1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
# Copyright (C) 2020-2021 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.common as _common
import dolfinx.cpp as _cpp
import dolfinx.fem as _fem
import dolfinx.geometry as _geometry
import dolfinx.la as _la
import dolfinx.log as _log
import dolfinx.mesh as _mesh
import numpy as np
import ufl
from dolfinx import default_scalar_type as _dt
import dolfinx_mpc.cpp
__all__ = [
"rotation_matrix",
"facet_normal_approximation",
"log_info",
"rigid_motions_nullspace",
"determine_closest_block",
"create_normal_approximation",
"create_point_to_point_constraint",
]
def rotation_matrix(axis, angle):
# See https://en.wikipedia.org/wiki/Rotation_matrix,
# Subsection: Rotation_matrix_from_axis_and_angle.
if np.isclose(np.inner(axis, axis), 1):
n_axis = axis
else:
# Normalize axis
n_axis = axis / np.sqrt(np.inner(axis, axis))
# Define cross product matrix of axis
axis_x = np.array([[0, -n_axis[2], n_axis[1]], [n_axis[2], 0, -n_axis[0]], [-n_axis[1], n_axis[0], 0]])
identity = np.cos(angle) * np.eye(3)
outer = (1 - np.cos(angle)) * np.outer(n_axis, n_axis)
return np.sin(angle) * axis_x + identity + outer
def facet_normal_approximation(
V,
mt: _mesh.MeshTags,
mt_id: int,
tangent=False,
jit_options: dict = {},
form_compiler_options: dict = {},
):
"""
Approximate the facet normal by projecting it into the function space for a set of facets
Args:
V: The function space to project into
mt: The `dolfinx.mesh.MeshTagsMetaClass` containing facet markers
mt_id: The id for the facets in `mt` we want to represent the normal at
tangent: To approximate the tangent to the facet set this flag to `True`
jit_options: Parameters used in CFFI JIT compilation of C code generated by FFCx.
See https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py#L22-L37
for all available parameters. Takes priority over all other parameter values.
form_compiler_options: Parameters used in FFCx compilation of this form. Run `ffcx - -help` at
the commandline to see all available options. Takes priority over all
other parameter values, except for `scalar_type` which is determined by
DOLFINx.
"""
timer = _common.Timer("~MPC: Facet normal projection")
comm = V.mesh.comm
n = ufl.FacetNormal(V.mesh)
nh = _fem.Function(V)
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
ds = ufl.ds(domain=V.mesh, subdomain_data=mt, subdomain_id=mt_id)
if tangent:
if V.mesh.geometry.dim == 1:
raise ValueError("Tangent not defined for 1D problem")
elif V.mesh.geometry.dim == 2:
a = ufl.inner(u, v) * ds
L = ufl.inner(ufl.as_vector([-n[1], n[0]]), v) * ds
else:
def tangential_proj(u, n):
"""
See for instance:
https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf
"""
return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
c = _fem.Constant(V.mesh, [1, 1, 1])
a = ufl.inner(u, v) * ds
L = ufl.inner(tangential_proj(c, n), v) * ds
else:
a = ufl.inner(u, v) * ds
L = ufl.inner(n, v) * ds
# Find all dofs that are not boundary dofs
imap = V.dofmap.index_map
all_blocks = np.arange(imap.size_local, dtype=np.int32)
top_blocks = _fem.locate_dofs_topological(V, V.mesh.topology.dim - 1, mt.find(mt_id))
deac_blocks = all_blocks[np.isin(all_blocks, top_blocks, invert=True)]
# Note there should be a better way to do this
# Create sparsity pattern only for constraint + bc
bilinear_form = _fem.form(a, jit_options=jit_options, form_compiler_options=form_compiler_options)
pattern = _fem.create_sparsity_pattern(bilinear_form)
pattern.insert_diagonal(deac_blocks)
pattern.finalize()
u_0 = _fem.Function(V)
u_0.x.petsc_vec.set(0)
bc_deac = _fem.dirichletbc(u_0, deac_blocks)
A = _cpp.la.petsc.create_matrix(comm, pattern)
A.zeroEntries()
# Assemble the matrix with all entries
form_coeffs = _cpp.fem.pack_coefficients(bilinear_form._cpp_object)
