1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
  
     | 
    
      // Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cinttypes>
#include <cstring>
#include "Common/CommonTypes.h"
#include "Common/CPUDetect.h"
#include "Common/x64Emitter.h"
#include "Common/Logging/Log.h"
namespace Gen
{
// TODO(ector): Add EAX special casing, for ever so slightly smaller code.
struct NormalOpDef
{
	u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
};
// 0xCC is code for invalid combination of immediates
static const NormalOpDef normalops[11] =
{
	{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD
	{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC
	{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB
	{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB
	{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND
	{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR
	{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR
	{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV
	{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from)
	{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP
	{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG
};
enum NormalSSEOps
{
	sseCMP         = 0xC2,
	sseADD         = 0x58, //ADD
	sseSUB         = 0x5C, //SUB
	sseAND         = 0x54, //AND
	sseANDN        = 0x55, //ANDN
	sseOR          = 0x56,
	sseXOR         = 0x57,
	sseMUL         = 0x59, //MUL
	sseDIV         = 0x5E, //DIV
	sseMIN         = 0x5D, //MIN
	sseMAX         = 0x5F, //MAX
	sseCOMIS       = 0x2F, //COMIS
	sseUCOMIS      = 0x2E, //UCOMIS
	sseSQRT        = 0x51, //SQRT
	sseRCP         = 0x53, //RCP
	sseRSQRT       = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
	sseMOVAPfromRM = 0x28, //MOVAP from RM
	sseMOVAPtoRM   = 0x29, //MOVAP to RM
	sseMOVUPfromRM = 0x10, //MOVUP from RM
	sseMOVUPtoRM   = 0x11, //MOVUP to RM
	sseMOVLPfromRM = 0x12,
	sseMOVLPtoRM   = 0x13,
	sseMOVHPfromRM = 0x16,
	sseMOVHPtoRM   = 0x17,
	sseMOVHLPS     = 0x12,
	sseMOVLHPS     = 0x16,
	sseMOVDQfromRM = 0x6F,
	sseMOVDQtoRM   = 0x7F,
	sseMASKMOVDQU  = 0xF7,
	sseLDDQU       = 0xF0,
	sseSHUF        = 0xC6,
	sseMOVNTDQ     = 0xE7,
	sseMOVNTP      = 0x2B,
};
void XEmitter::SetCodePtr(u8* ptr)
{
	code = ptr;
}
const u8* XEmitter::GetCodePtr() const
{
	return code;
}
u8* XEmitter::GetWritableCodePtr()
{
	return code;
}
void XEmitter::Write8(u8 value)
{
	*code++ = value;
}
void XEmitter::Write16(u16 value)
{
	std::memcpy(code, &value, sizeof(u16));
	code += sizeof(u16);
}
void XEmitter::Write32(u32 value)
{
	std::memcpy(code, &value, sizeof(u32));
	code += sizeof(u32);
}
void XEmitter::Write64(u64 value)
{
	std::memcpy(code, &value, sizeof(u64));
	code += sizeof(u64);
}
void XEmitter::ReserveCodeSpace(int bytes)
{
	for (int i = 0; i < bytes; i++)
		*code++ = 0xCC;
}
const u8* XEmitter::AlignCode4()
{
	int c = int((u64)code & 3);
	if (c)
		ReserveCodeSpace(4-c);
	return code;
}
const u8* XEmitter::AlignCode16()
{
	int c = int((u64)code & 15);
	if (c)
		ReserveCodeSpace(16-c);
	return code;
}
const u8* XEmitter::AlignCodePage()
{
	int c = int((u64)code & 4095);
	if (c)
		ReserveCodeSpace(4096-c);
	return code;
}
// This operation modifies flags; check to see the flags are locked.
