1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
# Copyright (C) 2022 Nathan Sime
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
#
# This demo illustrates how to apply a slip condition on an
# interface not aligned with the coordiante axis.
# The demos solves the Stokes problem using the nest functionality to
# avoid using mixed function spaces. The demo also illustrates how to use
# block preconditioners with PETSc
from __future__ import annotations
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc
import basix
import dolfinx.io
import gmsh
import numpy as np
import scipy.sparse.linalg
import ufl
from dolfinx import default_real_type, default_scalar_type
from dolfinx.io import gmshio
from ufl.core.expr import Expr
import dolfinx_mpc
import dolfinx_mpc.utils
def create_mesh_gmsh(
L: int = 2,
H: int = 1,
res: float = 0.1,
theta: float = np.pi / 5,
wall_marker: int = 1,
outlet_marker: int = 2,
inlet_marker: int = 3,
):
"""
Create a channel of length L, height H, rotated theta degrees
around origin, with facet markers for inlet, outlet and walls.
Parameters
----------
L
The length of the channel
H
Width of the channel
res
Mesh resolution (uniform)
theta
Rotation angle
wall_marker
Integer used to mark the walls of the channel
outlet_marker
Integer used to mark the outlet of the channel
inlet_marker
Integer used to mark the inlet of the channel
"""
gmsh.initialize()
if MPI.COMM_WORLD.rank == 0:
gmsh.model.add("Square duct")
# Create rectangular channel
channel = gmsh.model.occ.addRectangle(0, 0, 0, L, H)
gmsh.model.occ.synchronize()
# Find entity markers before rotation
surfaces = gmsh.model.occ.getEntities(dim=1)
walls = []
inlets = []
outlets = []
for surface in surfaces:
com = gmsh.model.occ.getCenterOfMass(surface[0], surface[1])
if np.allclose(com, [0, H / 2, 0]):
inlets.append(surface[1])
elif np.allclose(com, [L, H / 2, 0]):
outlets.append(surface[1])
elif np.isclose(com[1], 0) or np.isclose(com[1], H):
walls.append(surface[1])
# Rotate channel theta degrees in the xy-plane
gmsh.model.occ.rotate([(2, channel)], 0, 0, 0, 0, 0, 1, theta)
gmsh.model.occ.synchronize()
# Add physical markers
gmsh.model.addPhysicalGroup(2, [channel], 1)
gmsh.model.setPhysicalName(2, 1, "Fluid volume")
gmsh.model.addPhysicalGroup(1, walls, wall_marker)
gmsh.model.setPhysicalName(1, wall_marker, "Walls")
gmsh.model.addPhysicalGroup(1, inlets, inlet_marker)
gmsh.model.setPhysicalName(1, inlet_marker, "Fluid inlet")
gmsh.model.addPhysicalGroup(1, outlets, outlet_marker)
gmsh.model.setPhysicalName(1, outlet_marker, "Fluid outlet")
# Set number of threads used for mesh
gmsh.option.setNumber("Mesh.MaxNumThreads1D", MPI.COMM_WORLD.size)
gmsh.option.setNumber("Mesh.MaxNumThreads2D", MPI.COMM_WORLD.size)
gmsh.option.setNumber("Mesh.MaxNumThreads3D", MPI.COMM_WORLD.size)
# Set uniform mesh size
gmsh.option.setNumber("Mesh.CharacteristicLengthMin", res)
gmsh.option.setNumber("Mesh.CharacteristicLengthMax", res)
# Generate mesh
gmsh.model.mesh.generate(2)
# Convert gmsh model to DOLFINx Mesh and meshtags
mesh, _, ft = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=2)
gmsh.finalize()
return mesh, ft
# ------------------- Mesh and function space creation ------------------------
mesh, mt = create_mesh_gmsh(res=0.1)
fdim = mesh.topology.dim - 1
# Create the function space
cellname = mesh.ufl_cell().cellname()
Ve = basix.ufl.element(basix.ElementFamily.P, cellname, 2, shape=(mesh.geometry.dim,), dtype=default_real_type)
Qe = basix.ufl.element(basix.ElementFamily.P, cellname, 1, dtype=default_real_type)
V = dolfinx.fem.functionspace(mesh, Ve)
Q = dolfinx.fem.functionspace(mesh, Qe)
def inlet_velocity_expression(x):
return np.stack(
(
