File: MathUtil.cpp

package info (click to toggle)
dolphin-emu 5.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 29,052 kB
  • sloc: cpp: 213,146; java: 6,252; asm: 2,277; xml: 1,998; ansic: 1,514; python: 462; sh: 279; pascal: 247; makefile: 124; perl: 97
file content (371 lines) | stat: -rw-r--r-- 8,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <cmath>
#include <cstring>
#include <limits>
#include <numeric>

#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"

namespace MathUtil
{

u32 ClassifyDouble(double dvalue)
{
	// TODO: Optimize the below to be as fast as possible.
	IntDouble value(dvalue);
	u64 sign = value.i & DOUBLE_SIGN;
	u64 exp  = value.i & DOUBLE_EXP;
	if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
	{
		// Nice normalized number.
		return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
	}
	else
	{
		u64 mantissa = value.i & DOUBLE_FRAC;
		if (mantissa)
		{
			if (exp)
			{
				return PPC_FPCLASS_QNAN;
			}
			else
			{
				// Denormalized number.
				return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
			}
		}
		else if (exp)
		{
			//Infinite
			return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
		}
		else
		{
			//Zero
			return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
		}
	}
}

u32 ClassifyFloat(float fvalue)
{
	// TODO: Optimize the below to be as fast as possible.
	IntFloat value(fvalue);
	u32 sign = value.i & FLOAT_SIGN;
	u32 exp  = value.i & FLOAT_EXP;
	if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
	{
		// Nice normalized number.
		return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
	}
	else
	{
		u32 mantissa = value.i & FLOAT_FRAC;
		if (mantissa)
		{
			if (exp)
			{
				return PPC_FPCLASS_QNAN; // Quiet NAN
			}
			else
			{
				// Denormalized number.
				return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
			}
		}
		else if (exp)
		{
			// Infinite
			return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
		}
		else
		{
			//Zero
			return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
		}
	}
}

const int frsqrte_expected_base[] =
{
	0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000,
	0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000,
	0x2881000, 0x2665000, 0x2468000, 0x2287000,
	0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000,
	0x1a7e800, 0x17cb800, 0x1552800, 0x130c000,
	0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000,
	0x09e5000, 0x0867000, 0x06ff000, 0x05ab800,
	0x046a000, 0x0339800, 0x0218800, 0x0105800,
};
const int frsqrte_expected_dec[] =
{
	0x7a4, 0x700, 0x670, 0x5f2,
	0x584, 0x524, 0x4cc, 0x47e,
	0x43a, 0x3fa, 0x3c2, 0x38e,
	0x35e, 0x332, 0x30a, 0x2e6,
	0x568, 0x4f3, 0x48d, 0x435,
	0x3e7, 0x3a2, 0x365, 0x32e,
	0x2fc, 0x2d0, 0x2a8, 0x283,
	0x261, 0x243, 0x226, 0x20b,
};

double ApproximateReciprocalSquareRoot(double val)
{
	union
	{
		double valf;
		s64 vali;
	};
	valf = val;
	s64 mantissa = vali & ((1LL << 52) - 1);
	s64 sign = vali & (1ULL << 63);
	s64 exponent = vali & (0x7FFLL << 52);

	// Special case 0
	if (mantissa == 0 && exponent == 0)
		return sign ? -std::numeric_limits<double>::infinity() :
		std::numeric_limits<double>::infinity();
	// Special case NaN-ish numbers
	if (exponent == (0x7FFLL << 52))
	{
		if (mantissa == 0)
		{
			if (sign)
				return std::numeric_limits<double>::quiet_NaN();

			return 0.0;
		}

		return 0.0 + valf;
	}

	// Negative numbers return NaN
	if (sign)
		return std::numeric_limits<double>::quiet_NaN();

	if (!exponent)
	{
		// "Normalize" denormal values
		do
		{
			exponent -= 1LL << 52;
			mantissa <<= 1;
		} while (!(mantissa & (1LL << 52)));
		mantissa &= (1LL << 52) - 1;
		exponent += 1LL << 52;
	}

	bool odd_exponent = !(exponent & (1LL << 52));
	exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);

	int i = (int)(mantissa >> 37);
	vali = sign | exponent;
	int index = i / 2048 + (odd_exponent ? 16 : 0);
	vali |= (s64)(frsqrte_expected_base[index] - frsqrte_expected_dec[index] * (i % 2048)) << 26;
	return valf;
}

const int fres_expected_base[] =
{
	0x7ff800, 0x783800, 0x70ea00, 0x6a0800,
	0x638800, 0x5d6200, 0x579000, 0x520800,
	0x4cc800, 0x47ca00, 0x430800, 0x3e8000,
	0x3a2c00, 0x360800, 0x321400, 0x2e4a00,
	0x2aa800, 0x272c00, 0x23d600, 0x209e00,
	0x1d8800, 0x1a9000, 0x17ae00, 0x14f800,
	0x124400, 0x0fbe00, 0x0d3800, 0x0ade00,
	0x088400, 0x065000, 0x041c00, 0x020c00,
};
const int fres_expected_dec[] =
{
	0x3e1, 0x3a7, 0x371, 0x340,
	0x313, 0x2ea, 0x2c4, 0x2a0,
	0x27f, 0x261, 0x245, 0x22a,
	0x212, 0x1fb, 0x1e5, 0x1d1,
	0x1be, 0x1ac, 0x19b, 0x18b,
	0x17c, 0x16e, 0x15b, 0x15b,
	0x143, 0x143, 0x12d, 0x12d,
	0x11a, 0x11a, 0x108, 0x106,
};

