1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
  
     | 
    
      // Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <functional>
#include "Common/ArmCommon.h"
#include "Common/Assert.h"
#include "Common/BitSet.h"
#include "Common/CodeBlock.h"
#include "Common/Common.h"
namespace Arm64Gen
{
// X30 serves a dual purpose as a link register
// Encoded as <u3:type><u5:reg>
// Types:
// 000 - 32bit GPR
// 001 - 64bit GPR
// 010 - VFP single precision
// 100 - VFP double precision
// 110 - VFP quad precision
enum ARM64Reg
{
	// 32bit registers
	W0 = 0, W1, W2, W3, W4, W5, W6,
	W7, W8, W9, W10, W11, W12, W13, W14,
	W15, W16, W17, W18, W19, W20, W21, W22,
	W23, W24, W25, W26, W27, W28, W29, W30,
	WSP, // 32bit stack pointer
	// 64bit registers
	X0 = 0x20, X1, X2, X3, X4, X5, X6,
	X7, X8, X9, X10, X11, X12, X13, X14,
	X15, X16, X17, X18, X19, X20, X21, X22,
	X23, X24, X25, X26, X27, X28, X29, X30,
	SP, // 64bit stack pointer
	// VFP single precision registers
	S0 = 0x40, S1, S2, S3, S4, S5, S6,
	S7, S8, S9, S10, S11, S12, S13,
	S14, S15, S16, S17, S18, S19, S20,
	S21, S22, S23, S24, S25, S26, S27,
	S28, S29, S30, S31,
	// VFP Double Precision registers
	D0 = 0x80, D1, D2, D3, D4, D5, D6, D7,
	D8, D9, D10, D11, D12, D13, D14, D15,
	D16, D17, D18, D19, D20, D21, D22, D23,
	D24, D25, D26, D27, D28, D29, D30, D31,
	// ASIMD Quad-Word registers
	Q0 = 0xC0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
	Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
	Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23,
	Q24, Q25, Q26, Q27, Q28, Q29, Q30, Q31,
	// For PRFM(prefetch memory) encoding
	// This is encoded in the Rt register
	// Data preload
	PLDL1KEEP = 0, PLDL1STRM,
	PLDL2KEEP, PLDL2STRM,
	PLDL3KEEP, PLDL3STRM,
	// Instruction preload
	PLIL1KEEP = 8, PLIL1STRM,
	PLIL2KEEP, PLIL2STRM,
	PLIL3KEEP, PLIL3STRM,
	// Prepare for store
	PLTL1KEEP = 16, PLTL1STRM,
	PLTL2KEEP, PLTL2STRM,
	PLTL3KEEP, PLTL3STRM,
	WZR = WSP,
	ZR = SP,
	INVALID_REG = 0xFFFFFFFF
};
constexpr bool Is64Bit(ARM64Reg reg)  { return (reg & 0x20) != 0; }
constexpr bool IsSingle(ARM64Reg reg) { return (reg & 0xC0) == 0x40; }
constexpr bool IsDouble(ARM64Reg reg) { return (reg & 0xC0) == 0x80; }
constexpr bool IsScalar(ARM64Reg reg) { return IsSingle(reg) || IsDouble(reg); }
constexpr bool IsQuad(ARM64Reg reg)   { return (reg & 0xC0) == 0xC0; }
constexpr bool IsVector(ARM64Reg reg) { return (reg & 0xC0) != 0; }
constexpr bool IsGPR(ARM64Reg reg)    { return static_cast<int>(reg) < 0x40; }
constexpr ARM64Reg DecodeReg(ARM64Reg reg)         { return static_cast<ARM64Reg>(reg & 0x1F); }
constexpr ARM64Reg EncodeRegTo64(ARM64Reg reg)     { return static_cast<ARM64Reg>(reg | 0x20); }
constexpr ARM64Reg EncodeRegToSingle(ARM64Reg reg) { return static_cast<ARM64Reg>(DecodeReg(reg) + S0); }
constexpr ARM64Reg EncodeRegToDouble(ARM64Reg reg) { return static_cast<ARM64Reg>((reg & ~0xC0) | 0x80); }
constexpr ARM64Reg EncodeRegToQuad(ARM64Reg reg)   { return static_cast<ARM64Reg>(reg | 0xC0); }
// For AND/TST/ORR/EOR etc
bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s, unsigned int* imm_r);
// For ADD/SUB
bool IsImmArithmetic(uint64_t input, u32* val, bool* shift);
float FPImm8ToFloat(uint8_t bits);
bool FPImm8FromFloat(float value, uint8_t* immOut);
enum OpType
{
	TYPE_IMM = 0,
	TYPE_REG,
	TYPE_IMMSREG,
	TYPE_RSR,
	TYPE_MEM
};
enum ShiftType
{
	ST_LSL = 0,
	ST_LSR = 1,
	ST_ASR = 2,
	ST_ROR = 3,
};
enum IndexType
{
	INDEX_UNSIGNED,
	INDEX_POST,
	INDEX_PRE,
	INDEX_SIGNED, // used in LDP/STP
};
enum ShiftAmount
{
	SHIFT_0 = 0,
	SHIFT_16 = 1,
	SHIFT_32 = 2,
	SHIFT_48 = 3,
};
enum RoundingMode {
	ROUND_A,  // round to nearest, ties to away
	ROUND_M,  // round towards -inf
	ROUND_N,  // round to nearest, ties to even
	ROUND_P,  // round towards +inf
	ROUND_Z,  // round towards zero
};
struct FixupBranch
{
	u8* ptr;
	// Type defines
	// 0 = CBZ (32bit)
	// 1 = CBNZ (32bit)
	// 2 = B (conditional)
	// 3 = TBZ
	// 4 = TBNZ
	// 5 = B (unconditional)
	// 6 = BL (unconditional)
	u32 type;
	// Used with B.cond
