File: multipointconstraint.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (596 lines) | stat: -rw-r--r-- 23,857 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Copyright (C) 2020-2023 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from typing import Callable, Dict, List, Optional, Tuple, Union

from petsc4py import PETSc as _PETSc

import dolfinx.cpp as _cpp
import dolfinx.fem as _fem
import dolfinx.mesh as _mesh
import numpy
import numpy.typing as npt
from dolfinx import default_scalar_type

import dolfinx_mpc.cpp

from .dictcondition import create_dictionary_constraint

_mpc_classes = Union[
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_double,
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_float,
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_double,
    dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_float,
]
_float_classes = Union[numpy.float32, numpy.float64, numpy.complex128, numpy.complex64]
_float_array_types = Union[
    npt.NDArray[numpy.float32],
    npt.NDArray[numpy.float64],
    npt.NDArray[numpy.complex64],
    npt.NDArray[numpy.complex128],
]
_mpc_data_classes = Union[
    dolfinx_mpc.cpp.mpc.mpc_data_double,
    dolfinx_mpc.cpp.mpc.mpc_data_float,
    dolfinx_mpc.cpp.mpc.mpc_data_complex_double,
    dolfinx_mpc.cpp.mpc.mpc_data_complex_float,
]


class MPCData:
    _cpp_object: _mpc_data_classes

    def __init__(
        self,
        slaves: npt.NDArray[numpy.int32],
        masters: npt.NDArray[numpy.int64],
        coeffs: _float_array_types,
        owners: npt.NDArray[numpy.int32],
        offsets: npt.NDArray[numpy.int32],
    ):
        if coeffs.dtype.type == numpy.float32:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_float(slaves, masters, coeffs, owners, offsets)
        elif coeffs.dtype.type == numpy.float64:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_double(slaves, masters, coeffs, owners, offsets)
        elif coeffs.dtype.type == numpy.complex64:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_complex_float(slaves, masters, coeffs, owners, offsets)
        elif coeffs.dtype.type == numpy.complex128:
            self._cpp_object = dolfinx_mpc.cpp.mpc.mpc_data_complex_double(slaves, masters, coeffs, owners, offsets)
        else:
            raise ValueError("Unsupported dtype {coeffs.dtype.type} for coefficients")

    @property
    def slaves(self):
        return self._cpp_object.slaves

    @property
    def masters(self):
        return self._cpp_object.masters

    @property
    def coeffs(self):
        return self._cpp_object.coeffs

    @property
    def owners(self):
        return self._cpp_object.owners

    @property
    def offsets(self):
        return self._cpp_object.offsets


class MultiPointConstraint:
    """
    Hold data for multi point constraint relation ships,
    including new index maps for local assembly of matrices and vectors.

    Args:
        V: The function space
        dtype: The dtype of the underlying functions
    """

    _slaves: npt.NDArray[numpy.int32]
    _masters: npt.NDArray[numpy.int64]
    _coeffs: _float_array_types
    _owners: npt.NDArray[numpy.int32]
    _offsets: npt.NDArray[numpy.int32]
    V: _fem.FunctionSpace
    finalized: bool
    _cpp_object: _mpc_classes
    _dtype: numpy.floating
    __slots__ = tuple(__annotations__)

    def __init__(self, V: _fem.FunctionSpace, dtype: numpy.floating = default_scalar_type):
        self._slaves = numpy.array([], dtype=numpy.int32)
        self._masters = numpy.array([], dtype=numpy.int64)
        self._coeffs = numpy.array([], dtype=dtype)  # type: ignore
        self._owners = numpy.array([], dtype=numpy.int32)
        self._offsets = numpy.array([0], dtype=numpy.int32)
        self.V = V
        self.finalized = False
        self._dtype = dtype

    def add_constraint(
        self,
        V: _fem.FunctionSpace,
        slaves: npt.NDArray[numpy.int32],
        masters: npt.NDArray[numpy.int64],
        coeffs: _float_array_types,
        owners: npt.NDArray[numpy.int32],
        offsets: npt.NDArray[numpy.int32],
    ):
        """
        Add new constraint given by numpy arrays.

        Args:
            V: The function space for the constraint
            slaves: List of all slave dofs (using local dof numbering) on this process
            masters: List of all master dofs (using global dof numbering) on this process
            coeffs: The coefficients corresponding to each master.
            owners: The process each master is owned by.
            offsets: Array indicating the location in the masters array for the i-th slave
                in the slaves arrays, i.e.

