1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Software/EfbInterface.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstring>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "VideoBackends/Software/CopyRegion.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/LookUpTables.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/VideoCommon.h"
namespace EfbInterface
{
static std::array<u8, EFB_WIDTH * EFB_HEIGHT * 6> efb;
static std::array<u32, PQ_NUM_MEMBERS> perf_values;
static inline u32 GetColorOffset(u16 x, u16 y)
{
return (x + y * EFB_WIDTH) * 3;
}
static inline u32 GetDepthOffset(u16 x, u16 y)
{
constexpr u32 depth_buffer_start = EFB_WIDTH * EFB_HEIGHT * 3;
return (x + y * EFB_WIDTH) * 3 + depth_buffer_start;
}
static void SetPixelAlphaOnly(u32 offset, u8 a)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
case PixelFormat::RGB565_Z16:
// do nothing
break;
case PixelFormat::RGBA6_Z24:
{
u32 a32 = a;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xffffffc0;
val |= (a32 >> 2) & 0x0000003f;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static void SetPixelColorOnly(u32 offset, u8* rgb)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
{
u32 src = *(u32*)rgb;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
case PixelFormat::RGBA6_Z24:
{
u32 src = *(u32*)rgb;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff00003f;
val |= (src >> 4) & 0x00000fc0; // blue
val |= (src >> 6) & 0x0003f000; // green
val |= (src >> 8) & 0x00fc0000; // red
*dst = val;
}
break;
case PixelFormat::RGB565_Z16:
{
// TODO: RGB565_Z16 is not supported correctly yet
u32 src = *(u32*)rgb;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static void SetPixelAlphaColor(u32 offset, u8* color)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
{
u32 src = *(u32*)color;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
case PixelFormat::RGBA6_Z24:
{
u32 src = *(u32*)color;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= (src >> 2) & 0x0000003f; // alpha
val |= (src >> 4) & 0x00000fc0; // blue
val |= (src >> 6) & 0x0003f000; // green
val |= (src >> 8) & 0x00fc0000; // red
*dst = val;
}
break;
case PixelFormat::RGB565_Z16:
{
// TODO: RGB565_Z16 is not supported correctly yet
u32 src = *(u32*)color;
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= src >> 8;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static u32 GetPixelColor(u32 offset)
{
u32 src;
std::memcpy(&src, &efb[offset], sizeof(u32));
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::Z24:
return 0xff | ((src & 0x00ffffff) << 8);
case PixelFormat::RGBA6_Z24:
return Convert6To8(src & 0x3f) | // Alpha
Convert6To8((src >> 6) & 0x3f) << 8 | // Blue
Convert6To8((src >> 12) & 0x3f) << 16 | // Green
Convert6To8((src >> 18) & 0x3f) << 24; // Red
case PixelFormat::RGB565_Z16:
// TODO: RGB565_Z16 is not supported correctly yet
return 0xff | ((src & 0x00ffffff) << 8);
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
return 0;
}
}
static void SetPixelDepth(u32 offset, u32 depth)
{
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::RGBA6_Z24:
case PixelFormat::Z24:
{
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= depth & 0x00ffffff;
*dst = val;
}
break;
case PixelFormat::RGB565_Z16:
{
// TODO: RGB565_Z16 is not supported correctly yet
u32* dst = (u32*)&efb[offset];
u32 val = *dst & 0xff000000;
val |= depth & 0x00ffffff;
*dst = val;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
}
static u32 GetPixelDepth(u32 offset)
{
u32 depth = 0;
switch (bpmem.zcontrol.pixel_format)
{
case PixelFormat::RGB8_Z24:
case PixelFormat::RGBA6_Z24:
case PixelFormat::Z24:
{
depth = (*(u32*)&efb[offset]) & 0x00ffffff;
}
break;
