1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
# Copyright (C) 2021 Jørgen S. Dokken and Sarah Roggendorf
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
from typing import Dict, Tuple
from petsc4py import PETSc as _PETSc
import numpy as np
import ufl
from dolfinx import common as _common
from dolfinx import fem as _fem
from dolfinx import log as _log
from dolfinx import mesh as dmesh
from dolfinx import nls as _nls
from dolfinx_contact.helpers import (
R_minus,
epsilon,
lame_parameters,
rigid_motions_nullspace,
sigma_func,
)
__all__ = ["nitsche_ufl"]
def nitsche_ufl(
mesh: dmesh.Mesh,
mesh_data: Tuple[dmesh.MeshTags, int, int],
physical_parameters: dict = {},
nitsche_parameters: Dict[str, float] = {},
plane_loc: float = 0.0,
vertical_displacement: float = -0.1,
nitsche_bc: bool = True,
quadrature_degree: int = 5,
form_compiler_options: Dict = {},
jit_options: Dict = {},
petsc_options: Dict = {},
newton_options: Dict = {},
) -> _fem.Function:
"""
Use UFL to compute the one sided contact problem with a mesh coming into contact
with a rigid surface (not meshed).
Parameters
==========
mesh
The input mesh
mesh_data
A triplet with a mesh tag for facets and values v0, v1. v0 should be the value in the mesh tags
for facets to apply a Dirichlet condition on. v1 is the value for facets which should have applied
a contact condition on
physical_parameters
Optional dictionary with information about the linear elasticity problem.
Valid (key, value) tuples are: ('E': float), ('nu', float), ('strain', bool)
nitsche_parameters
Optional dictionary with information about the Nitsche configuration.
Valid (keu, value) tuples are: ('gamma', float), ('theta', float) where theta can be -1, 0 or 1 for
skew-symmetric, penalty like or symmetric enforcement of Nitsche conditions
plane_loc
The location of the plane in y-coordinate (2D) and z-coordinate (3D)
vertical_displacement
The amount of verticial displacment enforced on Dirichlet boundary
nitsche_bc
Use Nitche's method to enforce Dirichlet boundary conditions
quadrature_degree
The quadrature degree to use for the custom contact kernels
form_compiler_options
Parameters used in FFCX compilation of this form. Run `ffcx --help` at
the commandline to see all available options. Takes priority over all
other parameter values, except for `scalar_type` which is determined by
DOLFINX.
jit_options
Parameters used in CFFI JIT compilation of C code generated by FFCX.
See https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py
for all available parameters. Takes priority over all other parameter values.
petsc_options
Parameters that is passed to the linear algebra backend
PETSc. For available choices for the 'petsc_options' kwarg,
see the `PETSc-documentation
<https://petsc4py.readthedocs.io/en/stable/manual/ksp/>`
newton_options
Dictionary with Newton-solver options. Valid (key, item) tuples are:
("atol", float), ("rtol", float), ("convergence_criterion", "str"),
("max_it", int), ("error_on_nonconvergence", bool), ("relaxation_parameter", float)
"""
# Compute lame parameters
plane_strain = physical_parameters.get("strain", False)
E = physical_parameters.get("E", 1e3)
nu = physical_parameters.get("nu", 0.1)
mu_func, lambda_func = lame_parameters(plane_strain)
mu = mu_func(E, nu)
lmbda = lambda_func(E, nu)
sigma = sigma_func(mu, lmbda)
# Nitche parameters and variables
theta = nitsche_parameters.get("theta", 1)
gamma = nitsche_parameters.get("gamma", 1)
(facet_marker, top_value, bottom_value) = mesh_data
assert facet_marker.dim == mesh.topology.dim - 1
# Normal vector pointing into plane (but outward of the body coming into contact)
# Similar to computing the normal by finding the gap vector between two meshes
n_vec = np.zeros(mesh.geometry.dim)
n_vec[mesh.geometry.dim - 1] = -1
n_2 = ufl.as_vector(n_vec) # Normal of plane (projection onto other body)
# Scaled Nitsche parameter
h = ufl.CellDiameter(mesh)
gamma_scaled = gamma * E / h
# Mimicking the plane y=-plane_loc
x = ufl.SpatialCoordinate(mesh)
gap = x[mesh.geometry.dim - 1] + plane_loc
g_vec = [i for i in range(mesh.geometry.dim)]
g_vec[mesh.geometry.dim - 1] = gap
V = _fem.functionspace(mesh, ("CG", 1))
u = _fem.Function(V)
v = ufl.TestFunction(V)
metadata = {"quadrature_degree": quadrature_degree}
dx = ufl.Measure("dx", domain=mesh)
ds = ufl.Measure("ds", domain=mesh, metadata=metadata, subdomain_data=facet_marker)
a = ufl.inner(sigma(u), epsilon(v)) * dx
zero = np.full(
mesh.geometry.dim,
0,
dtype=_PETSc.ScalarType, # type: ignore
)
L = ufl.inner(_fem.Constant(mesh, zero), v) * dx
# Derivation of one sided Nitsche with gap function
n = ufl.FacetNormal(mesh)
def sigma_n(v):
# NOTE: Different normals, see summary paper
return ufl.dot(sigma(v) * n, n_2)
F = a - theta / gamma_scaled * sigma_n(u) * sigma_n(v) * ds(bottom_value) - L
F += (
1
/ gamma_scaled
* R_minus(sigma_n(u) + gamma_scaled * (gap - ufl.dot(u, n_2)))
* (theta * sigma_n(v) - gamma_scaled * ufl.dot(v, n_2))
* ds(bottom_value)
)
# Compute corresponding Jacobian
du = ufl.TrialFunction(V)
q = sigma_n(u) + gamma_scaled * (gap - ufl.dot(u, n_2))
J = ufl.inner(sigma(du), epsilon(v)) * ufl.dx - theta / gamma_scaled * sigma_n(du) * sigma_n(v) * ds(bottom_value)
J += (
1
/ gamma_scaled
* 0.5
* (1 - ufl.sign(q))
* (sigma_n(du) - gamma_scaled * ufl.dot(du, n_2))
* (theta * sigma_n(v) - gamma_scaled * ufl.dot(v, n_2))
* ds(bottom_value)
)