                .. highlight:: python
                .. code-block:: python

                    masters_of_owned_slave[i] = masters[offsets[i]:offsets[i+1]]

        """
        assert V == self.V
        self._already_finalized()

        if len(slaves) > 0:
            self._offsets = numpy.append(self._offsets, offsets[1:] + len(self._masters))
            self._slaves = numpy.append(self._slaves, slaves)
            self._masters = numpy.append(self._masters, masters)
            self._coeffs = numpy.append(self._coeffs, coeffs)
            self._owners = numpy.append(self._owners, owners)

    def add_constraint_from_mpc_data(self, V: _fem.FunctionSpace, mpc_data: Union[_mpc_data_classes, MPCData]):
        """
        Add new constraint given by an `dolfinc_mpc.cpp.mpc.mpc_data`-object
        """
        self._already_finalized()
        self.add_constraint(
            V,
            mpc_data.slaves,
            mpc_data.masters,
            mpc_data.coeffs,
            mpc_data.owners,
            mpc_data.offsets,
        )

    def finalize(self) -> None:
        """
        Finializes the multi point constraint. After this function is called, no new constraints can be added
        to the constraint. This function creates a map from the cells (local to index) to the slave degrees of
        freedom and builds a new index map and function space where unghosted master dofs are added as ghosts.
        """
        self._already_finalized()
        self._coeffs.astype(numpy.dtype(self._dtype))
        # Initialize C++ object and create slave->cell maps
        if self._dtype == numpy.float32:
            self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_float(
                self.V._cpp_object,
                self._slaves,
                self._masters,
                self._coeffs.astype(self._dtype),
                self._owners,
                self._offsets,
            )
        elif self._dtype == numpy.float64:
            self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_double(
                self.V._cpp_object,
                self._slaves,
                self._masters,
                self._coeffs.astype(self._dtype),
                self._owners,
                self._offsets,
            )
        elif self._dtype == numpy.complex64:
            self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_float(
                self.V._cpp_object,
                self._slaves,
                self._masters,
                self._coeffs.astype(self._dtype),
                self._owners,
                self._offsets,
            )

        elif self._dtype == numpy.complex128:
            self._cpp_object = dolfinx_mpc.cpp.mpc.MultiPointConstraint_complex_double(
                self.V._cpp_object,
                self._slaves,
                self._masters,
                self._coeffs.astype(self._dtype),
                self._owners,
                self._offsets,
            )
        else:
            raise ValueError("Unsupported dtype {coeffs.dtype.type} for coefficients")

        # Replace function space
        self.V = _fem.FunctionSpace(self.V.mesh, self.V.ufl_element(), self._cpp_object.function_space)

        self.finalized = True
        # Delete variables that are no longer required
        del (self._slaves, self._masters, self._coeffs, self._owners, self._offsets)

    def create_periodic_constraint_topological(
        self,
        V: _fem.FunctionSpace,
        meshtag: _mesh.MeshTags,
        tag: int,
        relation: Callable[[numpy.ndarray], numpy.ndarray],
        bcs: List[_fem.DirichletBC],
        scale: _float_classes = default_scalar_type(1.0),
    ):
        """
        Create periodic condition for all closure dofs of on all entities in `meshtag` with value `tag`.
        :math:`u(x_i) = scale * u(relation(x_i))` for all of :math:`x_i` on marked entities.

        Args:
            V: The function space to assign the condition to. Should either be the space of the MPC or a sub space.
               meshtag: MeshTag for entity to apply the periodic condition on
            tag: Tag indicating which entities should be slaves
            relation: Lambda-function describing the geometrical relation
            bcs: Dirichlet boundary conditions for the problem (Periodic constraints will be ignored for these dofs)
            scale: Float for scaling bc
        """
        bcs_ = [bc._cpp_object for bc in bcs]
        if isinstance(scale, numpy.generic):  # nanobind conversion of numpy dtypes to general Python types
            scale = scale.item()  # type: ignore
        if V is self.V:
            mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_topological(
                self.V._cpp_object, meshtag._cpp_object, tag, relation, bcs_, scale, False
            )
        elif self.V.contains(V):
            mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_topological(
                V._cpp_object, meshtag._cpp_object, tag, relation, bcs_, scale, True
            )
        else:
            raise RuntimeError("The input space has to be a sub space (or the full space) of the MPC")
        self.add_constraint_from_mpc_data(self.V, mpc_data=mpc_data)

