File: main.cpp

package info (click to toggle)
dolfinx 2019.2.0~git20210130.c14cb0a-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,584 kB
  • sloc: cpp: 48,110; python: 9,536; xml: 9,114; makefile: 261; sh: 17
file content (208 lines) | stat: -rw-r--r-- 6,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include "hyperelasticity.h"
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/common/log.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/petsc.h>
#include <dolfinx/la/Vector.h>

using namespace dolfinx;

// Next:
//
// .. code-block:: cpp

class HyperElasticProblem
{
public:
  HyperElasticProblem(
      std::shared_ptr<fem::Form<PetscScalar>> L,
      std::shared_ptr<fem::Form<PetscScalar>> J,
      std::vector<std::shared_ptr<const fem::DirichletBC<PetscScalar>>> bcs)
      : _l(L), _j(J), _bcs(bcs),
        _b(L->function_spaces()[0]->dofmap()->index_map,
           L->function_spaces()[0]->dofmap()->index_map_bs()),
        _matA(la::PETScMatrix(fem::create_matrix(*J, "baij"), false))
  {
    auto map = L->function_spaces()[0]->dofmap()->index_map;
    const int bs = L->function_spaces()[0]->dofmap()->index_map_bs();
    std::int32_t size_local = bs * map->size_local();

    std::vector<PetscInt> ghosts(map->ghosts().begin(), map->ghosts().end());
    std::int64_t size_global = bs * map->size_global();
    VecCreateGhostBlockWithArray(map->comm(), bs, size_local, size_global,
                                 ghosts.size(), ghosts.data(),
                                 _b.array().data(), &_b_petsc);
  }

  /// Destructor
  virtual ~HyperElasticProblem()
  {
    if (_b_petsc)
      VecDestroy(&_b_petsc);
  }

  auto form()
  {
    return [](Vec x) {
      VecGhostUpdateBegin(x, INSERT_VALUES, SCATTER_FORWARD);
      VecGhostUpdateEnd(x, INSERT_VALUES, SCATTER_FORWARD);
    };
  }

  /// Compute F at current point x
  auto F()
  {
    return [&](const Vec x, Vec) {
      // Assemble b and update ghosts
      tcb::span b(_b.mutable_array());
      std::fill(b.begin(), b.end(), 0.0);
      fem::assemble_vector<PetscScalar>(b, *_l);
      VecGhostUpdateBegin(_b_petsc, ADD_VALUES, SCATTER_REVERSE);
      VecGhostUpdateEnd(_b_petsc, ADD_VALUES, SCATTER_REVERSE);

      // Set bcs
      Vec x_local;
      VecGhostGetLocalForm(x, &x_local);
      PetscInt n = 0;
      VecGetSize(x_local, &n);
      const PetscScalar* array = nullptr;
      VecGetArrayRead(x_local, &array);
      fem::set_bc<PetscScalar>(b, _bcs, tcb::span(array, n), -1.0);
      VecRestoreArrayRead(x, &array);
    };
  }

  /// Compute J = F' at current point x
  auto J()
  {
    return [&](const Vec, Mat A) {
      MatZeroEntries(A);
      fem::assemble_matrix(la::PETScMatrix::add_block_fn(A), *_j, _bcs);
      fem::add_diagonal(la::PETScMatrix::add_fn(A), *_j->function_spaces()[0],
                        _bcs);
      MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
      MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
    };
  }

  Vec vector() { return _b_petsc; }

  Mat matrix() { return _matA.mat(); }

private:
  std::shared_ptr<fem::Form<PetscScalar>> _l, _j;
  std::vector<std::shared_ptr<const fem::DirichletBC<PetscScalar>>> _bcs;
  la::Vector<PetscScalar> _b;
  Vec _b_petsc = nullptr;
  la::PETScMatrix _matA;
};

int main(int argc, char* argv[])
{
  common::subsystem::init_logging(argc, argv);
  common::subsystem::init_petsc(argc, argv);

  // Set the logging thread name to show the process rank
  int mpi_rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
  std::string thread_name = "RANK " + std::to_string(mpi_rank);
  loguru::set_thread_name(thread_name.c_str());

