File: main.cpp

package info (click to toggle)
dolfinx 2019.2.0~git20210130.c14cb0a-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,584 kB
  • sloc: cpp: 48,110; python: 9,536; xml: 9,114; makefile: 261; sh: 17
file content (233 lines) | stat: -rw-r--r-- 8,831 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Poisson equation (C++)
// ======================
//
// This demo illustrates how to:
//
// * Solve a linear partial differential equation
// * Create and apply Dirichlet boundary conditions
// * Define Expressions
// * Define a FunctionSpace
//
// The solution for :math:`u` in this demo will look as follows:
//
// .. image:: ../poisson_u.png
//     :scale: 75 %
//
//
// Equation and problem definition
// -------------------------------
//
// The Poisson equation is the canonical elliptic partial differential
// equation.  For a domain :math:`\Omega \subset \mathbb{R}^n` with
// boundary :math:`\partial \Omega = \Gamma_{D} \cup \Gamma_{N}`, the
// Poisson equation with particular boundary conditions reads:
//
// .. math::
//    - \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
//      u &= 0 \quad {\rm on} \ \Gamma_{D}, \\
//      \nabla u \cdot n &= g \quad {\rm on} \ \Gamma_{N}. \\
//
// Here, :math:`f` and :math:`g` are input data and :math:`n` denotes the
// outward directed boundary normal. The most standard variational form
// of Poisson equation reads: find :math:`u \in V` such that
//
// .. math::
//    a(u, v) = L(v) \quad \forall \ v \in V,
//
// where :math:`V` is a suitable function space and
//
// .. math::
//    a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, {\rm d} x, \\
//    L(v)    &= \int_{\Omega} f v \, {\rm d} x
//    + \int_{\Gamma_{N}} g v \, {\rm d} s.
//
// The expression :math:`a(u, v)` is the bilinear form and :math:`L(v)`
// is the linear form. It is assumed that all functions in :math:`V`
// satisfy the Dirichlet boundary conditions (:math:`u = 0 \ {\rm on} \
// \Gamma_{D}`).
//
// In this demo, we shall consider the following definitions of the input
// functions, the domain, and the boundaries:
//
// * :math:`\Omega = [0,1] \times [0,1]` (a unit square)
// * :math:`\Gamma_{D} = \{(0, y) \cup (1, y) \subset \partial \Omega\}`
// (Dirichlet boundary)
// * :math:`\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}`
// (Neumann boundary)
// * :math:`g = \sin(5x)` (normal derivative)
// * :math:`f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)` (source term)
//
//
// Implementation
// --------------
//
// The implementation is split in two files: a form file containing the
// definition of the variational forms expressed in UFL and a C++ file
// containing the actual solver.
//
// Running this demo requires the files: :download:`main.cpp`,
// :download:`Poisson.ufl` and :download:`CMakeLists.txt`.
//
//
// UFL form file
// ^^^^^^^^^^^^^
//
// The UFL file is implemented in :download:`Poisson.ufl`, and the
// explanation of the UFL file can be found at :doc:`here <Poisson.ufl>`.
//
//
// C++ program
// ^^^^^^^^^^^
//
// The main solver is implemented in the :download:`main.cpp` file.
//
// At the top we include the DOLFIN header file and the generated header
// file "Poisson.h" containing the variational forms for the Poisson
// equation.  For convenience we also include the DOLFIN namespace.
//
// .. code-block:: cpp

#include "poisson.h"
#include <cmath>
#include <dolfinx.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/petsc.h>

using namespace dolfinx;

// Then follows the definition of the coefficient functions (for
// :math:`f` and :math:`g`), which are derived from the
// :cpp:class:`Expression` class in DOLFIN
//
// .. code-block:: cpp

// Inside the ``main`` function, we begin by defining a mesh of the
// domain. As the unit square is a very standard domain, we can use a
// built-in mesh provided by the :cpp:class:`UnitSquareMesh` factory. In
// order to create a mesh consisting of 32 x 32 squares with each square
// divided into two triangles, and the finite element space (specified in
// the form file) defined relative to this mesh, we do as follows
//
// .. code-block:: cpp

int main(int argc, char* argv[])
{
  common::subsystem::init_logging(argc, argv);
  common::subsystem::init_petsc(argc, argv);

  {
    // Create mesh and function space
    auto cmap = fem::create_coordinate_map(create_coordinate_map_poisson);
    auto mesh = std::make_shared<mesh::Mesh>(generation::RectangleMesh::create(
        MPI_COMM_WORLD,
        {Eigen::Vector3d(0.0, 0.0, 0.0), Eigen::Vector3d(1.0, 1.0, 0.0)},
        {32, 32}, cmap, mesh::GhostMode::none));

    auto V = fem::create_functionspace(create_functionspace_form_poisson_a, "u",
                                       mesh);