// If the flags are locked, we should immediately and loudly fail before
// causing a subtle JIT bug.
void XEmitter::CheckFlags()
{
	_assert_msg_(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!");
}
void XEmitter::WriteModRM(int mod, int reg, int rm)
{
	Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
}
void XEmitter::WriteSIB(int scale, int index, int base)
{
	Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
}
void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const
{
	if (customOp == -1)       customOp = operandReg;
	u8 op = 0x40;
	// REX.W (whether operation is a 64-bit operation)
	if (opBits == 64)         op |= 8;
	// REX.R (whether ModR/M reg field refers to R8-R15.
	if (customOp & 8)         op |= 4;
	// REX.X (whether ModR/M SIB index field refers to R8-R15)
	if (indexReg & 8)         op |= 2;
	// REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
	if (offsetOrBaseReg & 8)  op |= 1;
	// Write REX if wr have REX bits to write, or if the operation accesses
	// SIL, DIL, BPL, or SPL.
	if (op != 0x40 ||
	    (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
	    (opBits == 8 && (customOp & 0x10c) == 4))
	{
		emit->Write8(op);
		// Check the operation doesn't access AH, BH, CH, or DH.
		_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0);
		_dbg_assert_(DYNA_REC, (customOp & 0x100) == 0);
	}
}
void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const
{
	int R = !(regOp1 & 8);
	int X = !(indexReg & 8);
	int B = !(offsetOrBaseReg & 8);
	int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
	// do we need any VEX fields that only appear in the three-byte form?
	if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
	{
		u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp;
		emit->Write8(0xC5);
		emit->Write8(RvvvvLpp);
	}
	else
	{
		u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
		u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp;
		emit->Write8(0xC4);
		emit->Write8(RXBmmmmm);
		emit->Write8(WvvvvLpp);
	}
}
void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg,
	bool warn_64bit_offset) const
{
	if (_operandReg == INVALID_REG)
		_operandReg = (X64Reg)this->operandReg;
	int mod = 0;
	int ireg = indexReg;
	bool SIB = false;
	int _offsetOrBaseReg = this->offsetOrBaseReg;
	if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
	{
		// Oh, RIP addressing.
		_offsetOrBaseReg = 5;
		emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
		//TODO : add some checks
		u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
		s64 distance = (s64)offset - (s64)ripAddr;
		_assert_msg_(DYNA_REC,
		             (distance < 0x80000000LL &&
		              distance >=  -0x80000000LL) ||
		             !warn_64bit_offset,
		             "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")",
		             ripAddr, offset);
		s32 offs = (s32)distance;
		emit->Write32((u32)offs);
		return;
	}
	if (scale == 0)
	{
		// Oh, no memory, Just a reg.
		mod = 3; //11
	}
	else
	{
		//Ah good, no scaling.
		if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
		{
			//Okay, we're good. No SIB necessary.
			int ioff = (int)offset;
			if (ioff == 0)
			{
				mod = 0;
			}
			else if (ioff<-128 || ioff>127)
			{
				mod = 2; //32-bit displacement
			}
			else
			{
				mod = 1; //8-bit displacement
			}
		}
		else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
		{
			SIB = true;
			mod = 0;
			_offsetOrBaseReg = 5;
		}
		else
		{
			if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
			{
				//So we have to fake it with SIB encoding :(
				SIB = true;
			}
			if (scale >= SCALE_1 && scale < SCALE_ATREG)
			{
				SIB = true;
			}
			if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
			{
				SIB = true;
				ireg = _offsetOrBaseReg;
			}
			//Okay, we're fine. Just disp encoding.
			//We need displacement. Which size?