case PixelFormat::RGB565_Z16:
{
// TODO: RGB565_Z16 is not supported correctly yet
depth = (*(u32*)&efb[offset]) & 0x00ffffff;
}
break;
default:
ERROR_LOG_FMT(VIDEO, "Unsupported pixel format: {}", bpmem.zcontrol.pixel_format);
break;
}
return depth;
}
static u32 GetSourceFactor(u8* srcClr, u8* dstClr, SrcBlendFactor mode)
{
switch (mode)
{
case SrcBlendFactor::Zero:
return 0;
case SrcBlendFactor::One:
return 0xffffffff;
case SrcBlendFactor::DstClr:
return *(u32*)dstClr;
case SrcBlendFactor::InvDstClr:
return 0xffffffff - *(u32*)dstClr;
case SrcBlendFactor::SrcAlpha:
{
u8 alpha = srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case SrcBlendFactor::InvSrcAlpha:
{
u8 alpha = 0xff - srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case SrcBlendFactor::DstAlpha:
{
u8 alpha = dstClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case SrcBlendFactor::InvDstAlpha:
{
u8 alpha = 0xff - dstClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
}
return 0;
}
static u32 GetDestinationFactor(u8* srcClr, u8* dstClr, DstBlendFactor mode)
{
switch (mode)
{
case DstBlendFactor::Zero:
return 0;
case DstBlendFactor::One:
return 0xffffffff;
case DstBlendFactor::SrcClr:
return *(u32*)srcClr;
case DstBlendFactor::InvSrcClr:
return 0xffffffff - *(u32*)srcClr;
case DstBlendFactor::SrcAlpha:
{
u8 alpha = srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case DstBlendFactor::InvSrcAlpha:
{
u8 alpha = 0xff - srcClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case DstBlendFactor::DstAlpha:
{
u8 alpha = dstClr[ALP_C] & 0xff;
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
case DstBlendFactor::InvDstAlpha:
{
u8 alpha = 0xff - dstClr[ALP_C];
u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha;
return factor;
}
}
return 0;
}
static void BlendColor(u8* srcClr, u8* dstClr)
{
u32 srcFactor = GetSourceFactor(srcClr, dstClr, bpmem.blendmode.srcfactor);
u32 dstFactor = GetDestinationFactor(srcClr, dstClr, bpmem.blendmode.dstfactor);
for (int i = 0; i < 4; i++)
{
// add MSB of factors to make their range 0 -> 256
u32 sf = (srcFactor & 0xff);
sf += sf >> 7;
u32 df = (dstFactor & 0xff);
df += df >> 7;
u32 color = (srcClr[i] * sf + dstClr[i] * df) >> 8;
dstClr[i] = (color > 255) ? 255 : color;
dstFactor >>= 8;
srcFactor >>= 8;
}
}
static void LogicBlend(u32 srcClr, u32* dstClr, LogicOp op)
{
switch (op)
{
case LogicOp::Clear:
*dstClr = 0;
break;
case LogicOp::And:
*dstClr = srcClr & *dstClr;
break;
case LogicOp::AndReverse:
*dstClr = srcClr & (~*dstClr);
break;
case LogicOp::Copy:
*dstClr = srcClr;
break;
case LogicOp::AndInverted:
*dstClr = (~srcClr) & *dstClr;
break;
case LogicOp::NoOp:
// Do nothing
break;
case LogicOp::Xor:
*dstClr = srcClr ^ *dstClr;
break;
case LogicOp::Or:
*dstClr = srcClr | *dstClr;
break;
case LogicOp::Nor:
*dstClr = ~(srcClr | *dstClr);
break;
case LogicOp::Equiv:
*dstClr = ~(srcClr ^ *dstClr);
break;
case LogicOp::Invert:
*dstClr = ~*dstClr;
break;
case LogicOp::OrReverse:
*dstClr = srcClr | (~*dstClr);
break;
case LogicOp::CopyInverted:
*dstClr = ~srcClr;
break;
case LogicOp::OrInverted:
*dstClr = (~srcClr) | *dstClr;
break;
case LogicOp::Nand:
*dstClr = ~(srcClr & *dstClr);
break;
case LogicOp::Set:
*dstClr = 0xffffffff;
break;
}
}
static void SubtractBlend(u8* srcClr, u8* dstClr)
{
for (int i = 0; i < 4; i++)
{
int c = (int)dstClr[i] - (int)srcClr[i];
dstClr[i] = (c < 0) ? 0 : c;
}
}
static void Dither(u16 x, u16 y, u8* color)
{
// No blending for RGB8 mode
if (!bpmem.blendmode.dither || bpmem.zcontrol.pixel_format != PixelFormat::RGBA6_Z24)
return;
// Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering
static const u8 dither[2][2] = {{0, 2}, {3, 1}};
// Only the color channels are dithered?
