File: test_rectangular_assembly.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (197 lines) | stat: -rw-r--r-- 7,486 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (C) 2022 Nathan Sime
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from mpi4py import MPI
from petsc4py import PETSc

import basix
import dolfinx
import dolfinx.fem
import dolfinx.mesh
import numpy as np
import pytest
import ufl

import dolfinx_mpc
import dolfinx_mpc.utils


@pytest.mark.parametrize("cell_type", (dolfinx.cpp.mesh.CellType.triangle, dolfinx.cpp.mesh.CellType.quadrilateral))
@pytest.mark.parametrize("ghost_mode", (dolfinx.cpp.mesh.GhostMode.none, dolfinx.cpp.mesh.GhostMode.shared_facet))
def test_mixed_element(cell_type, ghost_mode):
    N = 4
    mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N, cell_type=cell_type, ghost_mode=ghost_mode)

    # Inlet velocity Dirichlet BC
    bc_facets = dolfinx.mesh.locate_entities_boundary(
        mesh,
        mesh.topology.dim - 1,
        lambda x: np.isclose(x[0], 0.0, atol=500 * np.finfo(x.dtype).resolution),
    )
    other_facets = dolfinx.mesh.locate_entities_boundary(
        mesh,
        mesh.topology.dim - 1,
        lambda x: np.isclose(x[0], 1.0, atol=500 * np.finfo(x.dtype).resolution),
    )
    arg_sort = np.argsort(other_facets)
    mt = dolfinx.mesh.meshtags(mesh, mesh.topology.dim - 1, other_facets[arg_sort], np.full_like(other_facets, 1))

    # Rotate the mesh to induce more interesting slip BCs
    th = np.pi / 4.0
    rot = np.array([[np.cos(th), -np.sin(th)], [np.sin(th), np.cos(th)]])
    gdim = mesh.geometry.dim
    mesh.geometry.x[:, :gdim] = (rot @ mesh.geometry.x[:, :gdim].T).T

    # Create the function space
    cellname = mesh.ufl_cell().cellname()
    Ve = basix.ufl.element(
        basix.ElementFamily.P, cellname, 2, shape=(mesh.geometry.dim,), dtype=dolfinx.default_real_type
    )
    Qe = basix.ufl.element(basix.ElementFamily.P, cellname, 1, dtype=dolfinx.default_real_type)

    V = dolfinx.fem.functionspace(mesh, Ve)
    Q = dolfinx.fem.functionspace(mesh, Qe)
    W = dolfinx.fem.functionspace(mesh, basix.ufl.mixed_element([Ve, Qe]))

    inlet_velocity = dolfinx.fem.Function(V)
    inlet_velocity.interpolate(
        lambda x: np.zeros((mesh.geometry.dim, x[0].shape[0]), dtype=dolfinx.default_scalar_type)
    )
    inlet_velocity.x.scatter_forward()

    # -- Nested assembly
    dofs = dolfinx.fem.locate_dofs_topological(V, 1, bc_facets)
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs)

    # Collect Dirichlet boundary conditions
    bcs = [bc1]
    mpc_v = dolfinx_mpc.MultiPointConstraint(V)
    n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    mpc_v.create_slip_constraint(V, (mt, 1), n_approx, bcs=bcs)
    mpc_v.finalize()

    mpc_q = dolfinx_mpc.MultiPointConstraint(Q)
    mpc_q.finalize()

    f = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type((0, 0)))
    (u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
    (v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
    a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    a01 = -ufl.inner(p, ufl.div(v)) * ufl.dx
    a10 = -ufl.inner(ufl.div(u), q) * ufl.dx
    a11 = None

    L0 = ufl.inner(f, v) * ufl.dx
    L1 = ufl.inner(dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0)), q) * ufl.dx

    n = ufl.FacetNormal(mesh)
    g_tau = ufl.as_vector((0.0, 0.0))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

    a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds
    a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot(-p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
    L0 += ufl.inner(g_tau, v) * ds

    a_nest = dolfinx.fem.form(((a00, a01), (a10, a11)))
    L_nest = dolfinx.fem.form((L0, L1))

