File: CoreDevice.cpp

package info (click to toggle)
dolphin-emu 2503%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 111,624 kB
  • sloc: cpp: 787,747; ansic: 217,914; xml: 31,400; python: 4,226; yacc: 3,985; javascript: 2,430; makefile: 777; asm: 726; sh: 281; pascal: 257; perl: 97; objc: 75
file content (529 lines) | stat: -rw-r--r-- 13,055 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// Copyright 2013 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "InputCommon/ControllerInterface/CoreDevice.h"

#include <algorithm>
#include <cmath>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>

#include <fmt/format.h>

#include "Common/MathUtil.h"
#include "Common/Thread.h"

namespace ciface::Core
{
// Compared to an input's current state (ideally 1.0) minus abs(initial_state) (ideally 0.0).
// Note: Detect() logic assumes this is greater than 0.5.
constexpr ControlState INPUT_DETECT_THRESHOLD = 0.55;

class CombinedInput final : public Device::Input
{
public:
  using Inputs = std::pair<Device::Input*, Device::Input*>;

  CombinedInput(std::string name, const Inputs& inputs) : m_name(std::move(name)), m_inputs(inputs)
  {
  }
  ControlState GetState() const override
  {
    ControlState result = 0;

    if (m_inputs.first)
      result = m_inputs.first->GetState();

    if (m_inputs.second)
      result = std::max(result, m_inputs.second->GetState());

    return result;
  }
  std::string GetName() const override { return m_name; }
  bool IsDetectable() const override { return false; }
  bool IsChild(const Input* input) const override
  {
    return m_inputs.first == input || m_inputs.second == input;
  }

private:
  const std::string m_name;
  const std::pair<Device::Input*, Device::Input*> m_inputs;
};

Device::~Device()
{
  // delete inputs
  for (Device::Input* input : m_inputs)
    delete input;

  // delete outputs
  for (Device::Output* output : m_outputs)
    delete output;
}

std::optional<int> Device::GetPreferredId() const
{
  return {};
}

void Device::AddInput(Device::Input* const i)
{
  m_inputs.push_back(i);
}

void Device::AddOutput(Device::Output* const o)
{
  m_outputs.push_back(o);
}

std::string Device::GetQualifiedName() const
{
  return fmt::format("{}/{}/{}", GetSource(), GetId(), GetName());
}

auto Device::GetParentMostInput(Input* child) const -> Input*
{
  for (auto* input : m_inputs)
  {
    if (input->IsChild(child))
    {
      // Running recursively is currently unnecessary but it doesn't hurt.
      return GetParentMostInput(input);
    }
  }

  return child;
}

Device::Input* Device::FindInput(std::string_view name) const
{
  for (Input* input : m_inputs)
  {
    if (input->IsMatchingName(name))
      return input;
  }

  return nullptr;
}

Device::Output* Device::FindOutput(std::string_view name) const
{
  for (Output* output : m_outputs)
  {
    if (output->IsMatchingName(name))
      return output;
  }

  return nullptr;
}

bool Device::Control::IsMatchingName(std::string_view name) const
{
  return GetName() == name;
}

bool Device::Control::IsHidden() const
{
  return false;
}

class FullAnalogSurface final : public Device::Input
{
public:
  FullAnalogSurface(Input* low, Input* high) : m_low(*low), m_high(*high) {}

  ControlState GetState() const override
  {
    return (1 + std::max(0.0, m_high.GetState()) - std::max(0.0, m_low.GetState())) / 2;
  }

  std::string GetName() const override
  {
    // E.g. "Full Axis X+"
    return "Full " + m_high.GetName();
  }

  bool IsDetectable() const override { return m_low.IsDetectable() && m_high.IsDetectable(); }

  bool IsHidden() const override { return m_low.IsHidden() && m_high.IsHidden(); }

  bool IsMatchingName(std::string_view name) const override
  {
    if (Control::IsMatchingName(name))
      return true;

    // Old naming scheme was "Axis X-+" which is too visually similar to "Axis X+".
    // This has caused countless problems for users with mysterious misconfigurations.
    // We match this old name to support old configurations.
    const auto old_name = m_low.GetName() + *m_high.GetName().rbegin();

    return old_name == name;
  }

private:
  Input& m_low;
  Input& m_high;
};

void Device::AddFullAnalogSurfaceInputs(Input* low, Input* high)
{
  AddInput(low);
  AddInput(high);
  AddInput(new FullAnalogSurface(low, high));
  AddInput(new FullAnalogSurface(high, low));
}

void Device::AddCombinedInput(std::string name, const std::pair<std::string, std::string>& inputs)
{
  AddInput(new CombinedInput(std::move(name), {FindInput(inputs.first), FindInput(inputs.second)}));
}