# Nitsche for Dirichlet, another theta-scheme.
# https://doi.org/10.1016/j.cma.2018.05.024
if nitsche_bc:
disp_vec = np.zeros(mesh.geometry.dim)
disp_vec[mesh.geometry.dim - 1] = vertical_displacement
u_D = ufl.as_vector(disp_vec)
F += (
-ufl.inner(sigma(u) * n, v) * ds(top_value)
- theta * ufl.inner(sigma(v) * n, u - u_D) * ds(top_value)
+ gamma_scaled / h * ufl.inner(u - u_D, v) * ds(top_value)
)
bcs = []
J += (
-ufl.inner(sigma(du) * n, v) * ds(top_value)
- theta * ufl.inner(sigma(v) * n, du) * ds(top_value)
+ gamma_scaled / h * ufl.inner(du, v) * ds(top_value)
)
else:
# strong Dirichlet boundary conditions
def _u_D(x):
values = np.zeros((mesh.geometry.dim, x.shape[1]))
values[mesh.geometry.dim - 1] = vertical_displacement
return values
u_D = _fem.Function(V)
u_D.interpolate(_u_D)
u_D.name = "u_D"
u_D.x.scatter_forward()
tdim = mesh.topology.dim
dirichlet_dofs = _fem.locate_dofs_topological(V, tdim - 1, facet_marker.find(top_value))
bc = _fem.dirichletbc(u_D, dirichlet_dofs)
bcs = [bc]
# DEBUG: Write each step of Newton iterations
# Create nonlinear problem and Newton solver
# def form(self, x: _PETSc.Vec):
# x.ghostUpdate(addv=_PETSc.InsertMode.INSERT, mode=_PETSc.ScatterMode.FORWARD)
# self.i += 1
# xdmf.write_function(u, self.i)
# setattr(_fem.petsc.NonlinearProblem, "form", form)
problem = _fem.petsc.NonlinearProblem(
F, u, bcs, J=J, jit_options=jit_options, form_compiler_options=form_compiler_options
)
# DEBUG: Write each step of Newton iterations
# problem.i = 0
# from pathlib import Path
# outdir = Path("results")
# outdir.mkdir(exist_ok=True, parents=True)
# xdmf = _io.XDMFFile(mesh.comm, outdir / "tmp_sol.xdmf", "w")
# xdmf.write_mesh(mesh)
# xdmf.close()
solver = _nls.petsc.NewtonSolver(mesh.comm, problem) # type: ignore
null_space = rigid_motions_nullspace(V)
solver.A.setNearNullSpace(null_space)
# Set Newton solver options
solver.atol = newton_options.get("atol", 1e-9)
solver.rtol = newton_options.get("rtol", 1e-9)
solver.convergence_criterion = newton_options.get("convergence_criterion", "incremental")
solver.max_it = newton_options.get("max_it", 50)
solver.error_on_nonconvergence = newton_options.get("error_on_nonconvergence", True)
solver.relaxation_parameter = newton_options.get("relaxation_parameter", 0.8)
def _u_initial(x):
values = np.zeros((mesh.geometry.dim, x.shape[1]))
values[-1] = -0.01 - plane_loc
return values
# Set initial_condition:
u.interpolate(_u_initial)
# Define solver and options
ksp = solver.krylov_solver
opts = _PETSc.Options() # type: ignore
option_prefix = ksp.getOptionsPrefix() # type: ignore
# Set PETSc options
opts = _PETSc.Options() # type: ignore
opts.prefixPush(option_prefix)
for k, v in petsc_options.items():
opts[k] = v
opts.prefixPop()
ksp.setFromOptions()
# Solve non-linear problem
_log.set_log_level(_log.LogLevel.INFO)
num_dofs_global = V.dofmap.index_map_bs * V.dofmap.index_map.size_global
with _common.Timer(f"{num_dofs_global} Solve Nitsche"):
n, converged = solver.solve(u)
u.x.scatter_forward()
if solver.error_on_nonconvergence:
assert converged
print(f"{num_dofs_global}, Number of interations: {n:d}")
return u
|