    def create_periodic_constraint_geometrical(
        self,
        V: _fem.FunctionSpace,
        indicator: Callable[[numpy.ndarray], numpy.ndarray],
        relation: Callable[[numpy.ndarray], numpy.ndarray],
        bcs: List[_fem.DirichletBC],
        scale: _float_classes = default_scalar_type(1.0),
    ):
        """
        Create a periodic condition for all degrees of freedom whose physical location satisfies
        :math:`indicator(x_i)==True`, i.e.
        :math:`u(x_i) = scale * u(relation(x_i))` for all :math:`x_i`

        Args:
            V: The function space to assign the condition to. Should either be the space of the MPC or a sub space.
            indicator: Lambda-function to locate degrees of freedom that should be slaves
            relation: Lambda-function describing the geometrical relation to master dofs
            bcs: Dirichlet boundary conditions for the problem
                 (Periodic constraints will be ignored for these dofs)
            scale: Float for scaling bc
        """
        if isinstance(scale, numpy.generic):  # nanobind conversion of numpy dtypes to general Python types
            scale = scale.item()  # type: ignore
        bcs = [] if bcs is None else [bc._cpp_object for bc in bcs]
        if V is self.V:
            mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_geometrical(
                self.V._cpp_object, indicator, relation, bcs, scale, False
            )
        elif self.V.contains(V):
            mpc_data = dolfinx_mpc.cpp.mpc.create_periodic_constraint_geometrical(
                V._cpp_object, indicator, relation, bcs, scale, True
            )
        else:
            raise RuntimeError("The input space has to be a sub space (or the full space) of the MPC")
        self.add_constraint_from_mpc_data(self.V, mpc_data=mpc_data)

    def create_slip_constraint(
        self,
        space: _fem.FunctionSpace,
        facet_marker: Tuple[_mesh.MeshTags, int],
        v: _fem.Function,
        bcs: List[_fem.DirichletBC] = [],
    ):
        """
        Create a slip constraint :math:`u \\cdot v=0` over the entities defined in `facet_marker` with the given index.

        Args:
            space: Function space (possible sub space) for the current constraint
            facet_marker: Tuple containomg the mesh tag and marker used to locate degrees of freedom
            v: Function containing the directional vector to dot your slip condition (most commonly a normal vector)
            bcs: List of Dirichlet BCs (slip conditions will be ignored on these dofs)

        Examples:
            Create constaint :math:`u\\cdot n=0` of all indices in `mt` marked with `i`

            .. highlight:: python
            .. code-block:: python

                V = dolfinx.fem.functionspace(mesh, ("CG", 1))
                mpc = MultiPointConstraint(V)
                n = dolfinx.fem.Function(V)
                mpc.create_slip_constaint(V, (mt, i), n)

            Create slip constaint for a mixed function space:

            .. highlight:: python
            .. code-block:: python

                cellname = mesh.ufl_cell().cellname()
                Ve = basix.ufl.element(basix.ElementFamily.P, cellname , 2, shape=(mesh.geometry.dim,))
                Qe = basix.ufl.element(basix.ElementFamily.P, cellname , 1)
                me = basix.ufl.mixed_element([Ve, Qe])
                W = dolfinx.fem.functionspace(mesh, me)
                mpc = MultiPointConstraint(W)
                n_space, _ = W.sub(0).collapse()
                normal = dolfinx.fem.Function(n_space)
                mpc.create_slip_constraint(W.sub(0), (mt, i), normal, bcs=[])

            A slip condition cannot be applied on the same degrees of freedom as a Dirichlet BC, and therefore
            any Dirichlet bc for the space of the multi point constraint should be supplied.