//
// DeviceQualifier :: ToString
//
// Get string from a device qualifier / serialize
//
std::string DeviceQualifier::ToString() const
{
  if (source.empty() && (cid < 0) && name.empty())
    return {};

  if (cid > -1)
    return fmt::format("{}/{}/{}", source, cid, name);
  else
    return fmt::format("{}//{}", source, name);
}

//
// DeviceQualifier :: FromString
//
// Set a device qualifier from a string / unserialize
//
void DeviceQualifier::FromString(const std::string& str)
{
  *this = {};

  std::istringstream ss(str);

  std::getline(ss, source, '/');

  // silly
  std::getline(ss, name, '/');
  std::istringstream(name) >> cid;

  std::getline(ss, name);
}

//
// DeviceQualifier :: FromDevice
//
// Set a device qualifier from a device
//
void DeviceQualifier::FromDevice(const Device* const dev)
{
  name = dev->GetName();
  cid = dev->GetId();
  source = dev->GetSource();
}

bool DeviceQualifier::operator==(const Device* const dev) const
{
  if (dev->GetId() == cid)
    if (dev->GetName() == name)
      if (dev->GetSource() == source)
        return true;

  return false;
}

bool DeviceQualifier::operator==(const DeviceQualifier& devq) const
{
  return std::tie(cid, name, source) == std::tie(devq.cid, devq.name, devq.source);
}

std::shared_ptr<Device> DeviceContainer::FindDevice(const DeviceQualifier& devq) const
{
  std::lock_guard lk(m_devices_mutex);
  for (const auto& d : m_devices)
  {
    if (devq == d.get())
      return d;
  }

  return nullptr;
}

std::vector<std::shared_ptr<Device>> DeviceContainer::GetAllDevices() const
{
  std::lock_guard lk(m_devices_mutex);

  std::vector<std::shared_ptr<Device>> devices;

  for (const auto& d : m_devices)
    devices.emplace_back(d);

  return devices;
}

std::vector<std::string> DeviceContainer::GetAllDeviceStrings() const
{
  std::lock_guard lk(m_devices_mutex);

  std::vector<std::string> device_strings;
  DeviceQualifier device_qualifier;

  for (const auto& d : m_devices)
  {
    device_qualifier.FromDevice(d.get());
    device_strings.emplace_back(device_qualifier.ToString());
  }

  return device_strings;
}

bool DeviceContainer::HasDefaultDevice() const
{
  std::lock_guard lk(m_devices_mutex);
  // Devices are already sorted by priority
  return !m_devices.empty() && m_devices[0]->GetSortPriority() >= 0;
}

std::string DeviceContainer::GetDefaultDeviceString() const
{
  std::lock_guard lk(m_devices_mutex);
  // Devices are already sorted by priority
  if (m_devices.empty() || m_devices[0]->GetSortPriority() < 0)
    return "";

  DeviceQualifier device_qualifier;
  device_qualifier.FromDevice(m_devices[0].get());
  return device_qualifier.ToString();
}

Device::Input* DeviceContainer::FindInput(std::string_view name, const Device* def_dev) const
{
  if (def_dev)
  {
    Device::Input* const inp = def_dev->FindInput(name);
    if (inp)
      return inp;
  }

  std::lock_guard lk(m_devices_mutex);
  for (const auto& d : m_devices)
  {
    Device::Input* const i = d->FindInput(name);

    if (i)
      return i;
  }

  return nullptr;
}

Device::Output* DeviceContainer::FindOutput(std::string_view name, const Device* def_dev) const
{
  return def_dev->FindOutput(name);
}

bool DeviceContainer::HasConnectedDevice(const DeviceQualifier& qualifier) const
{
  const auto device = FindDevice(qualifier);
  return device != nullptr && device->IsValid();
}

