1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
# Copyright (C) 2021-2022 fmonteghetti, Connor D. Pierce, and Jorgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
# This demo solves the Laplace eigenvalue problem
#
# - div grad u(x, y) = lambda*u(x, y)
#
# on the unit square with two sets of boundary conditions:
#
# u(x=0) = u(x=1) and u(y=0) = u(y=1) = 0,
#
# or
#
# u(x=0) = u(x=1) and u(y=0) = u(y=1).
#
# The weak form reads
#
# (grad(u),grad(v)) = lambda * (u,v),
#
# which leads to the generalized eigenvalue problem
#
# A * U = lambda * B * U,
#
# where A and B are real symmetric positive definite matrices. The generalized
# eigenvalue problem is solved using SLEPc and the computed eigenvalues are
# compared to the exact ones.
from __future__ import annotations
from pathlib import Path
from typing import List, Tuple
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.fem as fem
import numpy as np
from dolfinx import default_scalar_type
from dolfinx.io import XDMFFile
from dolfinx.mesh import create_unit_square, locate_entities_boundary, meshtags
from slepc4py import SLEPc
from ufl import TestFunction, TrialFunction, dx, grad, inner
from dolfinx_mpc import MultiPointConstraint, assemble_matrix
def print0(string: str):
"""Print on rank 0 only"""
if MPI.COMM_WORLD.rank == 0:
print(string)
def monitor_EPS_short(EPS: SLEPc.EPS, it: int, nconv: int, eig: list, err: list, it_skip: int):
"""
Concise monitor for EPS.solve().
Parameters
----------
eps
Eigenvalue Problem Solver class.
it
Current iteration number.
nconv
Number of converged eigenvalue.
eig
Eigenvalues
err
Computed errors.
it_skip
Iteration skip.
"""
if it == 1:
print0("******************************")
print0("*** SLEPc Iterations... ***")
print0("******************************")
print0("Iter. | Conv. | Max. error")
print0(f"{it:5d} | {nconv:5d} | {max(err):1.1e}")
elif not it % it_skip:
print0(f"{it:5d} | {nconv:5d} | {max(err):1.1e}")
def EPS_print_results(EPS: SLEPc.EPS):
"""Print summary of solution results."""
print0("\n******************************")
print0("*** SLEPc Solution Results ***")
print0("******************************")
its = EPS.getIterationNumber()
print0(f"Iteration number: {its}")
nconv = EPS.getConverged()
print0(f"Converged eigenpairs: {nconv}")
if nconv > 0:
# Create the results vectors
vr, vi = EPS.getOperators()[0].createVecs()
print0("\nConverged eigval. Error ")
print0("----------------- -------")
for i in range(nconv):
k = EPS.getEigenpair(i, vr, vi)
error = EPS.computeError(i)
if not np.isclose(k.imag, 0.0):
print0(f" {k.real:2.2e} + {k.imag:2.2e}j {error:1.1e}")
else:
pad = " " * 11
print0(f" {k.real:2.2e} {pad} {error:1.1e}")
def EPS_get_spectrum(
EPS: SLEPc.EPS, mpc: MultiPointConstraint
) -> Tuple[List[complex], List[PETSc.Vec], List[PETSc.Vec]]: # type: ignore
"""Retrieve eigenvalues and eigenfunctions from SLEPc EPS object.
Parameters
----------
EPS
The SLEPc solver
mpc
The multipoint constraint
Returns
-------
Tuple consisting of: List of complex converted eigenvalues,
lists of converted eigenvectors (real part) and (imaginary part)
"""
# Get results in lists
eigval = [EPS.getEigenvalue(i) for i in range(EPS.getConverged())]
eigvec_r = list()
eigvec_i = list()
V = mpc.function_space
for i in range(EPS.getConverged()):
vr = fem.Function(V)
vi = fem.Function(V)
EPS.getEigenvector(i, vr.x.petsc_vec, vi.x.petsc_vec)
eigvec_r.append(vr)
eigvec_i.append(vi) # Sort by increasing real parts
idx = np.argsort(np.real(np.array(eigval)), axis=0)
eigval = [eigval[i] for i in idx]
eigvec_r = [eigvec_r[i] for i in idx]
eigvec_i = [eigvec_i[i] for i in idx]
return (eigval, eigvec_r, eigvec_i)
def solve_GEP_shiftinvert(
A: PETSc.Mat, # type: ignore
B: PETSc.Mat, # type: ignore
problem_type: SLEPc.EPS.ProblemType = SLEPc.EPS.ProblemType.GNHEP,
solver: SLEPc.EPS.Type = SLEPc.EPS.Type.KRYLOVSCHUR,
nev: int = 10,
tol: float = 1e-7,
max_it: int = 10,
target: float = 0.0,
shift: float = 0.0,
comm: MPI.Intracomm = MPI.COMM_WORLD,
) -> SLEPc.EPS:
"""
Solve generalized eigenvalue problem A*x=lambda*B*x using shift-and-invert
as spectral transform method.