form_consts = _cpp.fem.pack_constants(bilinear_form._cpp_object)
_cpp.fem.petsc.assemble_matrix(A, bilinear_form._cpp_object, form_consts, form_coeffs, [bc_deac._cpp_object])
if bilinear_form.function_spaces[0] is bilinear_form.function_spaces[1]:
A.assemblyBegin(PETSc.Mat.AssemblyType.FLUSH) # type: ignore
A.assemblyEnd(PETSc.Mat.AssemblyType.FLUSH) # type: ignore
_cpp.fem.petsc.insert_diagonal(A, bilinear_form.function_spaces[0], [bc_deac._cpp_object], 1.0)
A.assemble()
linear_form = _fem.form(L, jit_options=jit_options, form_compiler_options=form_compiler_options)
b = _fem.petsc.assemble_vector(linear_form)
_fem.petsc.apply_lifting(b, [bilinear_form], [[bc_deac]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
_fem.petsc.set_bc(b, [bc_deac])
# Solve Linear problem
solver = PETSc.KSP().create(V.mesh.comm) # type: ignore
solver.setType("cg")
solver.rtol = 1e-8
solver.setOperators(A)
solver.solve(b, nh.x.petsc_vec)
nh.x.petsc_vec.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) # type: ignore
timer.stop()
solver.destroy()
b.destroy()
return nh
def log_info(message):
"""
Wrapper for logging a simple string on the zeroth communicator
Reverting the log level
"""
old_level = _log.get_log_level()
if MPI.COMM_WORLD.rank == 0:
_log.set_log_level(_log.LogLevel.INFO)
_log.log(_log.LogLevel.INFO, message)
_log.set_log_level(old_level)
def rigid_motions_nullspace(V: _fem.FunctionSpace):
"""
Function to build nullspace for 2D/3D elasticity.
Args:
V: The function space
"""
_x = _fem.Function(V)
# Get geometric dim
gdim = V.mesh.geometry.dim
assert gdim == 2 or gdim == 3
# Set dimension of nullspace
dim = 3 if gdim == 2 else 6
# Create list of vectors for null space
nullspace_basis = [
_la.vector(V.dofmap.index_map, bs=V.dofmap.index_map_bs, dtype=PETSc.ScalarType) # type: ignore
for i in range(dim)
]
basis = [b.array for b in nullspace_basis]
dofs = [V.sub(i).dofmap.list.reshape(-1) for i in range(gdim)]
# Build translational null space basis
for i in range(gdim):
basis[i][dofs[i]] = 1.0
# Build rotational null space basis
x = V.tabulate_dof_coordinates()
dofs_block = V.dofmap.list.reshape(-1)
x0, x1, x2 = x[dofs_block, 0], x[dofs_block, 1], x[dofs_block, 2]
if gdim == 2:
basis[2][dofs[0]] = -x1
basis[2][dofs[1]] = x0
elif gdim == 3:
basis[3][dofs[0]] = -x1
basis[3][dofs[1]] = x0
basis[4][dofs[0]] = x2
basis[4][dofs[2]] = -x0
basis[5][dofs[2]] = x1
basis[5][dofs[1]] = -x2
for b in nullspace_basis:
b.scatter_forward()
_la.orthonormalize(nullspace_basis)
assert _la.is_orthonormal(nullspace_basis, float(np.finfo(_x.x.array.dtype).eps))
local_size = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
basis_petsc = [
PETSc.Vec().createWithArray(x[:local_size], bsize=gdim, comm=V.mesh.comm) # type: ignore
for x in basis
]
return PETSc.NullSpace().create(comm=V.mesh.comm, vectors=basis_petsc) # type: ignore
def determine_closest_block(V, point):
"""
Determine the closest dofs (in a single block) to a point and the distance
"""
# Create boundingboxtree of cells connected to boundary facets
tdim = V.mesh.topology.dim
boundary_facets = _mesh.exterior_facet_indices(V.mesh.topology)
V.mesh.topology.create_connectivity(tdim - 1, tdim)
f_to_c = V.mesh.topology.connectivity(tdim - 1, tdim)
boundary_cells = []
for facet in boundary_facets:
boundary_cells.extend(f_to_c.links(facet))
cell_imap = V.mesh.topology.index_map(tdim)
boundary_cells = np.array(np.unique(boundary_cells), dtype=np.int32)
boundary_cells = boundary_cells[boundary_cells < cell_imap.size_local]
bb_tree = _geometry.bb_tree(V.mesh, tdim, boundary_cells)
midpoint_tree = _geometry.create_midpoint_tree(V.mesh, tdim, boundary_cells)
# Find facet closest
point = np.reshape(point, (1, 3)).astype(V.mesh.geometry.x.dtype)
closest_cell = _geometry.compute_closest_entity(bb_tree, midpoint_tree, V.mesh, point)[0]