for (int i = BLU_C; i <= RED_C; i++)
color[i] = ((color[i] - (color[i] >> 6)) + dither[y & 1][x & 1]) & 0xfc;
}
void BlendTev(u16 x, u16 y, u8* color)
{
const u32 offset = GetColorOffset(x, y);
u32 dstClr = GetPixelColor(offset);
u8* dstClrPtr = (u8*)&dstClr;
if (bpmem.blendmode.blendenable)
{
if (bpmem.blendmode.subtract)
SubtractBlend(color, dstClrPtr);
else
BlendColor(color, dstClrPtr);
}
else if (bpmem.blendmode.logicopenable)
{
LogicBlend(*((u32*)color), &dstClr, bpmem.blendmode.logicmode);
}
else
{
dstClrPtr = color;
}
if (bpmem.dstalpha.enable)
dstClrPtr[ALP_C] = bpmem.dstalpha.alpha;
if (bpmem.blendmode.colorupdate)
{
Dither(x, y, dstClrPtr);
if (bpmem.blendmode.alphaupdate)
SetPixelAlphaColor(offset, dstClrPtr);
else
SetPixelColorOnly(offset, dstClrPtr);
}
else if (bpmem.blendmode.alphaupdate)
{
SetPixelAlphaOnly(offset, dstClrPtr[ALP_C]);
}
}
void SetColor(u16 x, u16 y, u8* color)
{
u32 offset = GetColorOffset(x, y);
if (bpmem.blendmode.colorupdate)
{
if (bpmem.blendmode.alphaupdate)
SetPixelAlphaColor(offset, color);
else
SetPixelColorOnly(offset, color);
}
else if (bpmem.blendmode.alphaupdate)
{
SetPixelAlphaOnly(offset, color[ALP_C]);
}
}
void SetDepth(u16 x, u16 y, u32 depth)
{
if (bpmem.zmode.updateenable)
SetPixelDepth(GetDepthOffset(x, y), depth);
}
u32 GetColor(u16 x, u16 y)
{
u32 offset = GetColorOffset(x, y);
return GetPixelColor(offset);
}
static u32 VerticalFilter(const std::array<u32, 3>& colors,
const std::array<u8, 7>& filterCoefficients)
{
u8 in_colors[3][4];
std::memcpy(&in_colors, colors.data(), sizeof(in_colors));
// Alpha channel is not used
u8 out_color[4];
out_color[ALP_C] = 0;
// All Coefficients should sum to 64, otherwise the total brightness will change, which many games
// do on purpose to implement a brightness filter across the whole copy.
for (int i = BLU_C; i <= RED_C; i++)
{
// TODO: implement support for multisampling.
// In non-multisampling mode:
// * Coefficients 2, 3 and 4 sample from the current pixel.
// * Coefficients 0 and 1 sample from the pixel above this one
// * Coefficients 5 and 6 sample from the pixel below this one
int sum =
in_colors[0][i] * (filterCoefficients[0] + filterCoefficients[1]) +
in_colors[1][i] * (filterCoefficients[2] + filterCoefficients[3] + filterCoefficients[4]) +
in_colors[2][i] * (filterCoefficients[5] + filterCoefficients[6]);
// TODO: this clamping behavior appears to be correct, but isn't confirmed on hardware.
out_color[i] = std::min(255, sum >> 6); // clamp larger values to 255
}
u32 out_color32;
std::memcpy(&out_color32, out_color, sizeof(out_color32));
return out_color32;
}
static u32 GammaCorrection(u32 color, const float gamma_rcp)
{
u8 in_colors[4];
std::memcpy(&in_colors, &color, sizeof(in_colors));
u8 out_color[4];
for (int i = BLU_C; i <= RED_C; i++)
{
out_color[i] = static_cast<u8>(
std::clamp(std::pow(in_colors[i] / 255.0f, gamma_rcp) * 255.0f, 0.0f, 255.0f));
}
u32 out_color32;
std::memcpy(&out_color32, out_color, sizeof(out_color32));
return out_color32;
}
// For internal used only, return a non-normalized value, which saves work later.
static yuv444 ConvertColorToYUV(u32 color)
{
const u8 red = static_cast<u8>(color >> 24);
const u8 green = static_cast<u8>(color >> 16);
const u8 blue = static_cast<u8>(color >> 8);
// GameCube/Wii uses the BT.601 standard algorithm for converting to YCbCr; see
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
// These numbers were determined by hardware testing
const u16 y = +66 * red + 129 * green + +25 * blue;
const s16 u = -38 * red + -74 * green + 112 * blue;
const s16 v = 112 * red + -94 * green + -18 * blue;
const u8 y_round = static_cast<u8>((y >> 8) + ((y >> 7) & 1));
const s8 u_round = static_cast<s8>((u >> 8) + ((u >> 7) & 1));
const s8 v_round = static_cast<s8>((v >> 8) + ((v >> 7) & 1));
return {y_round, u_round, v_round};
}
u32 GetDepth(u16 x, u16 y)
{
u32 offset = GetDepthOffset(x, y);
return GetPixelDepth(offset);
}
u8* GetPixelPointer(u16 x, u16 y, bool depth)
{
if (depth)
return &efb[GetDepthOffset(x, y)];
return &efb[GetColorOffset(x, y)];
}
void EncodeXFB(u8* xfb_in_ram, u32 memory_stride, const MathUtil::Rectangle<int>& source_rect,
float y_scale, float gamma)
{
if (!xfb_in_ram)
{
WARN_LOG_FMT(VIDEO, "Tried to copy to invalid XFB address");
return;
}
const int left = source_rect.left;
const int right = source_rect.right;
const bool clamp_top = bpmem.triggerEFBCopy.clamp_top;
const bool clamp_bottom = bpmem.triggerEFBCopy.clamp_bottom;
const float gamma_rcp = 1.0f / gamma;
const auto filter_coefficients = bpmem.copyfilter.GetCoefficients();
// this assumes copies will always start on an even (YU) pixel and the
// copy always has an even width, which might not be true.
