File: demo_stokes_nest.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (365 lines) | stat: -rw-r--r-- 12,656 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (C) 2022 Nathan Sime
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
#
# This demo illustrates how to apply a slip condition on an
# interface not aligned with the coordiante axis.
# The demos solves the Stokes problem using the nest functionality to
# avoid using mixed function spaces. The demo also illustrates how to use
#  block preconditioners with PETSc
from __future__ import annotations

from pathlib import Path

from mpi4py import MPI
from petsc4py import PETSc

import basix
import dolfinx.io
import gmsh
import numpy as np
import scipy.sparse.linalg
import ufl
from dolfinx import default_real_type, default_scalar_type
from dolfinx.io import gmshio
from ufl.core.expr import Expr

import dolfinx_mpc
import dolfinx_mpc.utils


def create_mesh_gmsh(
    L: int = 2,
    H: int = 1,
    res: float = 0.1,
    theta: float = np.pi / 5,
    wall_marker: int = 1,
    outlet_marker: int = 2,
    inlet_marker: int = 3,
):
    """
    Create a channel of length L, height H, rotated theta degrees
    around origin, with facet markers for inlet, outlet and walls.


    Parameters
    ----------
    L
        The length of the channel
    H
        Width of the channel
    res
        Mesh resolution (uniform)
    theta
        Rotation angle
    wall_marker
        Integer used to mark the walls of the channel
    outlet_marker
        Integer used to mark the outlet of the channel
    inlet_marker
        Integer used to mark the inlet of the channel
    """
    gmsh.initialize()
    if MPI.COMM_WORLD.rank == 0:
        gmsh.model.add("Square duct")

        # Create rectangular channel
        channel = gmsh.model.occ.addRectangle(0, 0, 0, L, H)
        gmsh.model.occ.synchronize()

        # Find entity markers before rotation
        surfaces = gmsh.model.occ.getEntities(dim=1)
        walls = []
        inlets = []
        outlets = []
        for surface in surfaces:
            com = gmsh.model.occ.getCenterOfMass(surface[0], surface[1])
            if np.allclose(com, [0, H / 2, 0]):
                inlets.append(surface[1])
            elif np.allclose(com, [L, H / 2, 0]):
                outlets.append(surface[1])
            elif np.isclose(com[1], 0) or np.isclose(com[1], H):
                walls.append(surface[1])
        # Rotate channel theta degrees in the xy-plane
        gmsh.model.occ.rotate([(2, channel)], 0, 0, 0, 0, 0, 1, theta)
        gmsh.model.occ.synchronize()

        # Add physical markers
        gmsh.model.addPhysicalGroup(2, [channel], 1)
        gmsh.model.setPhysicalName(2, 1, "Fluid volume")
        gmsh.model.addPhysicalGroup(1, walls, wall_marker)
        gmsh.model.setPhysicalName(1, wall_marker, "Walls")
        gmsh.model.addPhysicalGroup(1, inlets, inlet_marker)
        gmsh.model.setPhysicalName(1, inlet_marker, "Fluid inlet")
        gmsh.model.addPhysicalGroup(1, outlets, outlet_marker)
        gmsh.model.setPhysicalName(1, outlet_marker, "Fluid outlet")

        # Set number of threads used for mesh
        gmsh.option.setNumber("Mesh.MaxNumThreads1D", MPI.COMM_WORLD.size)
        gmsh.option.setNumber("Mesh.MaxNumThreads2D", MPI.COMM_WORLD.size)
        gmsh.option.setNumber("Mesh.MaxNumThreads3D", MPI.COMM_WORLD.size)

        # Set uniform mesh size
        gmsh.option.setNumber("Mesh.CharacteristicLengthMin", res)
        gmsh.option.setNumber("Mesh.CharacteristicLengthMax", res)

        # Generate mesh
        gmsh.model.mesh.generate(2)
    # Convert gmsh model to DOLFINx Mesh and meshtags
    mesh, _, ft = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=2)
    gmsh.finalize()
    return mesh, ft


# ------------------- Mesh and function space creation ------------------------
mesh, mt = create_mesh_gmsh(res=0.1)

fdim = mesh.topology.dim - 1

# Create the function space
cellname = mesh.ufl_cell().cellname()
Ve = basix.ufl.element(basix.ElementFamily.P, cellname, 2, shape=(mesh.geometry.dim,), dtype=default_real_type)
Qe = basix.ufl.element(basix.ElementFamily.P, cellname, 1, dtype=default_real_type)

