1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
# Copyright (C) 2022 Nathan Sime
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
from mpi4py import MPI
from petsc4py import PETSc
import basix
import dolfinx
import dolfinx.fem.petsc
import dolfinx.la as _la
import dolfinx.nls.petsc
import numpy as np
import pytest
import ufl
import dolfinx_mpc
class NonlinearMPCProblem(dolfinx.fem.petsc.NonlinearProblem):
def __init__(self, F, u, mpc, bcs=[], J=None, form_compiler_options={}, jit_options={}):
self.mpc = mpc
super().__init__(F, u, bcs=bcs, J=J, form_compiler_options=form_compiler_options, jit_options=jit_options)
def F(self, x: PETSc.Vec, F: PETSc.Vec): # type: ignore
with F.localForm() as F_local:
F_local.set(0.0)
dolfinx_mpc.assemble_vector(self._L, self.mpc, b=F)
# Apply boundary condition
dolfinx_mpc.apply_lifting(
F,
[self._a],
bcs=[self.bcs],
constraint=self.mpc,
x0=[x],
scale=dolfinx.default_scalar_type(-1.0),
)
F.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) # type: ignore
dolfinx.fem.petsc.set_bc(F, self.bcs, x, -1.0)
def J(self, x: PETSc.Vec, A: PETSc.Mat): # type: ignore
A.zeroEntries()
dolfinx_mpc.assemble_matrix(self._a, self.mpc, bcs=self.bcs, A=A)
A.assemble()
class NewtonSolverMPC(dolfinx.cpp.nls.petsc.NewtonSolver):
def __init__(
self,
comm: MPI.Intracomm,
problem: NonlinearMPCProblem,
mpc: dolfinx_mpc.MultiPointConstraint,
):
"""A Newton solver for non-linear MPC problems."""
super().__init__(comm)
self.mpc = mpc
self.u_mpc = dolfinx.fem.Function(mpc.function_space)
# Create matrix and vector to be used for assembly of the non-linear
# MPC problem
self._A = dolfinx_mpc.cpp.mpc.create_matrix(problem.a._cpp_object, mpc._cpp_object)
self._b = _la.create_petsc_vector(mpc.function_space.dofmap.index_map, mpc.function_space.dofmap.index_map_bs)
self.setF(problem.F, self._b)
self.setJ(problem.J, self._A)
self.set_form(problem.form)
self.set_update(self.update)
def update(self, solver: dolfinx.nls.petsc.NewtonSolver, dx: PETSc.Vec, x: PETSc.Vec): # type: ignore
# We need to use a vector created on the MPC's space to update ghosts
self.u_mpc.x.petsc_vec.array = x.array_r
self.u_mpc.x.petsc_vec.axpy(-1.0, dx)
self.u_mpc.x.petsc_vec.ghostUpdate(
addv=PETSc.InsertMode.INSERT, # type: ignore
mode=PETSc.ScatterMode.FORWARD, # type: ignore
) # type: ignore
self.mpc.homogenize(self.u_mpc)
self.mpc.backsubstitution(self.u_mpc)
x.array = self.u_mpc.x.petsc_vec.array_r
x.ghostUpdate(
addv=PETSc.InsertMode.INSERT, # type: ignore
mode=PETSc.ScatterMode.FORWARD, # type: ignore
) # type: ignore
def solve(self, u: dolfinx.fem.Function):
"""Solve non-linear problem into function u. Returns the number
of iterations and if the solver converged."""
n, converged = super().solve(u.x.petsc_vec)
u.x.scatter_forward()
return n, converged
@property
def A(self) -> PETSc.Mat: # type: ignore
"""Jacobian matrix"""
return self._A
@property
def b(self) -> PETSc.Vec: # type: ignore
"""Residual vector"""
return self._b
@pytest.mark.skipif(
np.issubdtype(dolfinx.default_scalar_type, np.complexfloating),
reason="This test does not work in complex mode.",
)
@pytest.mark.parametrize("poly_order", [1, 2, 3])
def test_nonlinear_poisson(poly_order):
