File: demo_elasticity_disconnect_2D.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (208 lines) | stat: -rw-r--r-- 6,805 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
#
# Create constraint between two bodies that are not in contact
from __future__ import annotations

from pathlib import Path

from mpi4py import MPI

import gmsh
import numpy as np
from dolfinx import default_scalar_type
from dolfinx.fem import (
    Constant,
    Function,
    FunctionSpace,
    dirichletbc,
    functionspace,
    locate_dofs_geometrical,
    locate_dofs_topological,
)
from dolfinx.io import XDMFFile, gmshio
from dolfinx.mesh import locate_entities_boundary
from ufl import (
    Identity,
    Measure,
    SpatialCoordinate,
    TestFunction,
    TrialFunction,
    grad,
    inner,
    sym,
    tr,
)

from dolfinx_mpc import LinearProblem, MultiPointConstraint
from dolfinx_mpc.utils import create_point_to_point_constraint, rigid_motions_nullspace

# Mesh parameters for creating a mesh consisting of two disjoint rectangles
right_tag = 1
left_tag = 2


gmsh.initialize()
if MPI.COMM_WORLD.rank == 0:
    gmsh.clear()

    left_rectangle = gmsh.model.occ.addRectangle(0, 0, 0, 1, 1)
    right_rectangle = gmsh.model.occ.addRectangle(1.1, 0, 0, 1, 1)

    gmsh.model.occ.synchronize()

    # Add physical tags for volumes
    gmsh.model.addPhysicalGroup(2, [right_rectangle], tag=right_tag)
    gmsh.model.setPhysicalName(2, right_tag, "Right square")
    gmsh.model.addPhysicalGroup(2, [left_rectangle], tag=left_tag)
    gmsh.model.setPhysicalName(2, left_tag, "Left square")
    gmsh.option.setNumber("Mesh.CharacteristicLengthMin", 1)
    gmsh.option.setNumber("Mesh.CharacteristicLengthMax", 1)
    # Generate mesh
    gmsh.model.mesh.generate(2)

    # gmsh.option.setNumber("General.Terminal", 1)
    gmsh.model.mesh.optimize("Netgen")

mesh, ct, _ = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=2)
gmsh.clear()
gmsh.finalize()
MPI.COMM_WORLD.barrier()

with XDMFFile(mesh.comm, "test.xdmf", "w") as xdmf:
    xdmf.write_mesh(mesh)
V = functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))
tdim = mesh.topology.dim
fdim = tdim - 1

# Locate cells with different elasticity parameters
DG0 = functionspace(mesh, ("DG", 0))
mesh.topology.create_connectivity(tdim, tdim)
left_dofs = locate_dofs_topological(DG0, tdim, ct.find(left_tag))
right_dofs = locate_dofs_topological(DG0, tdim, ct.find(right_tag))

# Elasticity parameters
E_right = 1e2
E_left = 1e2
nu_right = 0.3
nu_left = 0.1
mu = Function(DG0)
lmbda = Function(DG0)
with mu.x.petsc_vec.localForm() as local:
    local.array[left_dofs] = E_left / (2 * (1 + nu_left))
    local.array[right_dofs] = E_right / (2 * (1 + nu_right))
with lmbda.x.petsc_vec.localForm() as local:
    local.array[left_dofs] = E_left * nu_left / ((1 + nu_left) * (1 - 2 * nu_left))
    local.array[right_dofs] = E_right * nu_right / ((1 + nu_right) * (1 - 2 * nu_right))
mu.x.petsc_vec.destroy()
lmbda.x.petsc_vec.destroy()

# Stress computation


def sigma(v):
    return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))


# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
dx = Measure("dx", domain=mesh, subdomain_data=ct)
a = inner(sigma(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
rhs = inner(Constant(mesh, default_scalar_type((0, 0))), v) * dx

