File: demo_periodic3d_topological.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (188 lines) | stat: -rw-r--r-- 6,943 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# This demo program solves Poisson's equation
#
#     - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1 and periodic boundary conditions at x = 0, 1.
#
# Original implementation in DOLFIN by Kristian B. Oelgaard and Anders Logg
# This implementation can be found at:
# https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/periodic/demo_periodic.py
#
# Copyright (C) Jørgen S. Dokken 2020-2022.
#
# This file is part of DOLFINX_MPCX.
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from pathlib import Path
from typing import Dict, Union

from mpi4py import MPI

import dolfinx.fem as fem
import numpy as np
import scipy.sparse.linalg
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import VTXWriter
from dolfinx.mesh import CellType, create_unit_cube, locate_entities_boundary, meshtags
from numpy.typing import NDArray
from ufl import (
    SpatialCoordinate,
    TestFunction,
    TrialFunction,
    as_vector,
    dx,
    exp,
    grad,
    inner,
    pi,
    sin,
)

import dolfinx_mpc.utils
from dolfinx_mpc import LinearProblem

# Get PETSc int and scalar types
complex_mode = True if np.dtype(default_scalar_type).kind == "c" else False


def demo_periodic3D(celltype: CellType):
    # Create mesh and finite element
    if celltype == CellType.tetrahedron:
        # Tet setup
        N = 10
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
        V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))
    else:
        # Hex setup
        N = 10
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
        V = fem.functionspace(mesh, ("Lagrange", 2, (mesh.geometry.dim,)))
    tol = float(5e2 * np.finfo(default_scalar_type).resolution)

    def dirichletboundary(x: NDArray[Union[np.float32, np.float64]]) -> NDArray[np.bool_]:
        return np.logical_or(
            np.logical_or(np.isclose(x[1], 0, atol=tol), np.isclose(x[1], 1, atol=tol)),
            np.logical_or(np.isclose(x[2], 0, atol=tol), np.isclose(x[2], 1, atol=tol)),
        )

    # Create Dirichlet boundary condition
    zero = default_scalar_type([0, 0, 0])
    geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
    bc = fem.dirichletbc(zero, geometrical_dofs, V)
    bcs = [bc]

    def PeriodicBoundary(x):
        """
        Full surface minus dofs constrained by BCs
        """
        return np.isclose(x[0], 1, atol=tol)

    facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary)
    arg_sort = np.argsort(facets)
    mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32))

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = 1 - x[0]
        out_x[1] = x[1]
        out_x[2] = x[2]
        return out_x

    with Timer("~~Periodic: Compute mpc condition"):
        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_periodic_constraint_topological(V.sub(0), mt, 2, periodic_relation, bcs, default_scalar_type(1))
        mpc.finalize()
    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    x = SpatialCoordinate(mesh)
    dx_ = x[0] - 0.9
    dy_ = x[1] - 0.5
    dz_ = x[2] - 0.1
    f = as_vector(
        (
            x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02),
            0.1 * dx_ * dz_,
            0.1 * dx_ * dy_,
        )
    )

    rhs = inner(f, v) * dx

    petsc_options: Dict[str, Union[str, float, int]]
    if complex_mode or default_scalar_type == np.float32:
        petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
    else:
        petsc_options = {
            "ksp_type": "cg",
            "ksp_rtol": str(tol),
            "pc_type": "hypre",
            "pc_hypre_type": "boomeramg",
            "pc_hypre_boomeramg_max_iter": 1,
            "pc_hypre_boomeramg_cycle_type": "v",
            "pc_hypre_boomeramg_print_statistics": 1,
        }

    problem = LinearProblem(a, rhs, mpc, bcs, petsc_options=petsc_options)
    u_h = problem.solve()

    # --------------------VERIFICATION-------------------------
    print("----Verification----")
    u_ = fem.Function(V)
    u_.x.array[:] = 0
    org_problem = fem.petsc.LinearProblem(a, rhs, u=u_, bcs=bcs, petsc_options=petsc_options)
    with Timer("~Periodic: Unconstrained solve"):
        org_problem.solve()
        it = org_problem.solver.getIterationNumber()
    print(f"Unconstrained solver iterations: {it}")

    # Write solutions to file
    ext = "tet" if celltype == CellType.tetrahedron else "hex"
    u_.name = "u_" + ext + "_unconstrained"

    # NOTE: Workaround as tabulate dof coordinates does not like extra ghosts
    u_out = fem.Function(V)
    old_local = u_out.x.index_map.size_local * u_out.x.block_size
    old_ghosts = u_out.x.index_map.num_ghosts * u_out.x.block_size
    mpc_local = u_h.x.index_map.size_local * u_h.x.block_size
    assert old_local == mpc_local
    u_out.x.array[: old_local + old_ghosts] = u_h.x.array[: mpc_local + old_ghosts]
    u_out.name = "u_" + ext
    outdir = Path("results")
    outdir.mkdir(exist_ok=True, parents=True)
    fname = outdir / f"demo_periodic3d_{ext}.bp"
    out_periodic = VTXWriter(mesh.comm, fname, u_out, engine="BP4")
    out_periodic.write(0)
    out_periodic.close()

    root = 0
    with Timer("~Demo: Verification"):
        dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A, problem.A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b, problem.b, mpc, root=root)
        is_complex = np.issubdtype(default_scalar_type, np.complexfloating)  # type: ignore
        scipy_dtype = np.complex128 if is_complex else np.float64
        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.x.petsc_vec, root=root)
        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T.astype(scipy_dtype) * A_csr.astype(scipy_dtype) * K.astype(scipy_dtype)
            reduced_L = K.T.astype(scipy_dtype) @ L_np.astype(scipy_dtype)
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K.astype(scipy_dtype) @ d.astype(scipy_dtype)
            assert np.allclose(uh_numpy.astype(u_mpc.dtype), u_mpc, rtol=tol, atol=tol)


if __name__ == "__main__":
    for celltype in [CellType.hexahedron, CellType.tetrahedron]:
        demo_periodic3D(celltype)
    list_timings(MPI.COMM_WORLD, [TimingType.wall])