, r1_tag, "Mid boundary")
    gmsh.model.addPhysicalGroup(2, r2_surface, r2_tag)
    gmsh.model.setPhysicalName(2, r2_tag, "Outer boundary")

    # Set mesh resolution
    res_inner = r0 / 5
    res_outer = (r1 + r2) / 5
    gmsh.model.occ.synchronize()
    gmsh.model.mesh.field.add("Distance", 1)
    gmsh.model.mesh.field.setNumbers(1, "NodesList", [p0])
    gmsh.model.mesh.field.add("Threshold", 2)
    gmsh.model.mesh.field.setNumber(2, "IField", 1)
    gmsh.model.mesh.field.setNumber(2, "LcMin", res_inner)
    gmsh.model.mesh.field.setNumber(2, "LcMax", res_outer)
    gmsh.model.mesh.field.setNumber(2, "DistMin", r0)
    gmsh.model.mesh.field.setNumber(2, "DistMax", r1)
    gmsh.model.mesh.field.add("Threshold", 3)
    gmsh.model.mesh.field.setNumber(3, "IField", 1)
    gmsh.model.mesh.field.setNumber(3, "LcMin", res_outer)
    gmsh.model.mesh.field.setNumber(3, "LcMax", res_outer)
    gmsh.model.mesh.field.setNumber(3, "DistMin", r1)
    gmsh.model.mesh.field.setNumber(3, "DistMax", r2)
    gmsh.model.mesh.field.add("Min", 4)
    gmsh.model.mesh.field.setNumbers(4, "FieldsList", [2, 3])
    gmsh.model.mesh.field.setAsBackgroundMesh(4)
    # Generate mesh
    gmsh.model.mesh.generate(3)
    gmsh.option.setNumber("General.Terminal", 1)
    gmsh.model.mesh.optimize("Netgen")
    gmsh.model.mesh.setOrder(2)


mesh, ct, ft = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=3)

gmsh.clear()
gmsh.finalize()
MPI.COMM_WORLD.barrier()

V = functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))

tdim = mesh.topology.dim
fdim = tdim - 1

DG0 = functionspace(mesh, ("DG", 0))
mesh.topology.create_connectivity(tdim, tdim)
outer_dofs = locate_dofs_topological(DG0, tdim, ct.find(outer_tag))
inner_dofs = locate_dofs_topological(DG0, tdim, ct.find(inner_tag))

# Elasticity parameters
E_outer = 1e3
E_inner = 1e5
nu_outer = 0.3
nu_inner = 0.1
mu = Function(DG0)
lmbda = Function(DG0)
with mu.x.petsc_vec.localForm() as local:
    local.array[inner_dofs] = E_inner / (2 * (1 + nu_inner))
    local.array[outer_dofs] = E_outer / (2 * (1 + nu_outer))
with lmbda.x.petsc_vec.localForm() as local:
    local.array[inner_dofs] = E_inner * nu_inner / ((1 + nu_inner) * (1 - 2 * nu_inner))
    local.array[outer_dofs] = E_outer * nu_outer / ((1 + nu_outer) * (1 - 2 * nu_outer))
mu.x.petsc_vec.destroy()
lmbda.x.petsc_vec.destroy()

# Stress computation


def sigma(v):
    return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))


# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
dx = Measure("dx", domain=mesh, subdomain_data=ct)
a = inner(sigma(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
rhs = inner(Constant(mesh, default_scalar_type((0, 0, 0))), v) * dx
rhs += inner(Constant(mesh, default_scalar_type((0.01, 0.02, 0))), v) * dx(outer_tag)
rhs += inner(as_vector((0, 0, -9.81e-2)), v) * dx(inner_tag)


# Create dirichletbc
owning_processor, bc_dofs = determine_closest_block(V, -np.array([-r2, 0, 0]))
bc_dofs = [] if bc_dofs is None else bc_dofs

u_fixed = np.array([0, 0, 0], dtype=default_scalar_type)
bc_fixed = dirichletbc(u_fixed, np.asarray(bc_dofs, dtype=np.int32), V)
bcs = [bc_fixed]

# Create point to point constraints
mpc = MultiPointConstraint(V)
signs = [-1, 1]
axis = [0, 1]
for i in axis:
    for s in signs:
        r0_point = np.zeros(3)
        r1_point = np.zeros(3)
        r0_point[i] = s * r0
        r1_point[i] = s * r1
        sl, ms, co, ow, off = create_point_to_point_constraint(V, r1_point, r0_point)
        mpc.add_constraint(V, sl, ms, co, ow, off)
mpc.finalize()

# Create nullspace
null_space = rigid_motions_nullspace(mpc.function_space)

ksp_rtol = 5e2 * np.finfo(default_scalar_type).resolution
petsc_options = {
    "ksp_rtol": ksp_rtol,
    "pc_type": "gamg",
    "pc_gamg_type": "agg",
    "pc_gamg_coarse_eq_limit": 1000,
    "pc_gamg_sym_graph": True,
    "mg_levels_ksp_type": "chebyshev",
    "mg_levels_pc_type": "jacobi",
    "mg_levels_esteig_ksp_type": "cg",
    "matptap_via": "scalable",
    "pc_gamg_square_graph": 2,
    "pc_gamg_threshold": 0.02,
    # ,"help": None, "ksp_view": None
}
problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)

# Build near nullspace
null_space = rigid_motions_nullspace(mpc.function_space)
problem.A.setNearNullSpace(null_space)
u_h = problem.solve()

it = problem.solver.getIterationNumber()

unorm = u_h.x.petsc_vec.norm()
if MPI.COMM_WORLD.rank == 0:
    print("Number of iterations: {0:d}".format(it))

# Write solution to file
V_out = functionspace(
    mesh,
    basix.ufl.element(
        "Lagrange",
        mesh.topology.cell_name(),
        mesh.geometry.cmap.degree,
        lagrange_variant=basix.LagrangeVariant(mesh.geometry.cmap.variant),
        shape=(V.dofmap.bs,),
        dtype=default_real_type,
    ),
)
u_out = Function(V_out)
u_out.interpolate(u_h)
u_out.name = "uh"
out_path = Path("results")
out_path.mkdir(exist_ok=True, parents=True)
with XDMFFile(mesh.comm, out_path / "demo_elasticity_disconnect.xdmf", "w") as xdmf:
    xdmf.write_mesh(mesh)
    xdmf.write_function(u_out)