File: MathUtil.h

package info (click to toggle)
dolphin-emu 5.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 29,052 kB
  • sloc: cpp: 213,146; java: 6,252; asm: 2,277; xml: 1,998; ansic: 1,514; python: 462; sh: 279; pascal: 247; makefile: 124; perl: 97
file content (248 lines) | stat: -rw-r--r-- 5,744 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#pragma once

#include <algorithm>
#include <cstdlib>
#include <vector>

#include "Common/CommonTypes.h"

namespace MathUtil
{

template <typename T>
constexpr T SNANConstant()
{
	return std::numeric_limits<T>::signaling_NaN();
}

#ifdef _MSC_VER

// MSVC needs a workaround, because its std::numeric_limits<double>::signaling_NaN()
// will use __builtin_nans, which is improperly handled by the compiler and generates
// a bad constant. Here we go back to the version MSVC used before the builtin.
// TODO: Remove this and use numeric_limits directly whenever this bug is fixed.
template <>
constexpr double SNANConstant()
{
	return (_CSTD _Snan._Double);
}
template <>
constexpr float SNANConstant()
{
	return (_CSTD _Snan._Float);
}

#endif

template<class T>
constexpr T Clamp(const T val, const T& min, const T& max)
{
	return std::max(min, std::min(max, val));
}

constexpr bool IsPow2(u32 imm)
{
	return (imm & (imm - 1)) == 0;
}

// The most significant bit of the fraction is an is-quiet bit on all architectures we care about.

static const u64 DOUBLE_SIGN = 0x8000000000000000ULL,
                 DOUBLE_EXP  = 0x7FF0000000000000ULL,
                 DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL,
                 DOUBLE_ZERO = 0x0000000000000000ULL,
                 DOUBLE_QBIT = 0x0008000000000000ULL;

static const u32 FLOAT_SIGN = 0x80000000,
                 FLOAT_EXP  = 0x7F800000,
                 FLOAT_FRAC = 0x007FFFFF,
                 FLOAT_ZERO = 0x00000000;

union IntDouble {
	double d;
	u64 i;

	explicit IntDouble(u64 _i) : i(_i) {}
	explicit IntDouble(double _d) : d(_d) {}
};
union IntFloat {
	float f;
	u32 i;

	explicit IntFloat(u32 _i) : i(_i) {}
	explicit IntFloat(float _f) : f(_f) {}
};

inline bool IsQNAN(double d)
{
	IntDouble x(d);
	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
	       ((x.i & DOUBLE_QBIT) == DOUBLE_QBIT);
}

inline bool IsSNAN(double d)
{
	IntDouble x(d);
	return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
	       ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) &&
	       ((x.i & DOUBLE_QBIT) == DOUBLE_ZERO);
}

inline float FlushToZero(float f)
{
	IntFloat x(f);
	if ((x.i & FLOAT_EXP) == 0)
	{
		x.i &= FLOAT_SIGN;  // turn into signed zero
	}
	return x.f;
}

inline double FlushToZero(double d)
{
	IntDouble x(d);
	if ((x.i & DOUBLE_EXP) == 0)
	{
		x.i &= DOUBLE_SIGN;  // turn into signed zero
	}
	return x.d;
}

enum PPCFpClass
{
	PPC_FPCLASS_QNAN = 0x11,
	PPC_FPCLASS_NINF = 0x9,
	PPC_FPCLASS_NN   = 0x8,
	PPC_FPCLASS_ND   = 0x18,
	PPC_FPCLASS_NZ   = 0x12,
	PPC_FPCLASS_PZ   = 0x2,
	PPC_FPCLASS_PD   = 0x14,
	PPC_FPCLASS_PN   = 0x4,
	PPC_FPCLASS_PINF = 0x5,
};

// Uses PowerPC conventions for the return value, so it can be easily
// used directly in CPU emulation.
u32 ClassifyDouble(double dvalue);
// More efficient float version.
u32 ClassifyFloat(float fvalue);

extern const int frsqrte_expected_base[];
extern const int frsqrte_expected_dec[];
extern const int fres_expected_base[];
extern const int fres_expected_dec[];

// PowerPC approximation algorithms
double ApproximateReciprocalSquareRoot(double val);
double ApproximateReciprocal(double val);

template<class T>
struct Rectangle
{
	T left{};
	T top{};
	T right{};
	T bottom{};

	constexpr Rectangle() = default;

	constexpr Rectangle(T theLeft, T theTop, T theRight, T theBottom)
		: left(theLeft), top(theTop), right(theRight), bottom(theBottom)
	{}

	constexpr bool operator==(const Rectangle& r) const
	{
		return left == r.left && top == r.top && right == r.right && bottom == r.bottom;
	}

	T GetWidth() const { return abs(right - left); }
	T GetHeight() const { return abs(bottom - top); }

	// If the rectangle is in a coordinate system with a lower-left origin, use
	// this Clamp.
	void ClampLL(T x1, T y1, T x2, T y2)
	{
		left   = Clamp(left, x1, x2);
		right  = Clamp(right, x1, x2);
		top    = Clamp(top, y2, y1);
		bottom = Clamp(bottom, y2, y1);
	}

	// If the rectangle is in a coordinate system with an upper-left origin,
	// use this Clamp.
	void ClampUL(T x1, T y1, T x2, T y2)
	{
		left   = Clamp(left, x1, x2);
		right  = Clamp(right, x1, x2);
		top    = Clamp(top, y1, y2);
		bottom = Clamp(bottom, y1, y2);
	}
};

}  // namespace MathUtil

float MathFloatVectorSum(const std::vector<float>&);

#define ROUND_UP(x, a)   (((x) + (a) - 1) & ~((a) - 1))
#define ROUND_DOWN(x, a) ((x) & ~((a) - 1))

// Rounds down. 0 -> undefined
inline int IntLog2(u64 val)
{
#if defined(__GNUC__)
	return 63 - __builtin_clzll(val);

#elif defined(_MSC_VER)
	unsigned long result = -1;
	_BitScanReverse64(&result, val);
	return result;

#else
	int result = -1;
	while (val != 0)
	{
		val >>= 1;
		++result;
	}
	return result;
#endif
}

// Tiny matrix/vector library.
// Used for things like Free-Look in the gfx backend.

class Matrix33
{
public:
	static void LoadIdentity(Matrix33& mtx);

	// set mtx to be a rotation matrix around the x axis
	static void RotateX(Matrix33& mtx, float rad);
	// set mtx to be a rotation matrix around the y axis
	static void RotateY(Matrix33& mtx, float rad);

	// set result = a x b
	static void Multiply(const Matrix33& a, const Matrix33& b, Matrix33& result);
	static void Multiply(const Matrix33& a, const float vec[3], float result[3]);

	float data[9];
};

class Matrix44
{
public:
	static void LoadIdentity(Matrix44& mtx);
	static void LoadMatrix33(Matrix44& mtx, const Matrix33& m33);
	static void Set(Matrix44& mtx, const float mtxArray[16]);

	static void Translate(Matrix44& mtx, const float vec[3]);
	static void Shear(Matrix44& mtx, const float a, const float b = 0);

	static void Multiply(const Matrix44& a, const Matrix44& b, Matrix44& result);

	float data[16];
};