            .. highlight:: python
            .. code-block:: python

                cellname = mesh.ufl_cell().cellname()
                Ve = basix.ufl.element(basix.ElementFamily.P, cellname , 2, shape=(mesh.geometry.dim,))
                Qe = basix.ufl.element(basix.ElementFamily.P, cellname , 1)
                me = basix.ufl.mixed_element([Ve, Qe])
                W = dolfinx.fem.functionspace(mesh, me)
                mpc = MultiPointConstraint(W)
                n_space, _ = W.sub(0).collapse()
                normal = Function(n_space)
                bc = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0))
                mpc.create_slip_constraint(W.sub(0), (mt, i), normal, bcs=[bc])
        """
        bcs = [] if bcs is None else [bc._cpp_object for bc in bcs]
        if space is self.V:
            sub_space = False
        elif self.V.contains(space):
            sub_space = True
        else:
            raise ValueError("Input space has to be a sub space of the MPC space")
        mpc_data = dolfinx_mpc.cpp.mpc.create_slip_condition(
            space._cpp_object,
            facet_marker[0]._cpp_object,
            facet_marker[1],
            v._cpp_object,
            bcs,
            sub_space,
        )
        self.add_constraint_from_mpc_data(self.V, mpc_data=mpc_data)

    def create_general_constraint(
        self,
        slave_master_dict: Dict[bytes, Dict[bytes, float]],
        subspace_slave: Optional[int] = None,
        subspace_master: Optional[int] = None,
    ):
        """
        Args:
            V: The function space
            slave_master_dict: Nested dictionary, where the first key is the bit representing the slave dof's
                coordinate in the mesh. The item of this key is a dictionary, where each key of this dictionary
                is the bit representation of the master dof's coordinate, and the item the coefficient for
                the MPC equation.
            subspace_slave: If using mixed or vector space, and only want to use dofs from a sub space
                as slave add index here
            subspace_master: Subspace index for mixed or vector spaces

        Example:
            If the dof `D` located at `[d0, d1]` should be constrained to the dofs
            `E` and `F` at `[e0, e1]` and `[f0, f1]` as :math:`D = \\alpha E + \\beta F`
            the dictionary should be:

            .. highlight:: python
            .. code-block:: python

                    {numpy.array([d0, d1], dtype=mesh.geometry.x.dtype).tobytes():
                        {numpy.array([e0, e1], dtype=mesh.geometry.x.dtype).tobytes(): alpha,
                        numpy.array([f0, f1], dtype=mesh.geometry.x.dtype).tobytes(): beta}}
        """
        slaves, masters, coeffs, owners, offsets = create_dictionary_constraint(
            self.V, slave_master_dict, subspace_slave, subspace_master
        )
        self.add_constraint(self.V, slaves, masters, coeffs, owners, offsets)

    def create_contact_slip_condition(
        self,
        meshtags: _mesh.MeshTags,
        slave_marker: int,
        master_marker: int,
        normal: _fem.Function,
        eps2: float = 1e-20,
    ):
        """
        Create a slip condition between two sets of facets marker with individual markers.
        The interfaces should be within machine precision of eachother, but the vertices does not need to align.
        The condition created is :math:`u_s \\cdot normal_s = u_m \\cdot normal_m` where `s` is the
        restriction to the slave facets, `m` to the master facets.

        Args:
            meshtags: The meshtags of the set of facets to tie together
            slave_marker: The marker of the slave facets
            master_marker: The marker of the master facets
            normal: The function used in the dot-product of the constraint
            eps2: The tolerance for the squared distance between cells to be considered as a collision
        """
        if isinstance(eps2, numpy.generic):  # nanobind conversion of numpy dtypes to general Python types
            eps2 = eps2.item()  # type: ignore
        mpc_data = dolfinx_mpc.cpp.mpc.create_contact_slip_condition(
            self.V._cpp_object,
            meshtags._cpp_object,
            slave_marker,
            master_marker,
            normal._cpp_object,
            eps2,
        )
        self.add_constraint_from_mpc_data(self.V, mpc_data)

    def create_contact_inelastic_condition(
        self,
        meshtags: _cpp.mesh.MeshTags_int32,
        slave_marker: int,
        master_marker: int,
        eps2: float = 1e-20,
        allow_missing_masters: bool = False,
    ):
        """
        Create a contact inelastic condition between two sets of facets marker with individual markers.
        The interfaces should be within machine precision of eachother, but the vertices does not need to align.
        The condition created is :math:`u_s = u_m` where `s` is the restriction to the
        slave facets, `m` to the master facets.