	CCFlags cond;
	// Used with TBZ/TBNZ
	u8 bit;
	// Used with Test/Compare and Branch
	ARM64Reg reg;
};
enum PStateField
{
	FIELD_SPSel = 0,
	FIELD_DAIFSet,
	FIELD_DAIFClr,
	FIELD_NZCV,	// The only system registers accessible from EL0 (user space)
	FIELD_PMCR_EL0,
	FIELD_PMCCNTR_EL0,
	FIELD_FPCR = 0x340,
	FIELD_FPSR = 0x341,
};
enum SystemHint
{
	HINT_NOP = 0,
	HINT_YIELD,
	HINT_WFE,
	HINT_WFI,
	HINT_SEV,
	HINT_SEVL,
};
enum BarrierType
{
	OSHLD = 1,
	OSHST = 2,
	OSH   = 3,
	NSHLD = 5,
	NSHST = 6,
	NSH   = 7,
	ISHLD = 9,
	ISHST = 10,
	ISH   = 11,
	LD    = 13,
	ST    = 14,
	SY    = 15,
};
class ArithOption
{
public:
	enum WidthSpecifier
	{
		WIDTH_DEFAULT,
		WIDTH_32BIT,
		WIDTH_64BIT,
	};
	enum ExtendSpecifier
	{
		EXTEND_UXTB = 0x0,
		EXTEND_UXTH = 0x1,
		EXTEND_UXTW = 0x2, /* Also LSL on 32bit width */
		EXTEND_UXTX = 0x3, /* Also LSL on 64bit width */
		EXTEND_SXTB = 0x4,
		EXTEND_SXTH = 0x5,
		EXTEND_SXTW = 0x6,
		EXTEND_SXTX = 0x7,
	};
	enum TypeSpecifier
	{
		TYPE_EXTENDEDREG,
		TYPE_IMM,
		TYPE_SHIFTEDREG,
	};
private:
	ARM64Reg        m_destReg;
	WidthSpecifier  m_width;
	ExtendSpecifier m_extend;
	TypeSpecifier   m_type;
	ShiftType       m_shifttype;
	u32             m_shift;
public:
	ArithOption(ARM64Reg Rd, bool index = false)
	{
		// Indexed registers are a certain feature of AARch64
		// On Loadstore instructions that use a register offset
		// We can have the register as an index
		// If we are indexing then the offset register will
		// be shifted to the left so we are indexing at intervals
		// of the size of what we are loading
		// 8-bit: Index does nothing
		// 16-bit: Index LSL 1
		// 32-bit: Index LSL 2
		// 64-bit: Index LSL 3
		if (index)
			m_shift = 4;
		else
			m_shift = 0;
		m_destReg = Rd;
		m_type = TYPE_EXTENDEDREG;
		if (Is64Bit(Rd))
		{
			m_width = WIDTH_64BIT;
			m_extend = EXTEND_UXTX;
		}
		else
		{
			m_width = WIDTH_32BIT;
			m_extend = EXTEND_UXTW;
		}
		m_shifttype = ST_LSL;
	}
	ArithOption(ARM64Reg Rd, ShiftType shift_type, u32 shift)
	{
		m_destReg = Rd;
		m_shift = shift;
		m_shifttype = shift_type;
		m_type = TYPE_SHIFTEDREG;
		if (Is64Bit(Rd))
		{
			m_width = WIDTH_64BIT;
			if (shift == 64)
				m_shift = 0;
		}
		else
		{
			m_width = WIDTH_32BIT;
			if (shift == 32)
				m_shift = 0;
		}
	}
	TypeSpecifier GetType() const
	{
		return m_type;
	}
	ARM64Reg GetReg() const
	{
		return m_destReg;
	}
	u32 GetData() const
	{
		switch (m_type)
		{
			case TYPE_EXTENDEDREG:
				return (m_extend << 13) |
				       (m_shift << 10);
			break;
			case TYPE_SHIFTEDREG:
				return (m_shifttype << 22) |
				       (m_shift << 10);
			break;
			default:
				_dbg_assert_msg_(DYNA_REC, false, "Invalid type in GetData");
			break;
		}
		return 0;
	}
};
class ARM64XEmitter
{
	friend class ARM64FloatEmitter;
private:
	u8* m_code;
	u8* m_lastCacheFlushEnd;
	void EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr);
	void EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr);
	void EncodeUnconditionalBranchInst(u32 op, const void* ptr);
	void EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn);
	void EncodeExceptionInst(u32 instenc, u32 imm);
	void EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt);
	void EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	void EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
	void EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
	void EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
	void EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn);
	void EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm);
	void EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt);
	void EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
	void EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size);
	void EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos);
	void EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
	void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd);
	void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n);
	void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm);