Parameters
----------
A
The matrix A
B
The matrix B
problem_type
The problem type, for options see: https://bit.ly/3gM5pth
solver:
Solver type, for options see: https://bit.ly/35LDcMG
nev
Number of requested eigenvalues.
tol
Tolerance for slepc solver
max_it
Maximum number of iterations.
target
Target eigenvalue. Also used for sorting.
shift
Shift 'sigma' used in shift-and-invert.
Returns
-------
EPS
The SLEPc solver
"""
# Build an Eigenvalue Problem Solver object
EPS = SLEPc.EPS()
EPS.create(comm=comm)
EPS.setOperators(A, B)
EPS.setProblemType(problem_type)
# set the number of eigenvalues requested
EPS.setDimensions(nev=nev)
# Set solver
EPS.setType(solver)
# set eigenvalues of interest
EPS.setWhichEigenpairs(SLEPc.EPS.Which.TARGET_MAGNITUDE)
EPS.setTarget(target) # sorting
# set tolerance and max iterations
EPS.setTolerances(tol=tol, max_it=max_it)
# Set up shift-and-invert
# Only work if 'whichEigenpairs' is 'TARGET_XX'
ST = EPS.getST()
ST.setType(SLEPc.ST.Type.SINVERT)
ST.setShift(shift)
EPS.setST(ST)
# set monitor
it_skip = 1
EPS.setMonitor(lambda eps, it, nconv, eig, err: monitor_EPS_short(eps, it, nconv, eig, err, it_skip))
# parse command line options
EPS.setFromOptions()
# Display all options (including those of ST object)
# EPS.view()
EPS.solve()
EPS_print_results(EPS)
return EPS
def assemble_and_solve(boundary_condition: List[str] = ["dirichlet", "periodic"], Nev: int = 10):
"""
Assemble and solve the Laplace eigenvalue problem on the unit square with
the prescribed boundary conditions.
Parameters
----------
boundary_condition
First item describes b.c. on {x=0} and {x=1}
Second item describes b.c. on {y=0} and {y=1}
Nev
Number of requested eigenvalues. The default is 10.
"""
comm = MPI.COMM_WORLD
# Create mesh and finite element
N = 50
mesh = create_unit_square(comm, N, N)
V = fem.functionspace(mesh, ("Lagrange", 1))
fdim = mesh.topology.dim - 1
bcs = []
pbc_directions = []
pbc_slave_tags = []
pbc_is_slave = []
pbc_is_master = []
pbc_meshtags = []
pbc_slave_to_master_maps = []
def generate_pbc_slave_to_master_map(i):
def pbc_slave_to_master_map(x):
out_x = x.copy()
out_x[i] = x[i] - 1
return out_x
return pbc_slave_to_master_map
def generate_pbc_is_slave(i):
return lambda x: np.isclose(x[i], 1)
def generate_pbc_is_master(i):
return lambda x: np.isclose(x[i], 0)
# Parse boundary conditions
for i, bc_type in enumerate(boundary_condition):
if bc_type == "dirichlet":
u_bc = fem.Function(V)
u_bc.x.array[:] = 0
def dirichletboundary(x):
return np.logical_or(np.isclose(x[i], 0), np.isclose(x[i], 1))
facets = locate_entities_boundary(mesh, fdim, dirichletboundary)
topological_dofs = fem.locate_dofs_topological(V, fdim, facets)
bcs.append(fem.dirichletbc(u_bc, topological_dofs))
elif bc_type == "periodic":
pbc_directions.append(i)
pbc_slave_tags.append(i + 2)
pbc_is_slave.append(generate_pbc_is_slave(i))
pbc_is_master.append(generate_pbc_is_master(i))
pbc_slave_to_master_maps.append(generate_pbc_slave_to_master_map(i))
facets = locate_entities_boundary(mesh, fdim, pbc_is_slave[-1])
arg_sort = np.argsort(facets)
pbc_meshtags.append(
meshtags(
mesh,
fdim,
facets[arg_sort],
np.full(len(facets), pbc_slave_tags[-1], dtype=np.int32),
)
)
# Create MultiPointConstraint object
mpc = MultiPointConstraint(V)
N_pbc = len(pbc_directions)
for i in range(N_pbc):
if N_pbc > 1:
def pbc_slave_to_master_map(x):
out_x = pbc_slave_to_master_maps[i](x)
idx = pbc_is_slave[(i + 1) % N_pbc](x)
out_x[pbc_directions[i]][idx] = np.nan
return out_x
else:
pbc_slave_to_master_map = pbc_slave_to_master_maps[i]
mpc.create_periodic_constraint_topological(V, pbc_meshtags[i], pbc_slave_tags[i], pbc_slave_to_master_map, bcs)
if len(pbc_directions) > 1:
# Map intersection(slaves_x, slaves_y) to intersection(masters_x, masters_y),
# i.e. map the slave dof at (1, 1) to the master dof at (0, 0)
def pbc_slave_to_master_map(x):
out_x = x.copy()
out_x[0] = x[0] - 1
out_x[1] = x[1] - 1
idx = np.logical_and(pbc_is_slave[0](x), pbc_is_slave[1](x))
out_x[0][~idx] = np.nan
out_x[1][~idx] = np.nan
return out_x
mpc.create_periodic_constraint_topological(V, pbc_meshtags[1], pbc_slave_tags[1], pbc_slave_to_master_map, bcs)
mpc.finalize()
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx
b = inner(u, v) * dx
mass_form = fem.form(a)
stiffness_form = fem.form(b)