# Set boundary conditions
u_push = np.array([0.1, 0], dtype=default_scalar_type)
dofs = locate_dofs_geometrical(V, lambda x: np.isclose(x[0], 0))
bc_push = dirichletbc(u_push, dofs, V)
u_fix = np.array([0, 0], dtype=default_scalar_type)
bc_fix = dirichletbc(u_fix, locate_dofs_geometrical(V, lambda x: np.isclose(x[0], 2.1)), V)
bcs = [bc_push, bc_fix]


def gather_dof_coordinates(V: FunctionSpace, dofs: np.ndarray):
    """
    Distributes the dof coordinates of this subset of dofs to all processors
    """
    x = V.tabulate_dof_coordinates()
    local_dofs = dofs[dofs < V.dofmap.index_map.size_local * V.dofmap.index_map_bs]
    coords = x[local_dofs]
    num_nodes = len(coords)
    glob_num_nodes = MPI.COMM_WORLD.allreduce(num_nodes, op=MPI.SUM)
    recvbuf = np.empty(0, dtype=V.mesh.geometry.x.dtype)
    if MPI.COMM_WORLD.rank == 0:
        recvbuf = np.zeros(3 * glob_num_nodes, dtype=V.mesh.geometry.x.dtype)
    sendbuf = coords.reshape(-1)
    sendcounts = np.array(MPI.COMM_WORLD.gather(len(sendbuf), 0))
    MPI.COMM_WORLD.Gatherv(sendbuf, (recvbuf, sendcounts), root=0)  #  type: ignore
    glob_coords = MPI.COMM_WORLD.bcast(recvbuf, root=0).reshape((-1, 3))
    return glob_coords


# Create pairs of dofs at each boundary
V0, _ = V.sub(0).collapse()

facets_r = locate_entities_boundary(mesh, fdim, lambda x: np.isclose(x[0], 1))
dofs_r = locate_dofs_topological(V0, fdim, facets_r)
facets_l = locate_entities_boundary(mesh, fdim, lambda x: np.isclose(x[0], 1.1))
dofs_l = locate_dofs_topological(V0, fdim, facets_l)

# Given the local coordinates of the dofs, distribute them on all processors
nodes = [gather_dof_coordinates(V0, dofs_r), gather_dof_coordinates(V0, dofs_l)]
pairs = []
for x in nodes[0]:
    for y in nodes[1]:
        if np.isclose(x[1], y[1]):
            pairs.append([x, y])
            break

mpc = MultiPointConstraint(V)
for i, pair in enumerate(pairs):
    sl, ms, co, ow, off = create_point_to_point_constraint(V, pair[0], pair[1], vector=[1, 0])
    mpc.add_constraint(V, sl, ms, co, ow, off)
mpc.finalize()

# Add back once PETSc release has added fix for
# https://gitlab.com/petsc/petsc/-/issues/1149
# petsc_options = {"ksp_rtol": 1.0e-8,
#                  "ksp_type": "cg",
#                  "pc_type": "gamg",
#                  "pc_gamg_type": "agg",
#                  "pc_gamg_coarse_eq_limit": 1000,
#                  "pc_gamg_sym_graph": True,
#                  "pc_gamg_square_graph": 2,
#                  "pc_gamg_threshold": 0.02,
#                  "mg_levels_ksp_type": "chebyshev",
#                  "mg_levels_pc_type": "jacobi",
#                  "mg_levels_esteig_ksp_type": "cg",
#                  #  "matptap_via": "scalable",
#                  "ksp_view": None,
#                  "help": None,
#                  "ksp_monitor": None
#                  }
petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}

problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)

# Build near nullspace
null_space = rigid_motions_nullspace(mpc.function_space)
problem.A.setNearNullSpace(null_space)
u_h = problem.solve()

it = problem.solver.getIterationNumber()

unorm = u_h.x.petsc_vec.norm()
if MPI.COMM_WORLD.rank == 0:
    print("Number of iterations: {0:d}".format(it))

# Write solution to file
u_h.name = "u"
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)
with XDMFFile(mesh.comm, outdir / "demo_elasticity_disconnect_2D.xdmf", "w") as xdmf:
    xdmf.write_mesh(mesh)
    xdmf.write_function(u_h)