			int ioff = (int)(s64)offset;
			if (ioff < -128 || ioff > 127)
			{
				mod = 2; //32-bit displacement
			}
			else
			{
				mod = 1; //8-bit displacement
			}
		}
	}
	// Okay. Time to do the actual writing
	// ModRM byte:
	int oreg = _offsetOrBaseReg;
	if (SIB)
		oreg = 4;
	emit->WriteModRM(mod, _operandReg&7, oreg&7);
	if (SIB)
	{
		//SIB byte
		int ss;
		switch (scale)
		{
		case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP
		case SCALE_1: ss = 0; break;
		case SCALE_2: ss = 1; break;
		case SCALE_4: ss = 2; break;
		case SCALE_8: ss = 3; break;
		case SCALE_NOBASE_2: ss = 1; break;
		case SCALE_NOBASE_4: ss = 2; break;
		case SCALE_NOBASE_8: ss = 3; break;
		case SCALE_ATREG: ss = 0; break;
		default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break;
		}
		emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
	}
	if (mod == 1) //8-bit disp
	{
		emit->Write8((u8)(s8)(s32)offset);
	}
	else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp
	{
		emit->Write32((u32)offset);
	}
}
// W = operand extended width (1 if 64-bit)
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
void XEmitter::Rex(int w, int r, int x, int b)
{
	w = w ? 1 : 0;
	r = r ? 1 : 0;
	x = x ? 1 : 0;
	b = b ? 1 : 0;
	u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
	if (rx != 0x40)
		Write8(rx);
}
void XEmitter::JMP(const u8* addr, bool force5Bytes)
{
	u64 fn = (u64)addr;
	if (!force5Bytes)
	{
		s64 distance = (s64)(fn - ((u64)code + 2));
		_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80,
			     "Jump target too far away, needs force5Bytes = true");
		//8 bits will do
		Write8(0xEB);
		Write8((u8)(s8)distance);
	}
	else
	{
		s64 distance = (s64)(fn - ((u64)code + 5));
		_assert_msg_(DYNA_REC,
		             distance >= -0x80000000LL && distance < 0x80000000LL,
		             "Jump target too far away, needs indirect register");
		Write8(0xE9);
		Write32((u32)(s32)distance);
	}
}
void XEmitter::JMPptr(const OpArg& arg2)
{
	OpArg arg = arg2;
	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument");
	arg.operandReg = 4;
	arg.WriteREX(this, 0, 0);
	Write8(0xFF);
	arg.WriteRest(this);
}
//Can be used to trap other processors, before overwriting their code
// not used in Dolphin
void XEmitter::JMPself()
{
	Write8(0xEB);
	Write8(0xFE);
}
void XEmitter::CALLptr(OpArg arg)
{
	if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument");
	arg.operandReg = 2;
	arg.WriteREX(this, 0, 0);
	Write8(0xFF);
	arg.WriteRest(this);
}
void XEmitter::CALL(const void* fnptr)
{
	u64 distance = u64(fnptr) - (u64(code) + 5);
	_assert_msg_(DYNA_REC,
	             distance < 0x0000000080000000ULL ||
	             distance >=  0xFFFFFFFF80000000ULL,
	             "CALL out of range (%p calls %p)", code, fnptr);
	Write8(0xE8);
	Write32(u32(distance));
}
FixupBranch XEmitter::J(bool force5bytes)
{
	FixupBranch branch;
	branch.type = force5bytes ? 1 : 0;
	branch.ptr = code + (force5bytes ? 5 : 2);
	if (!force5bytes)
	{
		//8 bits will do
		Write8(0xEB);
		Write8(0);
	}
	else
	{
		Write8(0xE9);
		Write32(0);
	}
	return branch;
}
FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
{
	FixupBranch branch;
	branch.type = force5bytes ? 1 : 0;
	branch.ptr = code + (force5bytes ? 6 : 2);
	if (!force5bytes)
	{
		//8 bits will do
		Write8(0x70 + conditionCode);
		Write8(0);
	}
	else
	{
		Write8(0x0F);
		Write8(0x80 + conditionCode);
		Write32(0);
	}
	return branch;
}
void XEmitter::J_CC(CCFlags conditionCode, const u8* addr)
{
	u64 fn = (u64)addr;
	s64 distance = (s64)(fn - ((u64)code + 2));
	if (distance < -0x80 || distance >= 0x80)
	{
		distance = (s64)(fn - ((u64)code + 6));
		_assert_msg_(DYNA_REC,
		             distance >= -0x80000000LL && distance < 0x80000000LL,
		             "Jump target too far away, needs indirect register");
		Write8(0x0F);
		Write8(0x80 + conditionCode);
		Write32((u32)(s32)distance);
	}
	else
	{
		Write8(0x70 + conditionCode);
		Write8((u8)(s8)distance);
	}
}
void XEmitter::SetJumpTarget(const FixupBranch& branch)
{
	if (branch.type == 0)
	{
		s64 distance = (s64)(code - branch.ptr);
		_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
		branch.ptr[-1] = (u8)(s8)distance;
	}
	else if (branch.type == 1)
	{
		s64 distance = (s64)(code - branch.ptr);
		_assert_msg_(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
		s32 valid_distance = static_cast<s32>(distance);
		std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32));
	}
}
//Single byte opcodes
//There is no PUSHAD/POPAD in 64-bit mode.