if (left & 1 || right & 1)
{
WARN_LOG_FMT(VIDEO, "Trying to copy XFB to from unaligned EFB source");
// this will show up as wrongly encoded
}
// Scanline buffer, leave room for borders
yuv444 scanline[EFB_WIDTH + 2];
static std::vector<yuv422_packed> source;
source.resize(EFB_WIDTH * EFB_HEIGHT);
yuv422_packed* src_ptr = &source[0];
for (int y = source_rect.top; y < source_rect.bottom; y++)
{
// Clamping behavior
// NOTE: when the clamp bits aren't set, the hardware will happily read beyond the EFB,
// which returns random garbage from the empty bus (confirmed by hardware tests).
//
// In our implementation, the garbage just so happens to be the top or bottom row.
// Statistically, that could happen.
const u16 y_prev = static_cast<u16>(std::max(clamp_top ? source_rect.top : 0, y - 1));
const u16 y_next = static_cast<u16>(
std::min<int>((clamp_bottom ? source_rect.bottom : EFB_HEIGHT) - 1, y + 1));
// Get a scanline of YUV pixels in 4:4:4 format
for (int i = 1, x = left; x < right; i++, x++)
{
// Get RGB colors
std::array<u32, 3> colors = {{GetColor(x, y_prev), GetColor(x, y), GetColor(x, y_next)}};
// Vertical Filter (Multisampling resolve, deflicker, brightness)
u32 filtered = VerticalFilter(colors, filter_coefficients);
// Gamma correction happens here.
filtered = GammaCorrection(filtered, gamma_rcp);
scanline[i] = ConvertColorToYUV(filtered);
}
// Flipper clamps the border colors
scanline[0] = scanline[1];
scanline[right + 1] = scanline[right];
// And Downsample them to 4:2:2
for (int i = 1, x = left; x < right; i += 2, x += 2)
{
// YU pixel
src_ptr[x].Y = scanline[i].Y + 16;
// we mix our color differences in 10 bit space so it will round more accurately
// U[i] = 1/4 * U[i-1] + 1/2 * U[i] + 1/4 * U[i+1]
src_ptr[x].UV = 128 + ((scanline[i - 1].U + (scanline[i].U << 1) + scanline[i + 1].U) >> 2);
// YV pixel
src_ptr[x + 1].Y = scanline[i + 1].Y + 16;
// V[i] = 1/4 * V[i-1] + 1/2 * V[i] + 1/4 * V[i+1]
src_ptr[x + 1].UV =
128 + ((scanline[i - 1].V + (scanline[i].V << 1) + scanline[i + 1].V) >> 2);
}
src_ptr += memory_stride;
}
const int src_width = source_rect.GetWidth();
const int src_height = source_rect.GetHeight();
const int dst_width = src_width;
const int dst_height = src_height * y_scale;
SW::CopyRegion(source.data(), src_width, src_height, reinterpret_cast<yuv422_packed*>(xfb_in_ram),
dst_width, dst_height);
}
bool ZCompare(u16 x, u16 y, u32 z)
{
u32 offset = GetDepthOffset(x, y);
u32 depth = GetPixelDepth(offset);
bool pass;
switch (bpmem.zmode.func)
{
case CompareMode::Never:
pass = false;
break;
case CompareMode::Less:
pass = z < depth;
break;
case CompareMode::Equal:
pass = z == depth;
break;
case CompareMode::LEqual:
pass = z <= depth;
break;
case CompareMode::Greater:
pass = z > depth;
break;
case CompareMode::NEqual:
pass = z != depth;
break;
case CompareMode::GEqual:
pass = z >= depth;
break;
case CompareMode::Always:
pass = true;
break;
default:
pass = false;
ERROR_LOG_FMT(VIDEO, "Bad Z compare mode {}", bpmem.zmode.func);
break;
}
if (pass && bpmem.zmode.updateenable)
{
SetPixelDepth(offset, z);
}
return pass;
}
u32 GetPerfQueryResult(PerfQueryType type)
{
return perf_values[type];
}
void ResetPerfQuery()
{
perf_values = {};
}
void IncPerfCounterQuadCount(PerfQueryType type)
{
// NOTE: hardware doesn't process individual pixels but quads instead.
// Current software renderer architecture works on pixels though, so
// we have this "quad" hack here to only increment the registers on
// every fourth rendered pixel
static u32 quad[PQ_NUM_MEMBERS];
if (++quad[type] != 3)
return;
quad[type] = 0;
++perf_values[type];
}
} // namespace EfbInterface
|