# Set distance high if cell is not owned
if cell_imap.size_local < closest_cell or closest_cell == -1:
R = 1e5
else:
# Get cell geometry
p = V.mesh.geometry.x
V.mesh.topology.create_connectivity(tdim, tdim)
entities = _cpp.mesh.entities_to_geometry(
V.mesh._cpp_object, tdim, np.array([closest_cell], dtype=np.int32), False
)
R = np.linalg.norm(_cpp.geometry.compute_distance_gjk(point, p[entities[0]]))
# Find processor with cell closest to point
global_distances = MPI.COMM_WORLD.allgather(R)
owning_processor = np.argmin(global_distances)
dofmap = V.dofmap
imap = dofmap.index_map
ghost_owner = imap.owners
local_max = imap.size_local
# Determine which block of dofs is closest
min_distance = max(R, 1e5)
minimal_distance_block = None
min_dof_owner = owning_processor
if MPI.COMM_WORLD.rank == owning_processor:
x = V.tabulate_dof_coordinates()
cell_blocks = dofmap.cell_dofs(closest_cell)
for block in cell_blocks:
distance = np.linalg.norm(_cpp.geometry.compute_distance_gjk(point, x[block]))
if distance < min_distance:
# If cell owned by processor, but not the closest dof
if block < local_max:
min_dof_owner = MPI.COMM_WORLD.rank
else:
min_dof_owner = ghost_owner[block - local_max]
minimal_distance_block = block
min_distance = distance
min_dof_owner = MPI.COMM_WORLD.bcast(min_dof_owner, root=owning_processor)
# If dofs not owned by cell
if owning_processor != min_dof_owner:
owning_processor = min_dof_owner
if MPI.COMM_WORLD.rank == min_dof_owner:
# Re-search using the closest cell
x = V.tabulate_dof_coordinates()
cell_blocks = dofmap.cell_dofs(closest_cell)
for block in cell_blocks:
distance = np.linalg.norm(_cpp.geometry.compute_distance_gjk(point, x[block]))
if distance < min_distance:
# If cell owned by processor, but not the closest dof
if block < local_max:
min_dof_owner = MPI.COMM_WORLD.rank
else:
min_dof_owner = ghost_owner[block - local_max]
minimal_distance_block = block
min_distance = distance
assert min_dof_owner == owning_processor
return owning_processor, [minimal_distance_block]
else:
return owning_processor, []
def create_point_to_point_constraint(V, slave_point, master_point, vector=None):
# Determine which processor owns the dof closest to the slave and master point
slave_proc, slave_block = determine_closest_block(V, slave_point)
master_proc, master_block = determine_closest_block(V, master_point)
is_master_proc = MPI.COMM_WORLD.rank == master_proc
is_slave_proc = MPI.COMM_WORLD.rank == slave_proc
block_size = V.dofmap.index_map_bs
imap = V.dofmap.index_map
# Output structures
slaves, masters, coeffs, owners, offsets = [], [], [], [], []
# Information required to handle vector as input
zero_indices, slave_index = None, None
if vector is not None:
zero_indices = np.argwhere(np.isclose(vector, 0)).T[0]
slave_index = np.argmax(np.abs(vector))
if is_slave_proc:
assert len(slave_block) == 1
slave_block_g = imap.local_to_global(np.asarray(slave_block, dtype=np.int32))[0]
if vector is None:
slaves = np.arange(
slave_block[0] * block_size,
slave_block[0] * block_size + block_size,
dtype=np.int32,
)
else:
assert len(vector) == block_size
# Check for input vector (Should be of same length as number of slaves)
# All entries should not be zero
assert not np.isin(slave_index, zero_indices)
# Check vector for zero contributions
slaves = np.array([slave_block[0] * block_size + slave_index], dtype=np.int32)
for i in range(block_size):
if i != slave_index and not np.isin(i, zero_indices):
masters.append(slave_block_g * block_size + i)
owners.append(slave_proc)
coeffs.append(-vector[i] / vector[slave_index])
global_masters = None
if is_master_proc:
assert len(master_block) == 1
master_block_g = imap.local_to_global(np.asarray(master_block, dtype=np.int32))[0]
masters_as_glob = np.arange(
