1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
#
# Multi point constraint problem for linear elasticity with slip conditions
# between two cubes.
from __future__ import annotations
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.fem as fem
import gmsh
import numpy as np
import numpy.testing as nt
import pytest
import scipy.sparse.linalg
import ufl
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import gmshio
import dolfinx_mpc
import dolfinx_mpc.utils
from dolfinx_mpc.utils import get_assemblers # noqa: F401
theta = np.pi / 5
@pytest.fixture
def generate_hex_boxes():
"""
Generate the stacked boxes [x0,y0,z0]x[y1,y1,z1] and
[x0,y0,z1] x [x1,y1,z2] with different resolution in each box.
The markers are is a list of arrays containing markers
array of markers for [back, bottom, right, left, top, front] per box
volume_markers a list of marker per volume
"""
res = 0.2
x0, y0, z0, x1, y1, z1, z2 = 0, 0, 0, 1, 1, 1, 2
facet_markers = [[11, 5, 12, 13, 4, 14], [21, 9, 22, 23, 3, 24]]
volume_markers = [1, 2]
r_matrix = dolfinx_mpc.utils.rotation_matrix([1, 1, 0], -theta)
# Check if GMSH is initialized
gmsh.initialize()
gmsh.clear()
if MPI.COMM_WORLD.rank == 0:
gmsh.option.setNumber("Mesh.RecombinationAlgorithm", 2)
gmsh.option.setNumber("Mesh.RecombineAll", 2)
gmsh.option.setNumber("General.Terminal", 0)
bottom = gmsh.model.occ.addRectangle(x0, y0, z0, x1 - x0, y1 - y0)
top = gmsh.model.occ.addRectangle(x0, y0, z2, x1 - x0, y1 - y0)
# Set mesh size at point
gmsh.model.occ.extrude([(2, bottom)], 0, 0, z1 - z0, numElements=[int(1 / (2 * res))], recombine=True)
gmsh.model.occ.extrude([(2, top)], 0, 0, z1 - z2 - 1e-12, numElements=[int(1 / (2 * res))], recombine=True)
# Syncronize to be able to fetch entities
gmsh.model.occ.synchronize()
# Create entity -> marker map (to be used after rotation)
volumes = gmsh.model.getEntities(3)
volume_entities = {"Top": [None, volume_markers[1]], "Bottom": [None, volume_markers[0]]}
for i, volume in enumerate(volumes):
com = gmsh.model.occ.getCenterOfMass(volume[0], volume[1])
if np.isclose(com[2], (z1 - z0) / 2):
bottom_index = i
volume_entities["Bottom"][0] = volume
elif np.isclose(com[2], (z2 - z1) / 2 + z1):
top_index = i
volume_entities["Top"][0] = volume
surfaces = ["Top", "Bottom", "Left", "Right", "Front", "Back"]
entities = {
"Bottom": {key: [[], None] for key in surfaces},
"Top": {key: [[], None] for key in surfaces},
}
# Identitfy entities for each surface of top and bottom cube
# Physical markers for bottom cube
bottom_surfaces = gmsh.model.getBoundary([volumes[bottom_index]], recursive=False, oriented=False)
for entity in bottom_surfaces:
com = gmsh.model.occ.getCenterOfMass(entity[0], entity[1])
if np.allclose(com, [(x1 - x0) / 2, y1, (z1 - z0) / 2]):
entities["Bottom"]["Back"][0].append(entity[1])
entities["Bottom"]["Back"][1] = facet_markers[0][0]
elif np.allclose(com, [(x1 - x0) / 2, (y1 - y0) / 2, z0]):
entities["Bottom"]["Bottom"][0].append(entity[1])
entities["Bottom"]["Bottom"][1] = facet_markers[0][1]
elif np.allclose(com, [x1, (y1 - y0) / 2, (z1 - z0) / 2]):
entities["Bottom"]["Right"][0].append(entity[1])
entities["Bottom"]["Right"][1] = facet_markers[0][2]
elif np.allclose(com, [x0, (y1 - y0) / 2, (z1 - z0) / 2]):
entities["Bottom"]["Left"][0].append(entity[1])
entities["Bottom"]["Left"][1] = facet_markers[0][3]
elif np.allclose(com, [(x1 - x0) / 2, (y1 - y0) / 2, z1]):