void XEmitter::INT3() {Write8(0xCC);}
void XEmitter::RET()  {Write8(0xC3);}
void XEmitter::RET_FAST()  {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
// The first sign of decadence: optimized NOPs.
void XEmitter::NOP(size_t size)
{
	_dbg_assert_(DYNA_REC, (int)size > 0);
	while (true)
	{
		switch (size)
		{
		case 0:
			return;
		case 1:
			Write8(0x90);
			return;
		case 2:
			Write8(0x66); Write8(0x90);
			return;
		case 3:
			Write8(0x0F); Write8(0x1F); Write8(0x00);
			return;
		case 4:
			Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00);
			return;
		case 5:
			Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00);
			Write8(0x00);
			return;
		case 6:
			Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44);
			Write8(0x00); Write8(0x00);
			return;
		case 7:
			Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00);
			Write8(0x00); Write8(0x00); Write8(0x00);
			return;
		case 8:
			Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00);
			Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
			return;
		case 9:
			Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84);
			Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
			Write8(0x00);
			return;
		case 10:
			Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F);
			Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00);
			Write8(0x00); Write8(0x00);
			return;
		default:
			// Even though x86 instructions are allowed to be up to 15 bytes long,
			// AMD advises against using NOPs longer than 11 bytes because they
			// carry a performance penalty on CPUs older than AMD family 16h.
			Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F);
			Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00);
			Write8(0x00); Write8(0x00); Write8(0x00);
			size -= 11;
			continue;
		}
	}
}
void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some CPU
void XEmitter::CLC()  {CheckFlags(); Write8(0xF8);} //clear carry
void XEmitter::CMC()  {CheckFlags(); Write8(0xF5);} //flip carry
void XEmitter::STC()  {CheckFlags(); Write8(0xF9);} //set carry
//TODO: xchg ah, al ???
void XEmitter::XCHG_AHAL()
{
	Write8(0x86);
	Write8(0xe0);
	// alt. 86 c4
}
//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
void XEmitter::LAHF() {Write8(0x9F);}
void XEmitter::SAHF() {CheckFlags(); Write8(0x9E);}
void XEmitter::PUSHF() {Write8(0x9C);}
void XEmitter::POPF()  {CheckFlags(); Write8(0x9D);}
void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
{
	if (bits == 16)
		Write8(0x66);
	Rex(bits == 64, 0, 0, (int)reg >> 3);
	Write8(byte + ((int)reg & 7));
}
void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
{
	if (bits == 16)
		Write8(0x66);
	Rex(bits==64, 0, 0, (int)reg >> 3);
	Write8(byte1);
	Write8(byte2 + ((int)reg & 7));
}
void XEmitter::CWD(int bits)
{
	if (bits == 16)
		Write8(0x66);
	Rex(bits == 64, 0, 0, 0);
	Write8(0x99);
}
void XEmitter::CBW(int bits)
{
	if (bits == 8)
		Write8(0x66);
	Rex(bits == 32, 0, 0, 0);
	Write8(0x98);
}
//Simple opcodes
//push/pop do not need wide to be 64-bit
void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
void XEmitter::POP(X64Reg reg)  {WriteSimple1Byte(32, 0x58, reg);}
void XEmitter::PUSH(int bits, const OpArg& reg)
{
	if (reg.IsSimpleReg())
		PUSH(reg.GetSimpleReg());
	else if (reg.IsImm())
	{
		switch (reg.GetImmBits())
		{
		case 8:
			Write8(0x6A);
			Write8((u8)(s8)reg.offset);
			break;
		case 16:
			Write8(0x66);
			Write8(0x68);
			Write16((u16)(s16)(s32)reg.offset);
			break;
		case 32:
			Write8(0x68);
			Write32((u32)reg.offset);
			break;
		default:
			_assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits");
			break;
		}
	}
	else
	{
		if (bits == 16)
			Write8(0x66);
		reg.WriteREX(this, bits, bits);
		Write8(0xFF);
		reg.WriteRest(this, 0, (X64Reg)6);
	}
}
void XEmitter::POP(int /*bits*/, const OpArg& reg)
{
	if (reg.IsSimpleReg())
		POP(reg.GetSimpleReg());
	else
		_assert_msg_(DYNA_REC, 0, "POP - Unsupported encoding");
}
void XEmitter::BSWAP(int bits, X64Reg reg)
{
	if (bits >= 32)
	{
		WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
	}
	else if (bits == 16)
	{
		ROL(16, R(reg), Imm8(8));
	}
	else if (bits == 8)
	{
		// Do nothing - can't bswap a single byte...