	void EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
protected:
	void Write32(u32 value);
public:
	ARM64XEmitter()
		: m_code(nullptr), m_lastCacheFlushEnd(nullptr)
	{
	}
	ARM64XEmitter(u8* code_ptr) {
		m_code = code_ptr;
		m_lastCacheFlushEnd = code_ptr;
	}
	virtual ~ARM64XEmitter()
	{
	}
	void SetCodePtr(u8* ptr);
	void SetCodePtrUnsafe(u8* ptr);
	void ReserveCodeSpace(u32 bytes);
	const u8* AlignCode16();
	const u8* AlignCodePage();
	const u8* GetCodePtr() const;
	void FlushIcache();
	void FlushIcacheSection(u8* start, u8* end);
	u8* GetWritableCodePtr();
	// FixupBranch branching
	void SetJumpTarget(FixupBranch const& branch);
	FixupBranch CBZ(ARM64Reg Rt);
	FixupBranch CBNZ(ARM64Reg Rt);
	FixupBranch B(CCFlags cond);
	FixupBranch TBZ(ARM64Reg Rt, u8 bit);
	FixupBranch TBNZ(ARM64Reg Rt, u8 bit);
	FixupBranch B();
	FixupBranch BL();
	// Compare and Branch
	void CBZ(ARM64Reg Rt, const void* ptr);
	void CBNZ(ARM64Reg Rt, const void* ptr);
	// Conditional Branch
	void B(CCFlags cond, const void* ptr);
	// Test and Branch
	void TBZ(ARM64Reg Rt, u8 bits, const void* ptr);
	void TBNZ(ARM64Reg Rt, u8 bits, const void* ptr);
	// Unconditional Branch
	void B(const void* ptr);
	void BL(const void* ptr);
	// Unconditional Branch (register)
	void BR(ARM64Reg Rn);
	void BLR(ARM64Reg Rn);
	void RET(ARM64Reg Rn = X30);
	void ERET();
	void DRPS();
	// Exception generation
	void SVC(u32 imm);
	void HVC(u32 imm);
	void SMC(u32 imm);
	void BRK(u32 imm);
	void HLT(u32 imm);
	void DCPS1(u32 imm);
	void DCPS2(u32 imm);
	void DCPS3(u32 imm);
	// System
	void _MSR(PStateField field, u8 imm);
	void _MSR(PStateField field, ARM64Reg Rt);
	void MRS(ARM64Reg Rt, PStateField field);
	void HINT(SystemHint op);
	void CLREX();
	void DSB(BarrierType type);
	void DMB(BarrierType type);
	void ISB(BarrierType type);
	// Add/Subtract (Extended/Shifted register)
	void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	void CMN(ARM64Reg Rn, ARM64Reg Rm);
	void CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	void CMP(ARM64Reg Rn, ARM64Reg Rm);
	void CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
	// Add/Subtract (with carry)
	void ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	// Conditional Compare (immediate)
	void CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
	void CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
	// Conditional Compare (register)
	void CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
	void CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
	// Conditional Select
	void CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
	void CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
	void CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
	void CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
	// Aliases
	void CSET(ARM64Reg Rd, CCFlags cond)
	{
		ARM64Reg zr = Is64Bit(Rd) ? ZR : WZR;
		CSINC(Rd, zr, zr, (CCFlags)((u32)cond ^ 1));
	}
	void NEG(ARM64Reg Rd, ARM64Reg Rs)
	{
		SUB(Rd, Is64Bit(Rd) ? ZR : WZR, Rs);
	}
	// Data-Processing 1 source
	void RBIT(ARM64Reg Rd, ARM64Reg Rn);
	void REV16(ARM64Reg Rd, ARM64Reg Rn);
	void REV32(ARM64Reg Rd, ARM64Reg Rn);
	void REV64(ARM64Reg Rd, ARM64Reg Rn);
	void CLZ(ARM64Reg Rd, ARM64Reg Rn);
	void CLS(ARM64Reg Rd, ARM64Reg Rn);
	// Data-Processing 2 source
	void UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	// Data-Processing 3 source
	void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void UMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	// Logical (shifted register)
	void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
	// Wrap the above for saner syntax
	void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { AND(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { BIC(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ORR(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ORN(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EOR(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EON(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ANDS(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { BICS(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