        Args:
            meshtags: The meshtags of the set of facets to tie together
            slave_marker: The marker of the slave facets
            master_marker: The marker of the master facets
            eps2: The tolerance for the squared distance between cells to be considered as a collision
            allow_missing_masters: If true, the function will not throw an error if a degree of freedom
                in the closure of the master entities does not have a corresponding set of slave degree
                of freedom.
        """
        if isinstance(eps2, numpy.generic):  # nanobind conversion of numpy dtypes to general Python types
            eps2 = eps2.item()  # type: ignore
        mpc_data = dolfinx_mpc.cpp.mpc.create_contact_inelastic_condition(
            self.V._cpp_object, meshtags._cpp_object, slave_marker, master_marker, eps2, allow_missing_masters
        )
        self.add_constraint_from_mpc_data(self.V, mpc_data)

    @property
    def is_slave(self) -> numpy.ndarray:
        """
        Returns a vector of integers where the ith entry indicates if a degree of freedom (local to process) is a slave.
        """
        self._not_finalized()
        return self._cpp_object.is_slave

    @property
    def slaves(self):
        """
        Returns the degrees of freedom for all slaves local to process
        """
        self._not_finalized()
        return self._cpp_object.slaves

    @property
    def masters(self) -> _cpp.graph.AdjacencyList_int32:
        """
        Returns an adjacency-list whose ith node corresponds to
        a degree of freedom (local to process), and links the corresponding master dofs (local to process).

        Examples:

            .. highlight:: python
            .. code-block:: python

                masters = mpc.masters
                masters_of_dof_i = masters.links(i)
        """
        self._not_finalized()
        return self._cpp_object.masters

    def coefficients(self) -> _float_array_types:
        """
        Returns a vector containing the coefficients for the constraint, and the corresponding offsets
        for the ith degree of freedom.

        Examples:

            .. highlight:: python
            .. code-block:: python

                coeffs, offsets = mpc.coefficients()
                coeffs_of_slave_i = coeffs[offsets[i]:offsets[i+1]]
        """
        self._not_finalized()
        return self._cpp_object.coefficients()

    @property
    def num_local_slaves(self):
        """
        Return the number of slaves owned by the current process.
        """
        self._not_finalized()
        return self._cpp_object.num_local_slaves

    @property
    def cell_to_slaves(self):
        """
        Returns an `dolfinx.cpp.graph.AdjacencyList_int32` whose ith node corresponds to
        the ith cell (local to process), and links the corresponding slave degrees of
        freedom in the cell (local to process).

        Examples:

            .. highlight:: python
            .. code-block:: python

                cell_to_slaves = mpc.cell_to_slaves()
                slaves_in_cell_i = cell_to_slaves.links(i)
        """
        self._not_finalized()
        return self._cpp_object.cell_to_slaves

    @property
    def function_space(self):
        """
        Return the function space for the multi-point constraint with the updated index map
        """
        self._not_finalized()
        return self.V

    def backsubstitution(self, u: Union[_fem.Function, _PETSc.Vec]) -> None:  # type: ignore
        """
        For a Function, impose the multi-point constraint by backsubstiution.
        This function is used after solving the reduced problem to obtain the values
        at the slave degrees of freedom

        .. note::
            It is the users responsibility to destroy the PETSc vector

        Args:
            u: The input function
        """
        try:
            self._cpp_object.backsubstitution(u.x.array)
            u.x.scatter_forward()
        except AttributeError:
            with u.localForm() as vector_local:
                self._cpp_object.backsubstitution(vector_local.array_w)
            u.ghostUpdate(addv=_PETSc.InsertMode.INSERT, mode=_PETSc.ScatterMode.FORWARD)  # type: ignore

    def homogenize(self, u: _fem.Function) -> None:
        """
        For a vector, homogenize (set to zero) the vector components at the multi-point
        constraint slave DoF indices. This is particularly useful for nonlinear problems.

        Args:
            u: The input vector
        """
        self._cpp_object.homogenize(u.x.array)
        u.x.scatter_forward()

    def _already_finalized(self):
        """
        Check if we have already finalized the multi point constraint
        """
        if self.finalized:
            raise RuntimeError("MultiPointConstraint has already been finalized")

    def _not_finalized(self):
        """
        Check if we have finalized the multi point constraint
        """
        if not self.finalized:
            raise RuntimeError("MultiPointConstraint has not been finalized")