File: nitsche_ufl.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (262 lines) | stat: -rw-r--r-- 9,717 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (C) 2021 Jørgen S. Dokken and Sarah Roggendorf
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from typing import Dict, Tuple

from petsc4py import PETSc as _PETSc

import numpy as np
import ufl
from dolfinx import common as _common
from dolfinx import fem as _fem
from dolfinx import log as _log
from dolfinx import mesh as dmesh
from dolfinx import nls as _nls
from dolfinx_contact.helpers import (
    R_minus,
    epsilon,
    lame_parameters,
    rigid_motions_nullspace,
    sigma_func,
)

__all__ = ["nitsche_ufl"]


def nitsche_ufl(
    mesh: dmesh.Mesh,
    mesh_data: Tuple[dmesh.MeshTags, int, int],
    physical_parameters: dict = {},
    nitsche_parameters: Dict[str, float] = {},
    plane_loc: float = 0.0,
    vertical_displacement: float = -0.1,
    nitsche_bc: bool = True,
    quadrature_degree: int = 5,
    form_compiler_options: Dict = {},
    jit_options: Dict = {},
    petsc_options: Dict = {},
    newton_options: Dict = {},
) -> _fem.Function:
    """
    Use UFL to compute the one sided contact problem with a mesh coming into contact
    with a rigid surface (not meshed).

    Parameters
    ==========
    mesh
        The input mesh
    mesh_data
        A triplet with a mesh tag for facets and values v0, v1. v0 should be the value in the mesh tags
        for facets to apply a Dirichlet condition on. v1 is the value for facets which should have applied
        a contact condition on
    physical_parameters
        Optional dictionary with information about the linear elasticity problem.
        Valid (key, value) tuples are: ('E': float), ('nu', float), ('strain', bool)
    nitsche_parameters
        Optional dictionary with information about the Nitsche configuration.
        Valid (keu, value) tuples are: ('gamma', float), ('theta', float) where theta can be -1, 0 or 1 for
        skew-symmetric, penalty like or symmetric enforcement of Nitsche conditions
    plane_loc
        The location of the plane in y-coordinate (2D) and z-coordinate (3D)
    vertical_displacement
        The amount of verticial displacment enforced on Dirichlet boundary
    nitsche_bc
        Use Nitche's method to enforce Dirichlet boundary conditions
    quadrature_degree
        The quadrature degree to use for the custom contact kernels
    form_compiler_options
        Parameters used in FFCX compilation of this form. Run `ffcx --help` at
        the commandline to see all available options. Takes priority over all
        other parameter values, except for `scalar_type` which is determined by
        DOLFINX.
    jit_options
        Parameters used in CFFI JIT compilation of C code generated by FFCX.
        See https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py
        for all available parameters. Takes priority over all other parameter values.
    petsc_options
        Parameters that is passed to the linear algebra backend
        PETSc. For available choices for the 'petsc_options' kwarg,
        see the `PETSc-documentation
        <https://petsc4py.readthedocs.io/en/stable/manual/ksp/>`
    newton_options
        Dictionary with Newton-solver options. Valid (key, item) tuples are:
        ("atol", float), ("rtol", float), ("convergence_criterion", "str"),
        ("max_it", int), ("error_on_nonconvergence", bool), ("relaxation_parameter", float)
    """
    # Compute lame parameters
    plane_strain = physical_parameters.get("strain", False)
    E = physical_parameters.get("E", 1e3)
    nu = physical_parameters.get("nu", 0.1)
    mu_func, lambda_func = lame_parameters(plane_strain)
    mu = mu_func(E, nu)
    lmbda = lambda_func(E, nu)
    sigma = sigma_func(mu, lmbda)

    # Nitche parameters and variables
    theta = nitsche_parameters.get("theta", 1)
    gamma = nitsche_parameters.get("gamma", 1)

    (facet_marker, top_value, bottom_value) = mesh_data
    assert facet_marker.dim == mesh.topology.dim - 1

    # Normal vector pointing into plane (but outward of the body coming into contact)
    # Similar to computing the normal by finding the gap vector between two meshes
    n_vec = np.zeros(mesh.geometry.dim)
    n_vec[mesh.geometry.dim - 1] = -1
    n_2 = ufl.as_vector(n_vec)  # Normal of plane (projection onto other body)

    # Scaled Nitsche parameter
    h = ufl.CellDiameter(mesh)
    gamma_scaled = gamma * E / h

    # Mimicking the plane y=-plane_loc
    x = ufl.SpatialCoordinate(mesh)
    gap = x[mesh.geometry.dim - 1] + plane_loc
    g_vec = [i for i in range(mesh.geometry.dim)]
    g_vec[mesh.geometry.dim - 1] = gap

    V = _fem.functionspace(mesh, ("CG", 1))
    u = _fem.Function(V)
    v = ufl.TestFunction(V)

    metadata = {"quadrature_degree": quadrature_degree}
    dx = ufl.Measure("dx", domain=mesh)
    ds = ufl.Measure("ds", domain=mesh, metadata=metadata, subdomain_data=facet_marker)
    a = ufl.inner(sigma(u), epsilon(v)) * dx
    zero = np.full(
        mesh.geometry.dim,
        0,
        dtype=_PETSc.ScalarType,  # type: ignore
    )
    L = ufl.inner(_fem.Constant(mesh, zero), v) * dx