	// Convenience wrappers around ORR. These match the official convenience syntax.
	void MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift);
	void MOV(ARM64Reg Rd, ARM64Reg Rm);
	void MVN(ARM64Reg Rd, ARM64Reg Rm);
	// TODO: These are "slow" as they use arith+shift, should be replaced with UBFM/EXTR variants.
	void LSR(ARM64Reg Rd, ARM64Reg Rm, int shift);
	void LSL(ARM64Reg Rd, ARM64Reg Rm, int shift);
	void ASR(ARM64Reg Rd, ARM64Reg Rm, int shift);
	void ROR(ARM64Reg Rd, ARM64Reg Rm, int shift);
	// Logical (immediate)
	void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
	void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
	void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
	void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
	void TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
	void TST(ARM64Reg Rn, ARM64Reg Rm)
	{
		ANDS(Is64Bit(Rn) ? ZR : WZR, Rn, Rm);
	}
	// Add/subtract (immediate)
	void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
	void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
	void SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
	void SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
	void CMP(ARM64Reg Rn, u32 imm, bool shift = false);
	// Data Processing (Immediate)
	void MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
	void MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
	void MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
	// Bitfield move
	void BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
	void SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
	void UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
	void BFI(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
	void UBFIZ(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
	// Extract register (ROR with two inputs, if same then faster on A67)
	void EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift);
	// Aliases
	void SXTB(ARM64Reg Rd, ARM64Reg Rn);
	void SXTH(ARM64Reg Rd, ARM64Reg Rn);
	void SXTW(ARM64Reg Rd, ARM64Reg Rn);
	void UXTB(ARM64Reg Rd, ARM64Reg Rn);
	void UXTH(ARM64Reg Rd, ARM64Reg Rn);
	void UBFX(ARM64Reg Rd, ARM64Reg Rn, int lsb, int width)
	{
		UBFM(Rd, Rn, lsb, lsb + width - 1);
	}
	// Load Register (Literal)
	void LDR(ARM64Reg Rt, u32 imm);
	void LDRSW(ARM64Reg Rt, u32 imm);
	void PRFM(ARM64Reg Rt, u32 imm);
	// Load/Store Exclusive
	void STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
	void STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
	void LDXRB(ARM64Reg Rt, ARM64Reg Rn);
	void LDAXRB(ARM64Reg Rt, ARM64Reg Rn);
	void STLRB(ARM64Reg Rt, ARM64Reg Rn);
	void LDARB(ARM64Reg Rt, ARM64Reg Rn);
	void STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
	void STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
	void LDXRH(ARM64Reg Rt, ARM64Reg Rn);
	void LDAXRH(ARM64Reg Rt, ARM64Reg Rn);
	void STLRH(ARM64Reg Rt, ARM64Reg Rn);
	void LDARH(ARM64Reg Rt, ARM64Reg Rn);
	void STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
	void STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
	void STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
	void STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
	void LDXR(ARM64Reg Rt, ARM64Reg Rn);
	void LDAXR(ARM64Reg Rt, ARM64Reg Rn);
	void LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
	void LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
	void STLR(ARM64Reg Rt, ARM64Reg Rn);
	void LDAR(ARM64Reg Rt, ARM64Reg Rn);
	// Load/Store no-allocate pair (offset)
	void STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
	void LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
	// Load/Store register (immediate indexed)
	void STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	// Load/Store register (register offset)
	void STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	// Load/Store register (unscaled offset)