	}
	else
	{
		_assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits");
	}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
void XEmitter::UD2()
{
	Write8(0x0F);
	Write8(0x0B);
}
void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
{
	_assert_msg_(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument");
	arg.operandReg = (u8)level;
	arg.WriteREX(this, 0, 0);
	Write8(0x0F);
	Write8(0x18);
	arg.WriteRest(this);
}
void XEmitter::SETcc(CCFlags flag, OpArg dest)
{
	_assert_msg_(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument");
	dest.operandReg = 0;
	dest.WriteREX(this, 0, 8);
	Write8(0x0F);
	Write8(0x90 + (u8)flag);
	dest.WriteRest(this);
}
void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
{
	_assert_msg_(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument");
	_assert_msg_(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported");
	if (bits == 16)
		Write8(0x66);
	src.operandReg = dest;
	src.WriteREX(this, bits, bits);
	Write8(0x0F);
	Write8(0x40 + (u8)flag);
	src.WriteRest(this);
}
void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
{
	_assert_msg_(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument");
	CheckFlags();
	src.operandReg = ext;
	if (bits == 16)
		Write8(0x66);
	src.WriteREX(this, bits, bits, 0);
	if (bits == 8)
	{
		Write8(0xF6);
	}
	else
	{
		Write8(0xF7);
	}
	src.WriteRest(this);
}
void XEmitter::MUL(int bits, const OpArg& src)  {WriteMulDivType(bits, src, 4);}
void XEmitter::DIV(int bits, const OpArg& src)  {WriteMulDivType(bits, src, 6);}
void XEmitter::IMUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 5);}
void XEmitter::IDIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 7);}
void XEmitter::NEG(int bits, const OpArg& src)  {WriteMulDivType(bits, src, 3);}
void XEmitter::NOT(int bits, const OpArg& src)  {WriteMulDivType(bits, src, 2);}
void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
{
	_assert_msg_(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument");
	CheckFlags();
	src.operandReg = (u8)dest;
	if (bits == 16)
		Write8(0x66);
	if (rep)
		Write8(0xF3);
	src.WriteREX(this, bits, bits);
	Write8(0x0F);
	Write8(byte2);
	src.WriteRest(this);
}
void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src)
{
	if (bits <= 16)
		_assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16");
	WriteBitSearchType(bits, src, dest, 0xC3);
}
void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBC);} // Bottom bit to top bit
void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBD);} // Top bit to bottom bit
void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src)
{
	CheckFlags();
	if (!cpu_info.bBMI1)
		PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
	WriteBitSearchType(bits, dest, src, 0xBC, true);
}
void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src)
{
	CheckFlags();
	if (!cpu_info.bLZCNT)
		PanicAlert("Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
	WriteBitSearchType(bits, dest, src, 0xBD, true);
}
void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
{
	_assert_msg_(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument");
	if (dbits == sbits)
	{
		MOV(dbits, R(dest), src);
		return;
	}
	src.operandReg = (u8)dest;
	if (dbits == 16)
		Write8(0x66);
	src.WriteREX(this, dbits, sbits);
	if (sbits == 8)
	{
		Write8(0x0F);
		Write8(0xBE);
	}
	else if (sbits == 16)
	{
		Write8(0x0F);
		Write8(0xBF);
	}
	else if (sbits == 32 && dbits == 64)
	{
		Write8(0x63);
	}
	else
	{
		Crash();
	}
	src.WriteRest(this);
}
void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
{
	_assert_msg_(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument");
	if (dbits == sbits)
	{
		MOV(dbits, R(dest), src);
		return;