# Diagonal values for slave and Dirichlet DoF
# The generalized eigenvalue problem will have spurious eigenvalues at
# lambda_spurious = diagval_A/diagval_B. Here we choose lambda_spurious=1e4,
# which is far from the region of interest.
diagval_A = 1e2
diagval_B = 1e-2
tol = float(5e2 * np.finfo(default_scalar_type).resolution)
A = assemble_matrix(mass_form, mpc, bcs=bcs, diagval=diagval_A)
B = assemble_matrix(stiffness_form, mpc, bcs=bcs, diagval=diagval_B)
EPS = solve_GEP_shiftinvert(
A,
B,
problem_type=SLEPc.EPS.ProblemType.GHEP,
solver=SLEPc.EPS.Type.KRYLOVSCHUR,
nev=Nev,
tol=tol,
max_it=10,
target=1.5,
shift=1.5,
comm=comm,
)
(eigval, eigvec_r, eigvec_i) = EPS_get_spectrum(EPS, mpc)
# update slave DoF
for i in range(len(eigval)):
eigvec_r[i].x.scatter_forward()
mpc.backsubstitution(eigvec_r[i])
eigvec_i[i].x.scatter_forward()
mpc.backsubstitution(eigvec_i[i])
print0(f"Computed eigenvalues:\n {np.around(eigval,decimals=2)}")
# Save all eigenvectors
suffix = "".join([bc_type[0] for bc_type in boundary_condition])
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)
with XDMFFile(mesh.comm, outdir / f"eigenvector_{suffix}.xdmf", "w") as xdmf:
xdmf.write_mesh(mesh)
for i, e_vec in enumerate(eigvec_r):
xdmf.write_function(e_vec, i)
def print_exact_eigenvalues(boundary_condition: List[str], N: int):
L = [1, 1]
if boundary_condition[0] == "dirichlet":
ev_x = [(n * np.pi / L[0]) ** 2 for n in range(1, N + 1)]
elif boundary_condition[0] == "periodic":
ev_x = [(n * 2 * np.pi / L[0]) ** 2 for n in range(-N, N)]
if boundary_condition[1] == "dirichlet":
ev_y = [(n * np.pi / L[1]) ** 2 for n in range(1, N + 1)]
elif boundary_condition[1] == "periodic":
ev_y = [(n * 2 * np.pi / L[1]) ** 2 for n in range(-N, N)]
ev_ex = np.sort([r + q for r in ev_x for q in ev_y])
ev_ex = ev_ex[0:N]
print0(f"Exact eigenvalues (repeated with multiplicity):\n {np.around(ev_ex,decimals=2)}")
# Dirichlet boundary condition on {x=0} and {x=1}
# Dirichlet boundary condition on {y=0} and {y=1}
assemble_and_solve(["dirichlet", "dirichlet"], 10)
print_exact_eigenvalues(["dirichlet", "dirichlet"], 10)
# Dirichlet boundary condition on {x=0} and {x=1}
# Periodic boundary condition: {y=0} -> {y=1}
assemble_and_solve(["dirichlet", "periodic"], 10)
print_exact_eigenvalues(["dirichlet", "periodic"], 10)
# Periodic boundary condition: {x=0} -> {x=1}
# Dirichlet boundary condition on {y=0} and {y=1}
assemble_and_solve(["periodic", "dirichlet"], 10)
print_exact_eigenvalues(["periodic", "dirichlet"], 10)
# Periodic boundary condition: {x=0} -> {x=1}
# Periodic boundary condition: {y=0} -> {y=1}
assemble_and_solve(["periodic", "periodic"], 10)
print_exact_eigenvalues(["periodic", "periodic"], 10)
|