    // Next, we define the variational formulation by initializing the
    // bilinear and linear forms (:math:`a`, :math:`L`) using the previously
    // defined :cpp:class:`FunctionSpace` ``V``.  Then we can create the
    // source and boundary flux term (:math:`f`, :math:`g`) and attach these
    // to the linear form.
    //
    // .. code-block:: cpp

    // Prepare and set Constants for the bilinear form
    auto kappa = std::make_shared<fem::Constant<PetscScalar>>(2.0);
    auto f = std::make_shared<fem::Function<PetscScalar>>(V);
    auto g = std::make_shared<fem::Function<PetscScalar>>(V);

    // Define variational forms
    auto a = fem::create_form<PetscScalar>(create_form_poisson_a, {V, V}, {},
                                           {{"kappa", kappa}}, {});
    auto L = fem::create_form<PetscScalar>(create_form_poisson_L, {V},
                                           {{"f", f}, {"g", g}}, {}, {});

    // Now, the Dirichlet boundary condition (:math:`u = 0`) can be created
    // using the class :cpp:class:`DirichletBC`. A :cpp:class:`DirichletBC`
    // takes two arguments: the value of the boundary condition,
    // and the part of the boundary on which the condition applies.
    // In our example, the value of the boundary condition (0.0) can
    // represented using a :cpp:class:`Function`, and the Dirichlet boundary
    // is defined by the indices of degrees of freedom to which the boundary
    // condition applies.
    // The definition of the Dirichlet boundary condition then looks
    // as follows:
    //
    // .. code-block:: cpp

    // FIXME: zero function and make sure ghosts are updated
    // Define boundary condition
    auto u0 = std::make_shared<fem::Function<PetscScalar>>(V);

    const auto bdofs = fem::locate_dofs_geometrical({*V}, [](auto& x) {
      static const double epsilon = std::numeric_limits<double>::epsilon();
      return (x.row(0).abs() < 10.0 * epsilon
              or (x.row(0) - 1.0).abs() < 10.0 * epsilon);
    });

    std::vector bc{std::make_shared<const fem::DirichletBC<PetscScalar>>(
        u0, std::move(bdofs))};

    f->interpolate([](auto& x) {
      auto dx = Eigen::square(x - 0.5);
      return 10.0 * Eigen::exp(-(dx.row(0) + dx.row(1)) / 0.02);
    });

    g->interpolate([](auto& x) { return Eigen::sin(5 * x.row(0)); });

    // Now, we have specified the variational forms and can consider the
    // solution of the variational problem. First, we need to define a
    // :cpp:class:`Function` ``u`` to store the solution. (Upon
    // initialization, it is simply set to the zero function.) Next, we can
    // call the ``solve`` function with the arguments ``a == L``, ``u`` and
    // ``bc`` as follows:
    //
    // .. code-block:: cpp

    // Compute solution
    fem::Function<PetscScalar> u(V);
    la::PETScMatrix A = la::PETScMatrix(fem::create_matrix(*a), false);
    la::PETScVector b(*L->function_spaces()[0]->dofmap()->index_map,
                      L->function_spaces()[0]->dofmap()->index_map_bs());

    MatZeroEntries(A.mat());
    fem::assemble_matrix(la::PETScMatrix::add_block_fn(A.mat()), *a, bc);
    fem::add_diagonal(la::PETScMatrix::add_fn(A.mat()), *V, bc);
    MatAssemblyBegin(A.mat(), MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A.mat(), MAT_FINAL_ASSEMBLY);

    VecSet(b.vec(), 0.0);
    VecGhostUpdateBegin(b.vec(), INSERT_VALUES, SCATTER_FORWARD);
    VecGhostUpdateEnd(b.vec(), INSERT_VALUES, SCATTER_FORWARD);
    fem::assemble_vector_petsc(b.vec(), *L);
    fem::apply_lifting_petsc(b.vec(), {a}, {{bc}}, {}, 1.0);
    VecGhostUpdateBegin(b.vec(), ADD_VALUES, SCATTER_REVERSE);
    VecGhostUpdateEnd(b.vec(), ADD_VALUES, SCATTER_REVERSE);
    fem::set_bc_petsc(b.vec(), bc, nullptr);

    la::PETScKrylovSolver lu(MPI_COMM_WORLD);
    la::PETScOptions::set("ksp_type", "preonly");
    la::PETScOptions::set("pc_type", "lu");
    lu.set_from_options();

    lu.set_operator(A.mat());
    lu.solve(u.vector(), b.vec());

    // The function ``u`` will be modified during the call to solve. A
    // :cpp:class:`Function` can be saved to a file. Here, we output the
    // solution to a ``VTK`` file (specified using the suffix ``.pvd``) for
    // visualisation in an external program such as Paraview.
    //
    // .. code-block:: cpp

    // Save solution in VTK format
    io::VTKFile file("u.pvd");
    file.write(u);
  }

  common::subsystem::finalize_petsc();
  return 0;
}