// Wait for inputs on supplied devices.
// Inputs are only considered if they are first seen in a neutral state.
// This is useful for crazy flightsticks that have certain buttons that are always held down
// and also properly handles detection when using "FullAnalogSurface" inputs.
// Multiple detections are returned until the various timeouts have been reached.
auto DeviceContainer::DetectInput(const std::vector<std::string>& device_strings,
                                  std::chrono::milliseconds initial_wait,
                                  std::chrono::milliseconds confirmation_wait,
                                  std::chrono::milliseconds maximum_wait) const
    -> std::vector<InputDetection>
{
  InputDetector input_detector;
  input_detector.Start(*this, device_strings);

  while (!input_detector.IsComplete())
  {
    Common::SleepCurrentThread(10);
    input_detector.Update(initial_wait, confirmation_wait, maximum_wait);
  }

  return input_detector.TakeResults();
}

struct InputDetector::Impl
{
  struct InputState
  {
    InputState(ciface::Core::Device::Input* input_) : input{input_} { stats.Push(0.0); }

    ciface::Core::Device::Input* input;
    ControlState initial_state = input->GetState();
    ControlState last_state = initial_state;
    MathUtil::RunningVariance<ControlState> stats;

    // Prevent multiple detections until after release.
    bool is_ready = true;

    void Update()
    {
      const auto new_state = input->GetState();

      if (!is_ready && new_state < (1 - INPUT_DETECT_THRESHOLD))
      {
        last_state = new_state;
        is_ready = true;
        stats.Clear();
      }

      const auto difference = new_state - last_state;
      stats.Push(difference);
      last_state = new_state;
    }

    bool IsPressed()
    {
      if (!is_ready)
        return false;

      // We want an input that was initially 0.0 and currently 1.0.
      const auto detection_score = (last_state - std::abs(initial_state));
      return detection_score > INPUT_DETECT_THRESHOLD;
    }
  };

  struct DeviceState
  {
    std::shared_ptr<Device> device;

    std::vector<InputState> input_states;
  };

  std::vector<DeviceState> device_states;
};

InputDetector::InputDetector() : m_start_time{}, m_state{}
{
}

void InputDetector::Start(const DeviceContainer& container,
                          const std::vector<std::string>& device_strings)

{
  m_start_time = Clock::now();
  m_detections = {};
  m_state = std::make_unique<Impl>();

  // Acquire devices and initial input states.
  for (const auto& device_string : device_strings)
  {
    DeviceQualifier dq;
    dq.FromString(device_string);
    auto device = container.FindDevice(dq);

    if (!device)
      continue;

    std::vector<Impl::InputState> input_states;

    for (auto* input : device->Inputs())
    {
      // Don't detect things like absolute cursor positions, accelerometers, or gyroscopes.
      if (!input->IsDetectable())
        continue;

      // Undesirable axes will have negative values here when trying to map a
      // "FullAnalogSurface".
      input_states.push_back(Impl::InputState{input});
    }

    if (!input_states.empty())
    {
      m_state->device_states.emplace_back(
          Impl::DeviceState{std::move(device), std::move(input_states)});
    }
  }

  // If no inputs were found via the supplied device strings, immediately complete.
  if (m_state->device_states.empty())
    m_state.reset();
}

void InputDetector::Update(std::chrono::milliseconds initial_wait,
                           std::chrono::milliseconds confirmation_wait,
                           std::chrono::milliseconds maximum_wait)
{
  if (m_state)
  {
    const auto now = Clock::now();
    const auto elapsed_time = now - m_start_time;

    if (elapsed_time >= maximum_wait || (m_detections.empty() && elapsed_time >= initial_wait) ||
        (!m_detections.empty() && m_detections.back().release_time.has_value() &&
         now >= *m_detections.back().release_time + confirmation_wait))
    {
      m_state.reset();
      return;
    }

    for (auto& device_state : m_state->device_states)
    {
      for (auto& input_state : device_state.input_states)
      {
        input_state.Update();

        if (input_state.IsPressed())
        {
          input_state.is_ready = false;

          // Digital presses will evaluate as 1 here.
          // Analog presses will evaluate greater than 1.
          const auto smoothness =
              1 / std::sqrt(input_state.stats.Variance() / input_state.stats.Mean());

          Detection new_detection;
          new_detection.device = device_state.device;
          new_detection.input = input_state.input;
          new_detection.press_time = now;
          new_detection.smoothness = smoothness;

          // We found an input. Add it to our detections.
          m_detections.emplace_back(std::move(new_detection));
        }
      }
    }

    // Check for any releases of our detected inputs.
    for (auto& d : m_detections)
    {
      if (!d.release_time.has_value() && d.input->GetState() < (1 - INPUT_DETECT_THRESHOLD))
        d.release_time = Clock::now();
    }
  }
}

InputDetector::~InputDetector() = default;

bool InputDetector::IsComplete() const
{
  return !m_state;
}

auto InputDetector::GetResults() const -> const Results&
{
  return m_detections;
}

auto InputDetector::TakeResults() -> Results
{
  return std::move(m_detections);
}

}  // namespace ciface::Core