	}
	src.operandReg = (u8)dest;
	if (dbits == 16)
		Write8(0x66);
	//the 32bit result is automatically zero extended to 64bit
	src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits);
	if (sbits == 8)
	{
		Write8(0x0F);
		Write8(0xB6);
	}
	else if (sbits == 16)
	{
		Write8(0x0F);
		Write8(0xB7);
	}
	else if (sbits == 32 && dbits == 64)
	{
		Write8(0x8B);
	}
	else
	{
		_assert_msg_(DYNA_REC, 0, "MOVZX - Invalid size");
	}
	src.WriteRest(this);
}
void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg)
{
	_assert_msg_(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it.");
	if (bits == 8)
	{
		MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg);
		return;
	}
	if (bits == 16)
		Write8(0x66);
	_assert_msg_(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!");
	arg.WriteREX(this, bits, bits, reg);
	Write8(0x0F);
	Write8(0x38);
	Write8(op);
	arg.WriteRest(this, 0, reg);
}
void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src) {WriteMOVBE(bits, 0xF0, dest, src);}
void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src) {WriteMOVBE(bits, 0xF1, src, dest);}
void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend)
{
	switch (size)
	{
	case 8:
		if (sign_extend)
			MOVSX(32, 8, dst, src);
		else
			MOVZX(32, 8, dst, src);
		break;
	case 16:
		MOVZX(32, 16, dst, src);
		if (sign_extend)
		{
			BSWAP(32, dst);
			SAR(32, R(dst), Imm8(16));
		}
		else
		{
			ROL(16, R(dst), Imm8(8));
		}
		break;
	case 32:
	case 64:
		if (cpu_info.bMOVBE)
		{
			MOVBE(size, dst, src);
		}
		else
		{
			MOV(size, R(dst), src);
			BSWAP(size, dst);
		}
		break;
	}
}
u8* XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src)
{
	u8* mov_location = GetWritableCodePtr();
	if (cpu_info.bMOVBE)
	{
		MOVBE(size, dst, src);
	}
	else
	{
		BSWAP(size, src);
		mov_location = GetWritableCodePtr();
		MOV(size, dst, R(src));
	}
	return mov_location;
}
void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
{
	_assert_msg_(DYNA_REC, !src.IsImm(), "LEA - Imm argument");
	src.operandReg = (u8)dest;
	if (bits == 16)
		Write8(0x66); //TODO: performance warning
	src.WriteREX(this, bits, bits);
	Write8(0x8D);
	src.WriteRest(this, 0, INVALID_REG, bits == 64);
}
//shift can be either imm8 or cl
void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
{
	CheckFlags();
	bool writeImm = false;
	if (dest.IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms");
	}
	if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
	{
		_assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument");
	}
	dest.operandReg = ext;
	if (bits == 16)
		Write8(0x66);
	dest.WriteREX(this, bits, bits, 0);
	if (shift.GetImmBits() == 8)
	{
		//ok an imm
		u8 imm = (u8)shift.offset;
		if (imm == 1)
		{
			Write8(bits == 8 ? 0xD0 : 0xD1);
		}
		else
		{
			writeImm = true;
			Write8(bits == 8 ? 0xC0 : 0xC1);
		}
	}
	else
	{
		Write8(bits == 8 ? 0xD2 : 0xD3);
	}
	dest.WriteRest(this, writeImm ? 1 : 0);
	if (writeImm)
		Write8((u8)shift.offset);
}
// large rotates and shift are slower on Intel than AMD
// Intel likes to rotate by 1, and the op is smaller too
void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 0);}
void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 1);}
void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 2);}
void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 3);}
void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 4);}
void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 5);}
void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 7);}
// index can be either imm8 or register, don't use memory destination because it's slow
void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext)
{
	CheckFlags();
