File: test_vector_poisson.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (134 lines) | stat: -rw-r--r-- 4,729 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from mpi4py import MPI
from petsc4py import PETSc

import dolfinx.fem as fem
import numpy as np
import numpy.testing as nt
import pytest
import scipy.sparse.linalg
import ufl
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.mesh import create_unit_square

import dolfinx_mpc
import dolfinx_mpc.utils
from dolfinx_mpc.utils import get_assemblers  # noqa: F401


@pytest.mark.parametrize("get_assemblers", ["C++"], indirect=True)
@pytest.mark.parametrize("Nx", [4])
@pytest.mark.parametrize("Ny", [2, 3])
@pytest.mark.parametrize("slave_space", [0, 1])
@pytest.mark.parametrize("master_space", [0, 1])
def test_vector_possion(Nx, Ny, slave_space, master_space, get_assemblers):  # noqa: F811
    assemble_matrix, assemble_vector = get_assemblers
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny)

    V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))

    def boundary(x):
        return np.isclose(x.T, [0, 0, 0], atol=500 * np.finfo(x.dtype).resolution).all(axis=1)

    # Define boundary conditions (HAS TO BE NON-MASTER NODES)
    u_bc = fem.Function(V)
    with u_bc.x.petsc_vec.localForm() as u_local:
        u_local.set(0.0)
    u_bc.x.petsc_vec.destroy()

    bdofsV = fem.locate_dofs_geometrical(V, boundary)
    bc = fem.dirichletbc(u_bc, bdofsV)
    bcs = [bc]

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.as_vector((-5 * x[1], 7 * x[0]))

    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(mesh.comm)
    solver.setType(PETSc.KSP.Type.PREONLY)
    pc = solver.getPC()
    pc.setType(PETSc.PC.Type.LU)
    pc.setFactorSolverType("mumps")

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=mesh.geometry.x.dtype).tobytes()

    s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, slave_space, master_space)
    mpc.finalize()

    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = dolfinx_mpc.assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = fem.Function(mpc.function_space)
    uh.x.array[:] = 0

    solver.solve(b, uh.x.petsc_vec)
    uh.x.scatter_forward()
    mpc.backsubstitution(uh)

    # Generate reference matrices for unconstrained problem
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        is_complex = np.issubdtype(default_scalar_type, np.complexfloating)  # type: ignore
        scipy_dtype = np.complex128 if is_complex else np.float64
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.x.petsc_vec, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T.astype(scipy_dtype) * A_csr.astype(scipy_dtype) * K.astype(scipy_dtype)
            reduced_L = K.T.astype(scipy_dtype) @ L_np.astype(scipy_dtype)
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K.astype(scipy_dtype) @ d
            nt.assert_allclose(
                uh_numpy.astype(u_mpc.dtype),
                u_mpc,
                rtol=500 * np.finfo(default_scalar_type).resolution,
            )

    b.destroy()
    L_org.destroy()
    solver.destroy()
    list_timings(comm, [TimingType.wall])