  {
    // Inside the ``main`` function, we begin by defining a tetrahedral mesh
    // of the domain and the function space on this mesh. Here, we choose to
    // create a unit cube mesh with 25 ( = 24 + 1) vertices in one direction
    // and 17 ( = 16 + 1) vertices in the other two directions. With this
    // mesh, we initialize the (finite element) function space defined by the
    // generated code.
    //
    // .. code-block:: cpp

    // Create mesh and define function space
    auto cmap
        = fem::create_coordinate_map(create_coordinate_map_hyperelasticity);
    auto mesh = std::make_shared<mesh::Mesh>(generation::BoxMesh::create(
        MPI_COMM_WORLD, {Eigen::Vector3d(0, 0, 0), Eigen::Vector3d(1, 1, 1)},
        {10, 10, 10}, cmap, mesh::GhostMode::none));

    auto V = fem::create_functionspace(
        create_functionspace_form_hyperelasticity_F, "u", mesh);

    // Define solution function
    auto u = std::make_shared<fem::Function<PetscScalar>>(V);
    auto a = fem::create_form<PetscScalar>(create_form_hyperelasticity_J,
                                           {V, V}, {{"u", u}}, {}, {});
    auto L = fem::create_form<PetscScalar>(create_form_hyperelasticity_F, {V},
                                           {{"u", u}}, {}, {});

    auto u_rotation = std::make_shared<fem::Function<PetscScalar>>(V);
    u_rotation->interpolate([](auto& x) {
      const double scale = 0.005;

      // Center of rotation
      const double y0 = 0.5;
      const double z0 = 0.5;

      // Large angle of rotation (60 degrees)
      const double theta = 1.04719755;

      Eigen::Array<PetscScalar, 3, Eigen::Dynamic, Eigen::RowMajor> values(
          3, x.cols());
      for (int i = 0; i < x.cols(); ++i)
      {
        // New coordinates
        double y
            = y0 + (x(1, i) - y0) * cos(theta) - (x(2, i) - z0) * sin(theta);
        double z
            = z0 + (x(1, i) - y0) * sin(theta) + (x(2, i) - z0) * cos(theta);

        // Rotate at right end
        values(0, i) = 0.0;
        values(1, i) = scale * (y - x(1, i));
        values(2, i) = scale * (z - x(2, i));
      }

      return values;
    });

    auto u_clamp = std::make_shared<fem::Function<PetscScalar>>(V);
    u_clamp->interpolate([](auto& x) {
      return Eigen::Array<PetscScalar, 3, Eigen::Dynamic,
                          Eigen::RowMajor>::Zero(3, x.cols());
    });

    // Create Dirichlet boundary conditions
    auto u0 = std::make_shared<fem::Function<PetscScalar>>(V);

    const auto bdofs_left = fem::locate_dofs_geometrical({*V}, [](auto& x) {
      static const double epsilon = std::numeric_limits<double>::epsilon();
      return x.row(0).abs() < 10.0 * epsilon;
    });
    const auto bdofs_right = fem::locate_dofs_geometrical({*V}, [](auto& x) {
      static const double epsilon = std::numeric_limits<double>::epsilon();
      return (x.row(0) - 1.0).abs() < 10.0 * epsilon;
    });

    auto bcs
        = std::vector({std::make_shared<const fem::DirichletBC<PetscScalar>>(
                           u_clamp, std::move(bdofs_left)),
                       std::make_shared<const fem::DirichletBC<PetscScalar>>(
                           u_rotation, std::move(bdofs_right))});

    HyperElasticProblem problem(L, a, bcs);
    nls::NewtonSolver newton_solver(MPI_COMM_WORLD);
    newton_solver.setF(problem.F(), problem.vector());
    newton_solver.setJ(problem.J(), problem.matrix());
    newton_solver.set_form(problem.form());
    newton_solver.solve(u->vector());

    // Save solution in VTK format
    io::VTKFile file("u.pvd");
    file.write(*u);
  }

  common::subsystem::finalize_petsc();

  return 0;
}