	void STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	// Load/Store pair
	void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	void STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	// Address of label/page PC-relative
	void ADR(ARM64Reg Rd, s32 imm);
	void ADRP(ARM64Reg Rd, s32 imm);
	// Wrapper around MOVZ+MOVK
	void MOVI2R(ARM64Reg Rd, u64 imm, bool optimize = true);
	template <class P>
	void MOVP2R(ARM64Reg Rd, P* ptr)
	{
		_assert_msg_(DYNA_REC, Is64Bit(Rd), "Can't store pointers in 32-bit registers");
		MOVI2R(Rd, (uintptr_t)ptr);
	}
	// Wrapper around AND x, y, imm etc. If you are sure the imm will work, no need to pass a scratch register.
	void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG) { ANDSI2R(Is64Bit(Rn) ? ZR : WZR, Rn, imm, scratch); }
	void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	void SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
	bool TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
	bool TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
	bool TryCMPI2R(ARM64Reg Rn, u32 imm);
	bool TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
	bool TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
	bool TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
	// ABI related
	void ABI_PushRegisters(BitSet32 registers);
	void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0));
	// Utility to generate a call to a std::function object.
	//
	// Unfortunately, calling operator() directly is undefined behavior in C++
	// (this method might be a thunk in the case of multi-inheritance) so we
	// have to go through a trampoline function.
	template <typename T, typename... Args>
	static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args)
	{
		return (*f)(args...);
	}
	// This function expects you to have set up the state.
	// Overwrites X0 and X30
	template <typename T, typename... Args>
	ARM64Reg ABI_SetupLambda(const std::function<T(Args...)>* f)
	{
		auto trampoline = &ARM64XEmitter::CallLambdaTrampoline<T, Args...>;
		MOVI2R(X30, (uintptr_t)trampoline);
		MOVI2R(X0, (uintptr_t)const_cast<void*>((const void*)f));
		return X30;
	}
	// Plain function call
	void QuickCallFunction(ARM64Reg scratchreg, const void* func);
	template <typename T> void QuickCallFunction(ARM64Reg scratchreg, T func)
	{
		QuickCallFunction(scratchreg, (const void*)func);
	}
};
class ARM64FloatEmitter
{
public:
	ARM64FloatEmitter(ARM64XEmitter* emit) : m_emit(emit) {}
	void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	// Loadstore unscaled
	void LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	// Loadstore single structure
	void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
	void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
	void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
	void LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
	void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
	void LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
	void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
	void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
	// Loadstore multiple structure
	void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
	void LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = SP);
	void ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
	void ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = SP);
	// Loadstore paired
	void LDP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	void STP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	// Loadstore register offset
	void STR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void LDR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	// Scalar - 1 Source
	void FABS(ARM64Reg Rd, ARM64Reg Rn);
	void FNEG(ARM64Reg Rd, ARM64Reg Rn);
	void FSQRT(ARM64Reg Rd, ARM64Reg Rn);
	void FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top = false);  // Also generalized move between GPR/FP
	// Scalar - 2 Source
	void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	// Scalar - 3 Source. Note - the accumulator is last on ARM!