# Solve a standard Poisson problem with known solution which has
# rotational symmetry of pi/2 at (x, y) = (0.5, 0.5). Therefore we may
# impose MPCs on those DoFs which lie on the symmetry plane(s) and test
# our numerical approximation. We do not impose any constraints at the
# rotationally degenerate point (x, y) = (0.5, 0.5).
N_vals = np.array([4, 8, 16], dtype=np.int32)
l2_error = np.zeros_like(N_vals, dtype=np.double)
for run_no, N in enumerate(N_vals):
mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", poly_order))
u_bc = dolfinx.fem.Function(V)
u_bc.x.array[:] = 0.0
mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
facets = dolfinx.mesh.exterior_facet_indices(mesh.topology)
topological_dofs = dolfinx.fem.locate_dofs_topological(V, 1, facets)
zero = np.array(0, dtype=dolfinx.default_scalar_type)
bc = dolfinx.fem.dirichletbc(zero, topological_dofs, V)
bcs = [bc]
# Define variational problem
u = dolfinx.fem.Function(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(mesh)
u_soln = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
f = -ufl.div((1 + u_soln**2) * ufl.grad(u_soln))
F = ufl.inner((1 + u**2) * ufl.grad(u), ufl.grad(v)) * ufl.dx - ufl.inner(f, v) * ufl.dx
J = ufl.derivative(F, u)
# -- Impose the pi/2 rotational symmetry of the solution as a constraint,
# -- except at the centre DoF
def periodic_boundary(x):
eps = 1000 * np.finfo(x.dtype).resolution
return np.isclose(x[0], 0.5, atol=eps) & ((x[1] < 0.5 - eps) | (x[1] > 0.5 + eps))
def periodic_relation(x):
out_x = np.zeros_like(x)
out_x[0] = x[1]
out_x[1] = x[0]
out_x[2] = x[2]
return out_x
mpc = dolfinx_mpc.MultiPointConstraint(V)
mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, bcs)
mpc.finalize()
# Sanity check that the MPC class has some constraints to impose
num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM)
num_masters_global = mesh.comm.allreduce(len(mpc.masters.array), op=MPI.SUM)
assert num_slaves_global > 0
assert num_masters_global == num_slaves_global
problem = NonlinearMPCProblem(F, u, mpc, bcs=bcs, J=J)
solver = NewtonSolverMPC(mesh.comm, problem, mpc)
solver.atol = 1e1 * np.finfo(u.x.array.dtype).resolution
solver.rtol = 1e1 * np.finfo(u.x.array.dtype).resolution
# Ensure the solver works with nonzero initial guess
u.interpolate(lambda x: x[0] ** 2 * x[1] ** 2)
solver.solve(u)
l2_error_local = dolfinx.fem.assemble_scalar(dolfinx.fem.form((u - u_soln) ** 2 * ufl.dx))
l2_error_global = mesh.comm.allreduce(l2_error_local, op=MPI.SUM)
l2_error[run_no] = l2_error_global**0.5
rates = np.log(l2_error[:-1] / l2_error[1:]) / np.log(2.0)
assert np.all(rates > poly_order + 0.9)
@pytest.mark.parametrize("tensor_order", [0, 1, 2])
@pytest.mark.parametrize("poly_order", [1, 2, 3])
def test_homogenize(tensor_order, poly_order):
mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 8, 8)
if tensor_order == 0:
shape = ()
elif tensor_order == 1:
shape = (mesh.geometry.dim,)
elif tensor_order == 2:
shape = (mesh.geometry.dim, mesh.geometry.dim)
else:
pytest.xfail("Unknown tensor order")
cellname = mesh.ufl_cell().cellname()
el = basix.ufl.element(basix.ElementFamily.P, cellname, poly_order, shape=shape, dtype=mesh.geometry.x.dtype)
V = dolfinx.fem.functionspace(mesh, el)
def periodic_boundary(x):
return np.isclose(x[0], 0.0)
def periodic_relation(x):
out_x = np.zeros(x.shape)
out_x[0] = 1.0 - x[0]
out_x[1] = x[1]
out_x[2] = x[2]
return out_x
mpc = dolfinx_mpc.MultiPointConstraint(V)
mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, [])
mpc.finalize()
# Sanity check that the MPC class has some constraints to impose
num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM)
assert num_slaves_global > 0
u = dolfinx.fem.Function(V)
u.x.petsc_vec.set(1.0)
assert np.isclose(u.x.petsc_vec.min()[1], u.x.petsc_vec.max()[1])
assert np.isclose(u.x.petsc_vec.array_r[0], 1.0)
mpc.homogenize(u)
with u.x.petsc_vec.localForm() as u_:
for i in range(V.dofmap.index_map.size_local * V.dofmap.index_map_bs):
if i in mpc.slaves:
assert np.isclose(u_.array_r[i], 0.0)
else:
assert np.isclose(u_.array_r[i], 1.0)
u.x.petsc_vec.destroy()
|