	if (dest.IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "WriteBitTest - can't test imms");
	}
	if ((index.IsImm() && index.GetImmBits() != 8))
	{
		_assert_msg_(DYNA_REC, 0, "WriteBitTest - illegal argument");
	}
	if (bits == 16)
		Write8(0x66);
	if (index.IsImm())
	{
		dest.WriteREX(this, bits, bits);
		Write8(0x0F); Write8(0xBA);
		dest.WriteRest(this, 1, (X64Reg)ext);
		Write8((u8)index.offset);
	}
	else
	{
		X64Reg operand = index.GetSimpleReg();
		dest.WriteREX(this, bits, bits, operand);
		Write8(0x0F); Write8(0x83 + 8*ext);
		dest.WriteRest(this, 1, operand);
	}
}
void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index)  {WriteBitTest(bits, dest, index, 4);}
void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 5);}
void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 6);}
void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 7);}
//shift can be either imm8 or cl
void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
	CheckFlags();
	if (dest.IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "SHRD - can't use imms as destination");
	}
	if (!src.IsSimpleReg())
	{
		_assert_msg_(DYNA_REC, 0, "SHRD - must use simple register as source");
	}
	if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
	{
		_assert_msg_(DYNA_REC, 0, "SHRD - illegal shift");
	}
	if (bits == 16)
		Write8(0x66);
	X64Reg operand = src.GetSimpleReg();
	dest.WriteREX(this, bits, bits, operand);
	if (shift.GetImmBits() == 8)
	{
		Write8(0x0F); Write8(0xAC);
		dest.WriteRest(this, 1, operand);
		Write8((u8)shift.offset);
	}
	else
	{
		Write8(0x0F); Write8(0xAD);
		dest.WriteRest(this, 0, operand);
	}
}
void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
	CheckFlags();
	if (dest.IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "SHLD - can't use imms as destination");
	}
	if (!src.IsSimpleReg())
	{
		_assert_msg_(DYNA_REC, 0, "SHLD - must use simple register as source");
	}
	if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
	{
		_assert_msg_(DYNA_REC, 0, "SHLD - illegal shift");
	}
	if (bits == 16)
		Write8(0x66);
	X64Reg operand = src.GetSimpleReg();
	dest.WriteREX(this, bits, bits, operand);
	if (shift.GetImmBits() == 8)
	{
		Write8(0x0F); Write8(0xA4);
		dest.WriteRest(this, 1, operand);
		Write8((u8)shift.offset);
	}
	else
	{
		Write8(0x0F); Write8(0xA5);
		dest.WriteRest(this, 0, operand);
	}
}
void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits)
{
	if (bits == 16)
		emit->Write8(0x66);
	this->operandReg = (u8)_operandReg;
	WriteREX(emit, bits, bits);
	emit->Write8(op);
	WriteRest(emit);
}
//operand can either be immediate or register
void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const
{
	X64Reg _operandReg;
	if (IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
	}
	if (bits == 16)
		emit->Write8(0x66);
	int immToWrite = 0;
	if (operand.IsImm())
	{
		WriteREX(emit, bits, bits);
		if (!toRM)
		{
			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
		}
		if (operand.scale == SCALE_IMM8 && bits == 8)
		{
			// op al, imm8
			if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC)
			{
				emit->Write8(normalops[op].eaximm8);
				emit->Write8((u8)operand.offset);
				return;
			}
			// mov reg, imm8
			if (!scale && op == nrmMOV)
			{
				emit->Write8(0xB0 + (offsetOrBaseReg & 7));
				emit->Write8((u8)operand.offset);
				return;
			}
			// op r/m8, imm8
			emit->Write8(normalops[op].imm8);
			immToWrite = 8;
		}
		else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
				 (operand.scale == SCALE_IMM32 && bits == 32) ||
				 (operand.scale == SCALE_IMM32 && bits == 64))
		{
			// Try to save immediate size if we can, but first check to see
			// if the instruction supports simm8.