entities["Bottom"]["Top"][0].append(entity[1])
entities["Bottom"]["Top"][1] = facet_markers[0][4]
elif np.allclose(com, [(x1 - x0) / 2, y0, (z1 - z0) / 2]):
entities["Bottom"]["Front"][0].append(entity[1])
entities["Bottom"]["Front"][1] = facet_markers[0][5]
# Physical markers for top
top_surfaces = gmsh.model.getBoundary([volumes[top_index]], recursive=False, oriented=False)
for entity in top_surfaces:
com = gmsh.model.occ.getCenterOfMass(entity[0], entity[1])
if np.allclose(com, [(x1 - x0) / 2, y1, (z2 - z1) / 2 + z1]):
entities["Top"]["Back"][0].append(entity[1])
entities["Top"]["Back"][1] = facet_markers[1][0]
elif np.allclose(com, [(x1 - x0) / 2, (y1 - y0) / 2, z1]):
entities["Top"]["Bottom"][0].append(entity[1])
entities["Top"]["Bottom"][1] = facet_markers[1][1]
elif np.allclose(com, [x1, (y1 - y0) / 2, (z2 - z1) / 2 + z1]):
entities["Top"]["Right"][0].append(entity[1])
entities["Top"]["Right"][1] = facet_markers[1][2]
elif np.allclose(com, [x0, (y1 - y0) / 2, (z2 - z1) / 2 + z1]):
entities["Top"]["Left"][0].append(entity[1])
entities["Top"]["Left"][1] = facet_markers[1][3]
elif np.allclose(com, [(x1 - x0) / 2, (y1 - y0) / 2, z2]):
entities["Top"]["Top"][0].append(entity[1])
entities["Top"]["Top"][1] = facet_markers[1][4]
elif np.allclose(com, [(x1 - x0) / 2, y0, (z2 - z1) / 2 + z1]):
entities["Top"]["Front"][0].append(entity[1])
entities["Top"]["Front"][1] = facet_markers[1][5]
# gmsh.model.occ.rotate(volumes, 0, 0, 0,
# 1 / np.sqrt(2), 1 / np.sqrt(2), 0, theta)
# Note: Rotation cannot be used on recombined surfaces
gmsh.model.occ.synchronize()
for volume in volume_entities.keys():
gmsh.model.addPhysicalGroup(
volume_entities[volume][0][0],
[volume_entities[volume][0][1]],
tag=volume_entities[volume][1],
)
gmsh.model.setPhysicalName(volume_entities[volume][0][0], volume_entities[volume][1], volume)
for box in entities.keys():
for surface in entities[box].keys():
gmsh.model.addPhysicalGroup(2, entities[box][surface][0], tag=entities[box][surface][1])
gmsh.model.setPhysicalName(2, entities[box][surface][1], box + ":" + surface)
# Set mesh sizes on the points from the surface we are extruding
bottom_nodes = gmsh.model.getBoundary([(2, bottom)], recursive=True, oriented=False)
gmsh.model.occ.mesh.setSize(bottom_nodes, res)
top_nodes = gmsh.model.getBoundary([(2, top)], recursive=True, oriented=False)
gmsh.model.occ.mesh.setSize(top_nodes, 2 * res)
# NOTE: Need to synchronize after setting mesh sizes
gmsh.model.occ.synchronize()
# Generate mesh
gmsh.option.setNumber("Mesh.MaxNumThreads1D", MPI.COMM_WORLD.size)
gmsh.option.setNumber("Mesh.MaxNumThreads2D", MPI.COMM_WORLD.size)
gmsh.option.setNumber("Mesh.MaxNumThreads3D", MPI.COMM_WORLD.size)
gmsh.model.mesh.generate(3)
gmsh.model.mesh.setOrder(1)
mesh, _, ft = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0)
gmsh.clear()
gmsh.finalize()
# NOTE: Hex mesh must be rotated after generation due to gmsh API
mesh.geometry.x[:] = np.dot(r_matrix, mesh.geometry.x.T).T
return (mesh, ft)
@pytest.mark.parametrize("get_assemblers", ["C++"], indirect=True)
@pytest.mark.parametrize("nonslip", [True, False])
def test_cube_contact(generate_hex_boxes, nonslip, get_assemblers): # noqa: F811
assemble_matrix, assemble_vector = get_assemblers
comm = MPI.COMM_WORLD
root = 0
# Generate mesh
mesh_data = generate_hex_boxes
mesh, mt = mesh_data
fdim = mesh.topology.dim - 1