np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
5 * x[1] * np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
)
)
# ----------------------Defining boundary conditions----------------------
# Inlet velocity Dirichlet BC
inlet_velocity = dolfinx.fem.Function(V)
inlet_velocity.interpolate(inlet_velocity_expression)
inlet_velocity.x.scatter_forward()
dofs = dolfinx.fem.locate_dofs_topological(V, 1, mt.find(3))
bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs)
# Collect Dirichlet boundary conditions
bcs = [bc1]
# Slip conditions for walls
n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
with dolfinx.common.Timer("~Stokes: Create slip constraint"):
mpc = dolfinx_mpc.MultiPointConstraint(V)
mpc.create_slip_constraint(V, (mt, 1), n, bcs=bcs)
mpc.finalize()
mpc_q = dolfinx_mpc.MultiPointConstraint(Q)
mpc_q.finalize()
def tangential_proj(u: Expr, n: Expr):
"""
See for instance:
https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf
"""
return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
def sym_grad(u: Expr):
return ufl.sym(ufl.grad(u))
def T(u: Expr, p: Expr, mu: Expr):
return 2 * mu * sym_grad(u) - p * ufl.Identity(u.ufl_shape[0])
# --------------------------Variational problem---------------------------
# Traditional terms
mu = 1
f = dolfinx.fem.Constant(mesh, default_scalar_type((0, 0)))
(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
a00 = 2 * mu * ufl.inner(sym_grad(u), sym_grad(v)) * ufl.dx
a01 = -ufl.inner(p, ufl.div(v)) * ufl.dx
a10 = -ufl.inner(ufl.div(u), q) * ufl.dx
a11 = None
L0 = ufl.inner(f, v) * ufl.dx
L1 = ufl.inner(dolfinx.fem.Constant(mesh, default_scalar_type(0.0)), q) * ufl.dx
# No prescribed shear stress
n = ufl.FacetNormal(mesh)
g_tau = tangential_proj(dolfinx.fem.Constant(mesh, default_scalar_type(((0, 0), (0, 0)))) * n, n)
ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)
# Terms due to slip condition
# Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(2 * mu * sym_grad(u), n), v) * ds
a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot(-p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
L0 += ufl.inner(g_tau, v) * ds
a = [[dolfinx.fem.form(a00), dolfinx.fem.form(a01)], [dolfinx.fem.form(a10), dolfinx.fem.form(a11)]]
L = [dolfinx.fem.form(L0), dolfinx.fem.form(L1)]
# Assemble LHS matrix and RHS vector
with dolfinx.common.Timer("~Stokes: Assemble LHS and RHS"):
A = dolfinx_mpc.create_matrix_nest(a, [mpc, mpc_q])
dolfinx_mpc.assemble_matrix_nest(A, a, [mpc, mpc_q], bcs)
A.assemble()
b = dolfinx_mpc.create_vector_nest(L, [mpc, mpc_q])
dolfinx_mpc.assemble_vector_nest(b, L, [mpc, mpc_q])
# Set Dirichlet boundary condition values in the RHS
dolfinx.fem.petsc.apply_lifting_nest(b, a, bcs)
for b_sub in b.getNestSubVecs():
b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) # type: ignore
# bcs0 = dolfinx.cpp.fem.bcs_rows(
# dolfinx.fem.assemble._create_cpp_form(L), bcs)
bcs0 = dolfinx.fem.bcs_by_block(dolfinx.fem.extract_function_spaces(L), bcs)
dolfinx.fem.petsc.set_bc_nest(b, bcs0)
# Preconditioner
P11 = dolfinx.fem.petsc.assemble_matrix(dolfinx.fem.form(p * q * ufl.dx))
P = PETSc.Mat().createNest([[A.getNestSubMatrix(0, 0), None], [None, P11]]) # type: ignore
P.assemble()
# ---------------------- Solve variational problem -----------------------
ksp = PETSc.KSP().create(mesh.comm) # type: ignore
ksp.setOperators(A, P)
ksp.setMonitor(
lambda ctx, it, r: PETSc.Sys.Print( # type: ignore
f"Iteration: {it:>4d}, |r| = {r:.3e}"
)
)
ksp.setType("minres")
ksp.setTolerances(rtol=1e-8)
ksp.getPC().setType("fieldsplit")
ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE) # type: ignore
nested_IS = P.getNestISs()
ksp.getPC().setFieldSplitIS(("u", nested_IS[0][0]), ("p", nested_IS[0][1]))
ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
ksp_u.setType("preonly")
ksp_u.getPC().setType("gamg")
ksp_p.setType("preonly")
ksp_p.getPC().setType("jacobi")
ksp.setFromOptions()
Uh = b.copy()
ksp.solve(b, Uh)
for Uh_sub in Uh.getNestSubVecs():
Uh_sub.ghostUpdate(
addv=PETSc.InsertMode.INSERT, # type: ignore
mode=PETSc.ScatterMode.FORWARD, # type: ignore
) # type: ignore
# ----------------------------- Put NestVec into DOLFINx Function - ---------
uh = dolfinx.fem.Function(mpc.function_space)
uh.x.petsc_vec.setArray(Uh.getNestSubVecs()[0].array)
ph = dolfinx.fem.Function(mpc_q.function_space)
ph.x.petsc_vec.setArray(Uh.getNestSubVecs()[1].array)
uh.x.scatter_forward()
ph.x.scatter_forward()
# Backsubstitute to update slave dofs in solution vector
mpc.backsubstitution(uh)
mpc_q.backsubstitution(ph)
# ------------------------------ Output ----------------------------------
uh.name = "u"
ph.name = "p"
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)
with dolfinx.io.XDMFFile(mesh.comm, outdir / "demo_stokes_nest.xdmf", "w") as outfile:
outfile.write_mesh(mesh)
outfile.write_meshtags(mt, mesh.geometry)
outfile.write_function(uh)
outfile.write_function(ph)
with dolfinx.io.VTXWriter(mesh.comm, outdir / "stokes_nest_uh.bp", uh, engine="BP4") as vtx:
vtx.write(0.0)
# -------------------- Verification --------------------------------
# Transfer data from the MPC problem to numpy arrays for comparison
with dolfinx.common.Timer("~Stokes: Verification of problem by global matrix reduction"):
W = dolfinx.fem.functionspace(mesh, basix.ufl.mixed_element([Ve, Qe]))
V, V_to_W = W.sub(0).collapse()
_, Q_to_W = W.sub(1).collapse()
# Inlet velocity Dirichlet BC
inlet_velocity = dolfinx.fem.Function(V)
inlet_velocity.interpolate(inlet_velocity_expression)
inlet_velocity.x.scatter_forward()
W0 = W.sub(0)
dofs = dolfinx.fem.locate_dofs_topological((W0, V), 1, mt.find(3))
bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W0)
# Collect Dirichlet boundary conditions
bcs = [bc1]
# Slip conditions for walls
n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
with dolfinx.common.Timer("~Stokes: Create slip constraint"):
mpc = dolfinx_mpc.MultiPointConstraint(W)
mpc.create_slip_constraint(W.sub(0), (mt, 1), n, bcs=bcs)
mpc.finalize()
(u, p) = ufl.TrialFunctions(W)
(v, q) = ufl.TestFunctions(W)
a = (2 * mu * ufl.inner(sym_grad(u), sym_grad(v)) - ufl.inner(p, ufl.div(v)) - ufl.inner(ufl.div(u), q)) * ufl.dx
L = ufl.inner(f, v) * ufl.dx
# Terms due to slip condition
# Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
a -= ufl.inner(ufl.outer(n, n) * ufl.dot(T(u, p, mu), n), v) * ds
L += ufl.inner(g_tau, v) * ds
af = dolfinx.fem.form(a)
Lf = dolfinx.fem.form(L)
# Solve the MPC problem using a global transformation matrix
# and numpy solvers to get reference values
# Generate reference matrices and unconstrained solution
A_org = dolfinx.fem.petsc.assemble_matrix(af, bcs)
A_org.assemble()
L_org = dolfinx.fem.petsc.assemble_vector(Lf)
dolfinx.fem.petsc.apply_lifting(L_org, [af], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
dolfinx.fem.petsc.set_bc(L_org, bcs)
root = 0
# Gather LHS, RHS and solution on one process
A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.x.petsc_vec, root=root)
p_mpc = dolfinx_mpc.utils.gather_PETScVector(ph.x.petsc_vec, root=root)
up_mpc = np.hstack([u_mpc, p_mpc])
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
assert np.allclose(np.linalg.norm(uh_numpy, 2), np.linalg.norm(up_mpc, 2))
A.destroy()
b.destroy()
for Uh_sub in Uh.getNestSubVecs():
Uh_sub.destroy()
Uh.destroy()
ksp.destroy()
# -------------------- List timings --------------------------
dolfinx.common.list_timings(MPI.COMM_WORLD, [dolfinx.common.TimingType.wall])
|