1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
# Copyright (C) 2021 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
from mpi4py import MPI
from petsc4py import PETSc
import numpy as np
import numpy.testing as nt
import pytest
import scipy.sparse.linalg
import ufl
from dolfinx import fem
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.mesh import CellType, create_unit_square
import dolfinx_mpc
import dolfinx_mpc.utils
from dolfinx_mpc.utils import get_assemblers # noqa: F401
@pytest.mark.skipif(MPI.COMM_WORLD.size > 1, reason="This test should only be run in serial.")
@pytest.mark.parametrize("get_assemblers", ["C++"], indirect=True)
def test_lifting(get_assemblers): # noqa: F811
"""
Test MPC lifting operation on a single cell
"""
assemble_matrix, assemble_vector = get_assemblers
# Create mesh and function space
mesh = create_unit_square(MPI.COMM_WORLD, 1, 1, CellType.quadrilateral)
V = fem.functionspace(mesh, ("Lagrange", 1))
# Solve Problem without MPC for reference
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(mesh)
f = x[1] * ufl.sin(2 * ufl.pi * x[0])
a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
rhs = ufl.inner(f, v) * ufl.dx
bilinear_form = fem.form(a)
linear_form = fem.form(rhs)
# Create Dirichlet boundary condition
u_bc = fem.Function(V)
with u_bc.x.petsc_vec.localForm() as u_local:
u_local.set(2.3)
u_bc.x.petsc_vec.destroy()
def dirichletboundary(x):
return np.isclose(x[0], 1)
mesh.topology.create_connectivity(2, 1)
geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
bc = fem.dirichletbc(u_bc, geometrical_dofs)
bcs = [bc]
# Generate reference matrices
A_org = fem.petsc.assemble_matrix(bilinear_form, bcs=bcs)
A_org.assemble()
L_org = fem.petsc.assemble_vector(linear_form)
fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
fem.petsc.set_bc(L_org, bcs)
# Create multipoint constraint
def l2b(li):
return np.array(li, dtype=mesh.geometry.x.dtype).tobytes()
s_m_c = {l2b([0, 0]): {l2b([0, 1]): 1}}
mpc = dolfinx_mpc.MultiPointConstraint(V)
mpc.create_general_constraint(s_m_c)
mpc.finalize()
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
b = assemble_vector(linear_form, mpc)
dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
fem.petsc.set_bc(b, bcs)
solver = PETSc.KSP().create(mesh.comm)
solver.setType(PETSc.KSP.Type.PREONLY)
solver.getPC().setType(PETSc.PC.Type.LU)
solver.setOperators(A)
# Solve
uh = fem.Function(mpc.function_space)
uh.x.array[:] = 0
solver.solve(b, uh.x.petsc_vec)
uh.x.scatter_forward()
mpc.backsubstitution(uh)
root = 0
comm = mesh.comm
with Timer("~TEST: Compare"):
dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.x.petsc_vec, root=root)
# constants = dolfinx_mpc.utils.gather_contants(mpc, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ (L_np) # - constants)
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ (d) # + constants)
nt.assert_allclose(uh_numpy, u_mpc, rtol=1e-5, atol=1e-8)
list_timings(comm, [TimingType.wall])
L_org.destroy()
b.destroy()
solver.destroy()
|