File: problem.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (158 lines) | stat: -rw-r--r-- 6,095 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding: utf-8 -*-
# Copyright (C) 2021 Jørgen S. Dokken
#
# This file is part of DOLFINx MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

import typing

from petsc4py import PETSc

import dolfinx.fem.petsc
import ufl
from dolfinx import cpp as _cpp
from dolfinx import fem as _fem
from dolfinx import la as _la

from .assemble_matrix import assemble_matrix, create_sparsity_pattern
from .assemble_vector import apply_lifting, assemble_vector
from .multipointconstraint import MultiPointConstraint


class LinearProblem(dolfinx.fem.petsc.LinearProblem):
    """
    Class for solving a linear variational problem with multi point constraints of the form
    a(u, v) = L(v) for all v using PETSc as a linear algebra backend.

    Args:
        a: A bilinear UFL form, the left hand side of the variational problem.
        L: A linear UFL form, the right hand side of the variational problem.
        mpc: The multi point constraint.
        bcs: A list of Dirichlet boundary conditions.
        u: The solution function. It will be created if not provided. The function has
            to be based on the functionspace in the mpc, i.e.

            .. highlight:: python
            .. code-block:: python

                u = dolfinx.fem.Function(mpc.function_space)
        petsc_options: Parameters that is passed to the linear algebra backend PETSc.  #type: ignore
            For available choices for the 'petsc_options' kwarg, see the PETSc-documentation
            https://www.mcs.anl.gov/petsc/documentation/index.html.
        form_compiler_options: Parameters used in FFCx compilation of this form. Run `ffcx --help` at
            the commandline to see all available options. Takes priority over all
            other parameter values, except for `scalar_type` which is determined by DOLFINx.
        jit_options: Parameters used in CFFI JIT compilation of C code generated by FFCx.
            See https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py#L22-L37
            for all available parameters. Takes priority over all other parameter values.
    Examples:
        Example usage:

        .. highlight:: python
        .. code-block:: python

           problem = LinearProblem(a, L, mpc, [bc0, bc1],
                                   petsc_options={"ksp_type": "preonly", "pc_type": "lu"})

    """

    u: _fem.Function
    _a: _fem.Form
    _L: _fem.Form
    _mpc: MultiPointConstraint
    _A: PETSc.Mat  # type: ignore
    _b: PETSc.Vec  # type: ignore
    _solver: PETSc.KSP  # type: ignore
    _x: PETSc.Vec  # type: ignore
    bcs: typing.List[_fem.DirichletBC]
    __slots__ = tuple(__annotations__)

    def __init__(
        self,
        a: ufl.Form,
        L: ufl.Form,
        mpc: MultiPointConstraint,
        bcs: typing.Optional[typing.List[_fem.DirichletBC]] = None,
        u: typing.Optional[_fem.Function] = None,
        petsc_options: typing.Optional[dict] = None,
        form_compiler_options: typing.Optional[dict] = None,
        jit_options: typing.Optional[dict] = None,
    ):
        # Compile forms
        form_compiler_options = {} if form_compiler_options is None else form_compiler_options
        jit_options = {} if jit_options is None else jit_options
        self._a = _fem.form(a, jit_options=jit_options, form_compiler_options=form_compiler_options)
        self._L = _fem.form(L, jit_options=jit_options, form_compiler_options=form_compiler_options)

        if not mpc.finalized:
            raise RuntimeError("The multi point constraint has to be finalized before calling initializer")
        self._mpc = mpc
        # Create function containing solution vector
        if u is None:
            self.u = _fem.Function(self._mpc.function_space)
        else:
            if u.function_space is self._mpc.function_space:
                self.u = u
            else:
                raise ValueError(
                    "The input function has to be in the function space in the multi-point constraint",
                    "i.e. u = dolfinx.fem.Function(mpc.function_space)",
                )
        self._x = self.u.x.petsc_vec

        # Create MPC matrix
        pattern = create_sparsity_pattern(self._a, self._mpc)
        pattern.finalize()
        self._A = _cpp.la.petsc.create_matrix(self._mpc.function_space.mesh.comm, pattern)

        self._b = _la.create_petsc_vector(
            self._mpc.function_space.dofmap.index_map, self._mpc.function_space.dofmap.index_map_bs
        )
        self.bcs = [] if bcs is None else bcs

        self._solver = PETSc.KSP().create(self.u.function_space.mesh.comm)  # type: ignore
        self._solver.setOperators(self._A)

        # Give PETSc solver options a unique prefix
        solver_prefix = "dolfinx_mpc_solve_{}".format(id(self))
        self._solver.setOptionsPrefix(solver_prefix)

        # Set PETSc options
        opts = PETSc.Options()  # type: ignore
        opts.prefixPush(solver_prefix)
        if petsc_options is not None:
            for k, v in petsc_options.items():
                opts[k] = v
        opts.prefixPop()
        self._solver.setFromOptions()

    def solve(self) -> _fem.Function:
        """Solve the problem.

        Returns:
            Function containing the solution"""

        # Assemble lhs
        self._A.zeroEntries()
        assemble_matrix(self._a, self._mpc, bcs=self.bcs, A=self._A)
        self._A.assemble()
        assert self._A.assembled

        # Assemble rhs
        with self._b.localForm() as b_loc:
            b_loc.set(0)
        assemble_vector(self._L, self._mpc, b=self._b)

        # Apply boundary conditions to the rhs
        apply_lifting(self._b, [self._a], [self.bcs], self._mpc)
        self._b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
        _fem.petsc.set_bc(self._b, self.bcs)

        # Solve linear system and update ghost values in the solution
        self._solver.solve(self._b, self._x)
        self.u.x.scatter_forward()
        self._mpc.backsubstitution(self.u)

        return self.u