// Used by fres and ps_res.
double ApproximateReciprocal(double val)
{
	// We are using namespace std scoped here because the Android NDK is complete trash as usual
	// For 32bit targets(mips, ARMv7, x86) it doesn't provide an implementation of std::copysign
	// but instead provides just global namespace copysign implementations.
	// The workaround for this is to just use namespace std within this function's scope
	// That way on real toolchains it will use the std:: variant like normal.
	using namespace std;
	union
	{
		double valf;
		s64 vali;
	};

	valf = val;
	s64 mantissa = vali & ((1LL << 52) - 1);
	s64 sign = vali & (1ULL << 63);
	s64 exponent = vali & (0x7FFLL << 52);

	// Special case 0
	if (mantissa == 0 && exponent == 0)
		return copysign(std::numeric_limits<double>::infinity(), valf);

	// Special case NaN-ish numbers
	if (exponent == (0x7FFLL << 52))
	{
		if (mantissa == 0)
			return copysign(0.0, valf);
		return 0.0 + valf;
	}

	// Special case small inputs
	if (exponent < (895LL << 52))
		return copysign(std::numeric_limits<float>::max(), valf);

	// Special case large inputs
	if (exponent >= (1149LL << 52))
		return copysign(0.0, valf);

	exponent = (0x7FDLL << 52) - exponent;

	int i = (int)(mantissa >> 37);
	vali = sign | exponent;
	vali |= (s64)(fres_expected_base[i / 1024] - (fres_expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29;
	return valf;
}

}  // namespace

inline void MatrixMul(int n, const float* a, const float* b, float* result)
{
	for (int i = 0; i < n; ++i)
	{
		for (int j = 0; j < n; ++j)
		{
			float temp = 0;
			for (int k = 0; k < n; ++k)
			{
				temp += a[i * n + k] * b[k * n + j];
			}
			result[i * n + j] = temp;
		}
	}
}

// Calculate sum of a float list
float MathFloatVectorSum(const std::vector<float>& Vec)
{
	return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
}

void Matrix33::LoadIdentity(Matrix33& mtx)
{
	memset(mtx.data, 0, sizeof(mtx.data));
	mtx.data[0] = 1.0f;
	mtx.data[4] = 1.0f;
	mtx.data[8] = 1.0f;
}

void Matrix33::RotateX(Matrix33& mtx, float rad)
{
	float s = sin(rad);
	float c = cos(rad);
	memset(mtx.data, 0, sizeof(mtx.data));
	mtx.data[0] = 1;
	mtx.data[4] = c;
	mtx.data[5] = -s;
	mtx.data[7] = s;
	mtx.data[8] = c;
}
void Matrix33::RotateY(Matrix33& mtx, float rad)
{
	float s = sin(rad);
	float c = cos(rad);
	memset(mtx.data, 0, sizeof(mtx.data));
	mtx.data[0] = c;
	mtx.data[2] = s;
	mtx.data[4] = 1;
	mtx.data[6] = -s;
	mtx.data[8] = c;
}

void Matrix33::Multiply(const Matrix33& a, const Matrix33& b, Matrix33& result)
{
	MatrixMul(3, a.data, b.data, result.data);
}

void Matrix33::Multiply(const Matrix33& a, const float vec[3], float result[3])
{
	for (int i = 0; i < 3; ++i)
	{
		result[i] = 0;

		for (int k = 0; k < 3; ++k)
		{
			result[i] += a.data[i * 3 + k] * vec[k];
		}
	}
}

void Matrix44::LoadIdentity(Matrix44& mtx)
{
	memset(mtx.data, 0, sizeof(mtx.data));
	mtx.data[0] = 1.0f;
	mtx.data[5] = 1.0f;
	mtx.data[10] = 1.0f;
	mtx.data[15] = 1.0f;
}

void Matrix44::LoadMatrix33(Matrix44& mtx, const Matrix33& m33)
{
	for (int i = 0; i < 3; ++i)
	{
		for (int j = 0; j < 3; ++j)
		{
			mtx.data[i * 4 + j] = m33.data[i * 3 + j];
		}
	}

	for (int i = 0; i < 3; ++i)
	{
		mtx.data[i * 4 + 3] = 0;
		mtx.data[i + 12] = 0;
	}
	mtx.data[15] = 1.0f;
}

void Matrix44::Set(Matrix44& mtx, const float mtxArray[16])
{
	for (int i = 0; i < 16; ++i)
	{
		mtx.data[i] = mtxArray[i];
	}
}

void Matrix44::Translate(Matrix44& mtx, const float vec[3])
{
	LoadIdentity(mtx);
	mtx.data[3] = vec[0];
	mtx.data[7] = vec[1];
	mtx.data[11] = vec[2];
}

void Matrix44::Shear(Matrix44& mtx, const float a, const float b)
{
	LoadIdentity(mtx);
	mtx.data[2] = a;
	mtx.data[6] = b;
}

void Matrix44::Multiply(const Matrix44& a, const Matrix44& b, Matrix44& result)
{
	MatrixMul(4, a.data, b.data, result.data);
}