# Create functionspaces
V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))
# Helper for orienting traction
# Bottom boundary is fixed in all directions
u_bc = fem.Function(V)
with u_bc.x.petsc_vec.localForm() as u_local:
u_local.set(0.0)
u_bc.x.petsc_vec.destroy()
bottom_dofs = fem.locate_dofs_topological(V, fdim, mt.find(5))
bc_bottom = fem.dirichletbc(u_bc, bottom_dofs)
g_vec = [0, 0, -4.25e-1]
if not nonslip:
# Helper for orienting traction
r_matrix = dolfinx_mpc.utils.rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)
# Top boundary has a given deformation normal to the interface
g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])
# Top boundary has a given deformation normal to the interface
def top_v(x):
values = np.empty((3, x.shape[1]))
values[0] = g_vec[0]
values[1] = g_vec[1]
values[2] = g_vec[2]
return values
u_top = fem.Function(V)
u_top.interpolate(top_v)
top_dofs = fem.locate_dofs_topological(V, fdim, mt.find(3))
bc_top = fem.dirichletbc(u_top, top_dofs)
bcs = [bc_bottom, bc_top]
# Elasticity parameters
E = 1.0e3
nu = 0
mu = fem.Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
lmbda = fem.Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))
# Stress computation
def sigma(v):
return 2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v))
# Define variational problem
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
rhs = ufl.inner(fem.Constant(mesh, default_scalar_type((0, 0, 0))), v) * ufl.dx
bilinear_form = fem.form(a)
linear_form = fem.form(rhs)
# Create LU solver
solver = PETSc.KSP().create(comm)
solver.setType("preonly")
solver.setTolerances(rtol=1.0e-14)
solver.getPC().setType("lu")
# Create MPC contact condition and assemble matrices
mpc = dolfinx_mpc.MultiPointConstraint(V)
if nonslip:
with Timer("~Contact: Create non-elastic constraint"):
mpc.create_contact_inelastic_condition(mt, 4, 9, eps2=500 * np.finfo(default_scalar_type).resolution)
else:
with Timer("~Contact: Create contact constraint"):
nh = dolfinx_mpc.utils.create_normal_approximation(V, mt, 4)
mpc.create_contact_slip_condition(mt, 4, 9, nh, eps2=500 * np.finfo(default_scalar_type).resolution)
mpc.finalize()
with Timer("~TEST: Assemble bilinear form"):
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
with Timer("~TEST: Assemble vector"):
b = assemble_vector(linear_form, mpc)
dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
fem.petsc.set_bc(b, bcs)
with Timer("~MPC: Solve"):
solver.setOperators(A)
uh = fem.Function(mpc.function_space)
uh.x.array[:] = 0
u_vec = uh.x.petsc_vec
solver.solve(b, u_vec)
u_vec.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
mpc.backsubstitution(uh)
# Solve the MPC problem using a global transformation matrix
# and numpy solvers to get reference values
dolfinx_mpc.utils.log_info("Solving reference problem with global matrix (using numpy)")
with Timer("~TEST: Assemble bilinear form (unconstrained)"):
A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
A_org.assemble()
L_org = fem.petsc.assemble_vector(linear_form)
fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
fem.petsc.set_bc(L_org, bcs)
with Timer("~TEST: Compare"):
dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_vec, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
atol = 1000 * np.finfo(default_scalar_type).resolution
nt.assert_allclose(uh_numpy, u_mpc, atol=atol)
L_org.destroy()
b.destroy()
solver.destroy()
list_timings(comm, [TimingType.wall])
|