    # Derivation of one sided Nitsche with gap function
    n = ufl.FacetNormal(mesh)

    def sigma_n(v):
        # NOTE: Different normals, see summary paper
        return ufl.dot(sigma(v) * n, n_2)

    F = a - theta / gamma_scaled * sigma_n(u) * sigma_n(v) * ds(bottom_value) - L
    F += (
        1
        / gamma_scaled
        * R_minus(sigma_n(u) + gamma_scaled * (gap - ufl.dot(u, n_2)))
        * (theta * sigma_n(v) - gamma_scaled * ufl.dot(v, n_2))
        * ds(bottom_value)
    )

    # Compute corresponding Jacobian
    du = ufl.TrialFunction(V)
    q = sigma_n(u) + gamma_scaled * (gap - ufl.dot(u, n_2))
    J = ufl.inner(sigma(du), epsilon(v)) * ufl.dx - theta / gamma_scaled * sigma_n(du) * sigma_n(v) * ds(bottom_value)
    J += (
        1
        / gamma_scaled
        * 0.5
        * (1 - ufl.sign(q))
        * (sigma_n(du) - gamma_scaled * ufl.dot(du, n_2))
        * (theta * sigma_n(v) - gamma_scaled * ufl.dot(v, n_2))
        * ds(bottom_value)
    )

    # Nitsche for Dirichlet, another theta-scheme.
    # https://doi.org/10.1016/j.cma.2018.05.024
    if nitsche_bc:
        disp_vec = np.zeros(mesh.geometry.dim)
        disp_vec[mesh.geometry.dim - 1] = vertical_displacement
        u_D = ufl.as_vector(disp_vec)
        F += (
            -ufl.inner(sigma(u) * n, v) * ds(top_value)
            - theta * ufl.inner(sigma(v) * n, u - u_D) * ds(top_value)
            + gamma_scaled / h * ufl.inner(u - u_D, v) * ds(top_value)
        )
        bcs = []
        J += (
            -ufl.inner(sigma(du) * n, v) * ds(top_value)
            - theta * ufl.inner(sigma(v) * n, du) * ds(top_value)
            + gamma_scaled / h * ufl.inner(du, v) * ds(top_value)
        )
    else:
        # strong Dirichlet boundary conditions
        def _u_D(x):
            values = np.zeros((mesh.geometry.dim, x.shape[1]))
            values[mesh.geometry.dim - 1] = vertical_displacement
            return values

        u_D = _fem.Function(V)
        u_D.interpolate(_u_D)
        u_D.name = "u_D"
        u_D.x.scatter_forward()
        tdim = mesh.topology.dim
        dirichlet_dofs = _fem.locate_dofs_topological(V, tdim - 1, facet_marker.find(top_value))
        bc = _fem.dirichletbc(u_D, dirichlet_dofs)
        bcs = [bc]

    # DEBUG: Write each step of Newton iterations
    # Create nonlinear problem and Newton solver
    # def form(self, x: _PETSc.Vec):
    #     x.ghostUpdate(addv=_PETSc.InsertMode.INSERT, mode=_PETSc.ScatterMode.FORWARD)
    #     self.i += 1
    #     xdmf.write_function(u, self.i)

    # setattr(_fem.petsc.NonlinearProblem, "form", form)

    problem = _fem.petsc.NonlinearProblem(
        F, u, bcs, J=J, jit_options=jit_options, form_compiler_options=form_compiler_options
    )

    # DEBUG: Write each step of Newton iterations
    # problem.i = 0
    # from pathlib import Path
    # outdir = Path("results")
    # outdir.mkdir(exist_ok=True, parents=True)
    # xdmf = _io.XDMFFile(mesh.comm, outdir / "tmp_sol.xdmf", "w")
    # xdmf.write_mesh(mesh)
    # xdmf.close()

    solver = _nls.petsc.NewtonSolver(mesh.comm, problem)  # type: ignore
    null_space = rigid_motions_nullspace(V)
    solver.A.setNearNullSpace(null_space)

    # Set Newton solver options
    solver.atol = newton_options.get("atol", 1e-9)
    solver.rtol = newton_options.get("rtol", 1e-9)
    solver.convergence_criterion = newton_options.get("convergence_criterion", "incremental")
    solver.max_it = newton_options.get("max_it", 50)
    solver.error_on_nonconvergence = newton_options.get("error_on_nonconvergence", True)
    solver.relaxation_parameter = newton_options.get("relaxation_parameter", 0.8)

    def _u_initial(x):
        values = np.zeros((mesh.geometry.dim, x.shape[1]))
        values[-1] = -0.01 - plane_loc
        return values

    # Set initial_condition:
    u.interpolate(_u_initial)

    # Define solver and options
    ksp = solver.krylov_solver
    opts = _PETSc.Options()  # type: ignore
    option_prefix = ksp.getOptionsPrefix()  # type: ignore

    # Set PETSc options
    opts = _PETSc.Options()  # type: ignore
    opts.prefixPush(option_prefix)
    for k, v in petsc_options.items():
        opts[k] = v
    opts.prefixPop()
    ksp.setFromOptions()

    # Solve non-linear problem
    _log.set_log_level(_log.LogLevel.INFO)
    num_dofs_global = V.dofmap.index_map_bs * V.dofmap.index_map.size_global
    with _common.Timer(f"{num_dofs_global} Solve Nitsche"):
        n, converged = solver.solve(u)
    u.x.scatter_forward()
    if solver.error_on_nonconvergence:
        assert converged
    print(f"{num_dofs_global}, Number of interations: {n:d}")
    return u