master_block_g * block_size, master_block_g * block_size + block_size, dtype=np.int64
)
else:
masters_as_glob = np.array([], dtype=np.int64)
ghost_processors = []
shared_indices = dolfinx_mpc.cpp.mpc.compute_shared_indices(V._cpp_object)
if is_master_proc and is_slave_proc:
# If slaves and masters are on the same processor finalize local work
if vector is None:
masters = masters_as_glob
owners = np.full(len(masters), master_proc, dtype=np.int32)
coeffs = np.ones(len(masters), dtype=_dt)
offsets = np.arange(0, len(masters) + 1, dtype=np.int32)
else:
for i in range(len(masters_as_glob)):
if not np.isin(i, zero_indices):
masters.append(masters_as_glob[i])
owners.append(master_proc)
coeffs.append(vector[i] / vector[slave_index])
offsets = [0, len(masters)]
else:
# Send/Recv masters from other processor
if is_master_proc:
MPI.COMM_WORLD.send(masters_as_glob, dest=slave_proc, tag=10)
if is_slave_proc:
global_masters = MPI.COMM_WORLD.recv(source=master_proc, tag=10)
for i, master in enumerate(global_masters):
if not np.isin(i, zero_indices):
masters.append(master)
owners.append(master_proc)
if vector is None:
coeffs.append(1)
else:
coeffs.append(vector[i] / vector[slave_index])
if vector is None:
offsets = np.arange(0, len(slaves) + 1, dtype=np.int32)
else:
offsets = np.array([0, len(masters)], dtype=np.int32)
ghost_processors = shared_indices.links(slave_block[0])
# Broadcast processors containg slave
ghost_processors = MPI.COMM_WORLD.bcast(ghost_processors, root=slave_proc)
if is_slave_proc:
for proc in ghost_processors:
MPI.COMM_WORLD.send(slave_block_g * block_size + slaves % block_size, dest=proc, tag=20 + proc)
MPI.COMM_WORLD.send(coeffs, dest=proc, tag=30 + proc)
MPI.COMM_WORLD.send(owners, dest=proc, tag=40 + proc)
MPI.COMM_WORLD.send(masters, dest=proc, tag=50 + proc)
MPI.COMM_WORLD.send(offsets, dest=proc, tag=60 + proc)
# Receive data for ghost slaves
ghost_slaves, ghost_masters, ghost_coeffs, ghost_owners, ghost_offsets = [], [], [], [], []
if np.isin(MPI.COMM_WORLD.rank, ghost_processors):
# Convert recieved slaves to the corresponding ghost index
recv_slaves = MPI.COMM_WORLD.recv(source=slave_proc, tag=20 + MPI.COMM_WORLD.rank)
ghost_coeffs = MPI.COMM_WORLD.recv(source=slave_proc, tag=30 + MPI.COMM_WORLD.rank)
ghost_owners = MPI.COMM_WORLD.recv(source=slave_proc, tag=40 + MPI.COMM_WORLD.rank)
ghost_masters = MPI.COMM_WORLD.recv(source=slave_proc, tag=50 + MPI.COMM_WORLD.rank)
ghost_offsets = MPI.COMM_WORLD.recv(source=slave_proc, tag=60 + MPI.COMM_WORLD.rank)
# Unroll ghost blocks
ghosts = imap.ghosts
ghost_dofs = [g * block_size + i for g in ghosts for i in range(block_size)]
ghost_slaves = np.zeros(len(recv_slaves), dtype=np.int32)
local_size = imap.size_local
for i, slave in enumerate(recv_slaves):
idx = np.argwhere(ghost_dofs == slave)[0, 0]
ghost_slaves[i] = local_size * block_size + idx
slaves = np.asarray(np.append(slaves, ghost_slaves), dtype=np.int32)
masters = np.asarray(np.append(masters, ghost_masters), dtype=np.int64)
coeffs = np.asarray(np.append(coeffs, ghost_coeffs), dtype=_dt)
owners = np.asarray(np.append(owners, ghost_owners), dtype=np.int32)
offsets = np.asarray(np.append(offsets, ghost_offsets), dtype=np.int32)
return slaves, masters, coeffs, owners, offsets
def create_normal_approximation(V: _fem.FunctionSpace, mt: _cpp.mesh.MeshTags_int32, value: int):
"""
Creates a normal approximation for the dofs in the closure of the attached entities.
Where a dof is attached to entities facets, an average is computed
Args:
V: The function space
mt: The meshtag containing the indices
value: Value for the entities in the mesh tag to compute normal on
Returns:
nh: The normal vector
"""
nh = _fem.Function(V)
n_cpp = dolfinx_mpc.cpp.mpc.create_normal_approximation(V._cpp_object, mt.dim, mt.find(value))
nh._cpp_object = n_cpp
return nh
|