	void FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	void FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
	// Scalar floating point immediate
	void FMOV(ARM64Reg Rd, uint8_t imm8);
	// Vector
	void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
	void FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMAX(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMIN(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCVTL2(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void FCVTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void NOT(ARM64Reg Rd, ARM64Reg Rn);
	void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void MOV(ARM64Reg Rd, ARM64Reg Rn)
	{
		ORR(Rd, Rn, Rn);
	}
	void REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale);
	void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale);
	void SQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void SQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void UQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void UQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	void XTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
	// Move
	void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn);
	void INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2);
	void UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
	void SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
	// One source
	void FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn);
	// Scalar convert float to int, in a lot of variants.
	// Note that the scalar version of this operation has two encodings, one that goes to an integer register
	// and one that outputs to a scalar fp register.
	void FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round);
	void FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round);
	// Scalar convert int to float. No rounding mode specifier necessary.
	void SCVTF(ARM64Reg Rd, ARM64Reg Rn);
	void UCVTF(ARM64Reg Rd, ARM64Reg Rn);
	// Scalar fixed point to float. scale is the number of fractional bits.
	void SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale);
	void UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale);
	// Float comparison
	void FCMP(ARM64Reg Rn, ARM64Reg Rm);
	void FCMP(ARM64Reg Rn);
	void FCMPE(ARM64Reg Rn, ARM64Reg Rm);
	void FCMPE(ARM64Reg Rn);
	void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	void FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
	// Conditional select
	void FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
	// Permute
	void UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	// Shift by immediate
	void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
	void SSHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
	void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
	void USHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
	void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
	void SHRN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
	void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
	void SXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
	void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
	void UXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
	// vector x indexed element
	void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
	void FMLA(u8 esize, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
	// Modified Immediate
	void MOVI(u8 size, ARM64Reg Rd, u64 imm, u8 shift = 0);
	void BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift = 0);
	void MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch = INVALID_REG, bool negate = false);
	void MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch = INVALID_REG);
	// ABI related
	void ABI_PushRegisters(BitSet32 registers, ARM64Reg tmp = INVALID_REG);
	void ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp = INVALID_REG);
private:
	ARM64XEmitter* m_emit;
	inline void Write32(u32 value) { m_emit->Write32(value); }
	// Emitting functions
	void EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn);
	void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
	void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn);
	void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
	void Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
	void EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
	void EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, u32 opcode, int scale, ARM64Reg Rd, ARM64Reg Rn);
	void EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm);
	void EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8);
	void EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
	void EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
	void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn);
	void EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
	void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
	void EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
	void EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
	void EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, bool sign);
	void EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra, int opcode);
	void EncodeLoadStorePair(u32 size, bool load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
	void EncodeLoadStoreRegisterOffset(u32 size, bool load, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
	void EncodeModImm(bool Q, u8 op, u8 cmode, u8 o2, ARM64Reg Rd, u8 abcdefgh);
	void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
	void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
	void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
	void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper);
	void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper);
};
class ARM64CodeBlock : public CodeBlock<ARM64XEmitter>
{
private:
	void PoisonMemory() override
	{
		u32* ptr = (u32*)region;
		u32* maxptr = (u32*)(region + region_size);
		// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything
		// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
		// AArch64: 0xD4200000 = BRK 0
		while (ptr < maxptr)
			*ptr++ = 0xD4200000;
	}
};
}
 
     |