V = dolfinx.fem.functionspace(mesh, Ve)
Q = dolfinx.fem.functionspace(mesh, Qe)


def inlet_velocity_expression(x):
    return np.stack(
        (
            np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
            5 * x[1] * np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
        )
    )


# ----------------------Defining boundary conditions----------------------
# Inlet velocity Dirichlet BC
inlet_velocity = dolfinx.fem.Function(V)
inlet_velocity.interpolate(inlet_velocity_expression)
inlet_velocity.x.scatter_forward()
dofs = dolfinx.fem.locate_dofs_topological(V, 1, mt.find(3))
bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs)

# Collect Dirichlet boundary conditions
bcs = [bc1]

# Slip conditions for walls
n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
with dolfinx.common.Timer("~Stokes: Create slip constraint"):
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_slip_constraint(V, (mt, 1), n, bcs=bcs)
mpc.finalize()

mpc_q = dolfinx_mpc.MultiPointConstraint(Q)
mpc_q.finalize()


def tangential_proj(u: Expr, n: Expr):
    """
    See for instance:
    https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf
    """
    return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u


def sym_grad(u: Expr):
    return ufl.sym(ufl.grad(u))


def T(u: Expr, p: Expr, mu: Expr):
    return 2 * mu * sym_grad(u) - p * ufl.Identity(u.ufl_shape[0])


# --------------------------Variational problem---------------------------
# Traditional terms
mu = 1
f = dolfinx.fem.Constant(mesh, default_scalar_type((0, 0)))
(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
a00 = 2 * mu * ufl.inner(sym_grad(u), sym_grad(v)) * ufl.dx
a01 = -ufl.inner(p, ufl.div(v)) * ufl.dx
a10 = -ufl.inner(ufl.div(u), q) * ufl.dx
a11 = None

L0 = ufl.inner(f, v) * ufl.dx
L1 = ufl.inner(dolfinx.fem.Constant(mesh, default_scalar_type(0.0)), q) * ufl.dx

# No prescribed shear stress
n = ufl.FacetNormal(mesh)
g_tau = tangential_proj(dolfinx.fem.Constant(mesh, default_scalar_type(((0, 0), (0, 0)))) * n, n)
ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

# Terms due to slip condition
# Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(2 * mu * sym_grad(u), n), v) * ds
a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot(-p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
L0 += ufl.inner(g_tau, v) * ds

a = [[dolfinx.fem.form(a00), dolfinx.fem.form(a01)], [dolfinx.fem.form(a10), dolfinx.fem.form(a11)]]
L = [dolfinx.fem.form(L0), dolfinx.fem.form(L1)]

# Assemble LHS matrix and RHS vector
with dolfinx.common.Timer("~Stokes: Assemble LHS and RHS"):
    A = dolfinx_mpc.create_matrix_nest(a, [mpc, mpc_q])
    dolfinx_mpc.assemble_matrix_nest(A, a, [mpc, mpc_q], bcs)
    A.assemble()

    b = dolfinx_mpc.create_vector_nest(L, [mpc, mpc_q])
    dolfinx_mpc.assemble_vector_nest(b, L, [mpc, mpc_q])

# Set Dirichlet boundary condition values in the RHS
dolfinx.fem.petsc.apply_lifting_nest(b, a, bcs)
for b_sub in b.getNestSubVecs():
    b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)  # type: ignore

# bcs0 = dolfinx.cpp.fem.bcs_rows(
#     dolfinx.fem.assemble._create_cpp_form(L), bcs)
bcs0 = dolfinx.fem.bcs_by_block(dolfinx.fem.extract_function_spaces(L), bcs)
dolfinx.fem.petsc.set_bc_nest(b, bcs0)

# Preconditioner
P11 = dolfinx.fem.petsc.assemble_matrix(dolfinx.fem.form(p * q * ufl.dx))
P = PETSc.Mat().createNest([[A.getNestSubMatrix(0, 0), None], [None, P11]])  # type: ignore
P.assemble()

# ---------------------- Solve variational problem -----------------------
ksp = PETSc.KSP().create(mesh.comm)  # type: ignore
ksp.setOperators(A, P)
ksp.setMonitor(
    lambda ctx, it, r: PETSc.Sys.Print(  # type: ignore
        f"Iteration: {it:>4d}, |r| = {r:.3e}"
    )
)
ksp.setType("minres")
ksp.setTolerances(rtol=1e-8)
ksp.getPC().setType("fieldsplit")
ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)  # type: ignore

nested_IS = P.getNestISs()
ksp.getPC().setFieldSplitIS(("u", nested_IS[0][0]), ("p", nested_IS[0][1]))

ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
ksp_u.setType("preonly")
ksp_u.getPC().setType("gamg")
ksp_p.setType("preonly")
ksp_p.getPC().setType("jacobi")

ksp.setFromOptions()

Uh = b.copy()
ksp.solve(b, Uh)

for Uh_sub in Uh.getNestSubVecs():
    Uh_sub.ghostUpdate(
        addv=PETSc.InsertMode.INSERT,  # type: ignore
        mode=PETSc.ScatterMode.FORWARD,  # type: ignore
    )  # type: ignore
# ----------------------------- Put NestVec into DOLFINx Function - ---------
uh = dolfinx.fem.Function(mpc.function_space)
uh.x.petsc_vec.setArray(Uh.getNestSubVecs()[0].array)

ph = dolfinx.fem.Function(mpc_q.function_space)
ph.x.petsc_vec.setArray(Uh.getNestSubVecs()[1].array)

uh.x.scatter_forward()
ph.x.scatter_forward()

# Backsubstitute to update slave dofs in solution vector
mpc.backsubstitution(uh)
mpc_q.backsubstitution(ph)

# ------------------------------ Output ----------------------------------

uh.name = "u"
ph.name = "p"
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)

with dolfinx.io.XDMFFile(mesh.comm, outdir / "demo_stokes_nest.xdmf", "w") as outfile:
    outfile.write_mesh(mesh)
    outfile.write_meshtags(mt, mesh.geometry)
    outfile.write_function(uh)
    outfile.write_function(ph)

with dolfinx.io.VTXWriter(mesh.comm, outdir / "stokes_nest_uh.bp", uh, engine="BP4") as vtx:
    vtx.write(0.0)
# -------------------- Verification --------------------------------
# Transfer data from the MPC problem to numpy arrays for comparison
with dolfinx.common.Timer("~Stokes: Verification of problem by global matrix reduction"):
    W = dolfinx.fem.functionspace(mesh, basix.ufl.mixed_element([Ve, Qe]))
    V, V_to_W = W.sub(0).collapse()
    _, Q_to_W = W.sub(1).collapse()

    # Inlet velocity Dirichlet BC
    inlet_velocity = dolfinx.fem.Function(V)
    inlet_velocity.interpolate(inlet_velocity_expression)
    inlet_velocity.x.scatter_forward()
    W0 = W.sub(0)
    dofs = dolfinx.fem.locate_dofs_topological((W0, V), 1, mt.find(3))
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W0)

    # Collect Dirichlet boundary conditions
    bcs = [bc1]

    # Slip conditions for walls
    n = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    with dolfinx.common.Timer("~Stokes: Create slip constraint"):
        mpc = dolfinx_mpc.MultiPointConstraint(W)
        mpc.create_slip_constraint(W.sub(0), (mt, 1), n, bcs=bcs)
    mpc.finalize()

    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    a = (2 * mu * ufl.inner(sym_grad(u), sym_grad(v)) - ufl.inner(p, ufl.div(v)) - ufl.inner(ufl.div(u), q)) * ufl.dx
    L = ufl.inner(f, v) * ufl.dx

    # Terms due to slip condition
    # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(T(u, p, mu), n), v) * ds
    L += ufl.inner(g_tau, v) * ds

    af = dolfinx.fem.form(a)
    Lf = dolfinx.fem.form(L)

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    # Generate reference matrices and unconstrained solution
    A_org = dolfinx.fem.petsc.assemble_matrix(af, bcs)
    A_org.assemble()
    L_org = dolfinx.fem.petsc.assemble_vector(Lf)

    dolfinx.fem.petsc.apply_lifting(L_org, [af], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
    dolfinx.fem.petsc.set_bc(L_org, bcs)
    root = 0

    # Gather LHS, RHS and solution on one process
    A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
    K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
    L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)

    u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.x.petsc_vec, root=root)
    p_mpc = dolfinx_mpc.utils.gather_PETScVector(ph.x.petsc_vec, root=root)
    up_mpc = np.hstack([u_mpc, p_mpc])
    if MPI.COMM_WORLD.rank == root:
        KTAK = K.T * A_csr * K
        reduced_L = K.T @ L_np
        # Solve linear system
        d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
        # Back substitution to full solution vector
        uh_numpy = K @ d
        assert np.allclose(np.linalg.norm(uh_numpy, 2), np.linalg.norm(up_mpc, 2))


A.destroy()
b.destroy()
for Uh_sub in Uh.getNestSubVecs():
    Uh_sub.destroy()
Uh.destroy()
ksp.destroy()
# -------------------- List timings --------------------------
dolfinx.common.list_timings(MPI.COMM_WORLD, [dolfinx.common.TimingType.wall])