    # Assemble MPC nest matrix
    A_nest = dolfinx_mpc.create_matrix_nest(a_nest, [mpc_v, mpc_q])
    dolfinx_mpc.assemble_matrix_nest(A_nest, a_nest, [mpc_v, mpc_q], bcs)
    A_nest.assemble()

    # Assemble original nest matrix
    A_org_nest = dolfinx.fem.petsc.assemble_matrix_nest(a_nest, bcs)
    A_org_nest.assemble()

    # MPC nested rhs
    b_nest = dolfinx_mpc.create_vector_nest(L_nest, [mpc_v, mpc_q])
    dolfinx_mpc.assemble_vector_nest(b_nest, L_nest, [mpc_v, mpc_q])
    dolfinx.fem.petsc.apply_lifting_nest(b_nest, a_nest, bcs)

    for b_sub in b_nest.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    bcs0 = dolfinx.fem.bcs_by_block(dolfinx.fem.extract_function_spaces(L_nest), bcs)
    dolfinx.fem.petsc.set_bc_nest(b_nest, bcs0)

    # Original dolfinx rhs
    b_org_nest = dolfinx.fem.petsc.assemble_vector_nest(L_nest)
    dolfinx.fem.petsc.apply_lifting_nest(b_org_nest, a_nest, bcs)

    for b_sub in b_org_nest.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc_nest(b_org_nest, bcs0)

    # -- Monolithic assembly
    dofs = dolfinx.fem.locate_dofs_topological((W.sub(0), V), 1, bc_facets)
    bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0))

    bcs = [bc1]

    V, _ = W.sub(0).collapse()
    mpc_vq = dolfinx_mpc.MultiPointConstraint(W)
    n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1)
    mpc_vq.create_slip_constraint(W.sub(0), (mt, 1), n_approx, bcs=bcs)
    mpc_vq.finalize()

    f = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type((0, 0)))
    (u, p) = ufl.TrialFunctions(W)
    (v, q) = ufl.TestFunctions(W)
    a = (
        ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
        - ufl.inner(p, ufl.div(v)) * ufl.dx
        - ufl.inner(ufl.div(u), q) * ufl.dx
    )

    L = ufl.inner(f, v) * ufl.dx + ufl.inner(dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0)), q) * ufl.dx

    # No prescribed shear stress
    n = ufl.FacetNormal(mesh)
    g_tau = ufl.as_vector((0.0, 0.0))
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1)

    # Terms due to slip condition
    # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds
    a -= ufl.inner(ufl.outer(n, n) * ufl.dot(-p * ufl.Identity(u.ufl_shape[0]), n), v) * ds
    L += ufl.inner(g_tau, v) * ds

    a, L = dolfinx.fem.form(a), dolfinx.fem.form(L)

    # Assemble LHS matrix and RHS vector
    A = dolfinx_mpc.assemble_matrix(a, mpc_vq, bcs)
    A.assemble()
    A_org = dolfinx.fem.petsc.assemble_matrix(a, bcs)
    A_org.assemble()

    b = dolfinx_mpc.assemble_vector(L, mpc_vq)
    b_org = dolfinx.fem.petsc.assemble_vector(L)

    # Set Dirichlet boundary condition values in the RHS
    dolfinx_mpc.apply_lifting(b, [a], [bcs], mpc_vq)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc(b, bcs)
    dolfinx.fem.petsc.apply_lifting(b_org, [a], [bcs])
    b_org.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    dolfinx.fem.petsc.set_bc(b_org, bcs)

    # -- Verification
    def nest_matrix_norm(A):
        assert A.getType() == "nest"
        nrows, ncols = A.getNestSize()
        sub_A = [A.getNestSubMatrix(row, col) for row in range(nrows) for col in range(ncols)]
        return sum(map(lambda A_: A_.norm() ** 2 if A_ else 0.0, sub_A)) ** 0.5

    # -- Ensure monolithic and nest matrices are the same
    assert np.isclose(nest_matrix_norm(A_nest), A.norm())
    for b_sub in b_nest.getNestSubVecs():
        b_sub.destroy()
    b_nest.destroy()
    for b_sub in b_org_nest.getNestSubVecs():
        b_sub.destroy()
    b_org_nest.destroy()