			// op r/m, imm8
			if (normalops[op].simm8 != 0xCC &&
			    ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
			     (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
			{
				emit->Write8(normalops[op].simm8);
				immToWrite = 8;
			}
			else
			{
				// mov reg, imm
				if (!scale && op == nrmMOV && bits != 64)
				{
					emit->Write8(0xB8 + (offsetOrBaseReg & 7));
					if (bits == 16)
						emit->Write16((u16)operand.offset);
					else
						emit->Write32((u32)operand.offset);
					return;
				}
				// op eax, imm
				if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC)
				{
					emit->Write8(normalops[op].eaximm32);
					if (bits == 16)
						emit->Write16((u16)operand.offset);
					else
						emit->Write32((u32)operand.offset);
					return;
				}
				// op r/m, imm
				emit->Write8(normalops[op].imm32);
				immToWrite = bits == 16 ? 16 : 32;
			}
		}
		else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
				 (operand.scale == SCALE_IMM8 && bits == 32) ||
				 (operand.scale == SCALE_IMM8 && bits == 64))
		{
			// op r/m, imm8
			emit->Write8(normalops[op].simm8);
			immToWrite = 8;
		}
		else if (operand.scale == SCALE_IMM64 && bits == 64)
		{
			if (scale)
			{
				_assert_msg_(DYNA_REC, 0, "WriteNormalOp - MOV with 64-bit imm requres register destination");
			}
			// mov reg64, imm64
			else if (op == nrmMOV)
			{
				emit->Write8(0xB8 + (offsetOrBaseReg & 7));
				emit->Write64((u64)operand.offset);
				return;
			}
			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
		}
		else
		{
			_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case %d %d", operand.scale, bits);
		}
		_operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM
	}
	else
	{
		_operandReg = (X64Reg)operand.offsetOrBaseReg;
		WriteREX(emit, bits, bits, _operandReg);
		// op r/m, reg
		if (toRM)
		{
			emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32);
		}
		// op reg, r/m
		else
		{
			emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32);
		}
	}
	WriteRest(emit, immToWrite >> 3, _operandReg);
	switch (immToWrite)
	{
	case 0:
		break;
	case 8:
		emit->Write8((u8)operand.offset);
		break;
	case 16:
		emit->Write16((u16)operand.offset);
		break;
	case 32:
		emit->Write32((u32)operand.offset);
		break;
	default:
		_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
	}
}
void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2)
{
	if (a1.IsImm())
	{
		//Booh! Can't write to an imm
		_assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
		return;
	}
	if (a2.IsImm())
	{
		a1.WriteNormalOp(this, true, op, a2, bits);
	}
	else
	{
		if (a1.IsSimpleReg())
		{
			a2.WriteNormalOp(this, false, op, a1, bits);
		}
		else
		{
			_assert_msg_(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory");
			a1.WriteNormalOp(this, true, op, a2, bits);
		}
	}
}
void XEmitter::ADD (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmADD, a1, a2);}
void XEmitter::ADC (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmADC, a1, a2);}
void XEmitter::SUB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmSUB, a1, a2);}
void XEmitter::SBB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmSBB, a1, a2);}
void XEmitter::AND (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmAND, a1, a2);}
void XEmitter::OR  (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmOR , a1, a2);}
void XEmitter::XOR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmXOR, a1, a2);}
void XEmitter::MOV (int bits, const OpArg& a1, const OpArg& a2)
{
	if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
		ERROR_LOG(DYNA_REC, "Redundant MOV @ %p - bug in JIT?", code);
	WriteNormalOp(bits, nrmMOV, a1, a2);
}
void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmTEST, a1, a2);}
void XEmitter::CMP (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(bits, nrmCMP, a1, a2);}
void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) {WriteNormalOp(bits, nrmXCHG, a1, a2);}
void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2)
{
	CheckFlags();
	if (a1.IsSimpleReg() && a2.IsImm() && a2.offset == 0) // turn 'CMP reg, 0' into shorter 'TEST reg, reg'
	{
		WriteNormalOp(bits, nrmTEST, a1, a1);
	}
	else
	{
		WriteNormalOp(bits, nrmCMP, a1, a2);
	}
}
void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
{
	CheckFlags();
	if (bits == 8)
	{
		_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
		return;
	}
	if (a1.IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
		return;
	}
	if (!a2.IsImm())
	{
		_assert_msg_(DYNA_REC, 0, "IMUL - third arg must be imm!");
		return;
	}
	if (bits == 16)
		Write8(0x66);
	a1.WriteREX(this, bits, bits, regOp);
	if (a2.GetImmBits() == 8 ||
	    (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
	    (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
	{
		Write8(0x6B);
		a1.WriteRest(this, 1, regOp);
		Write8((u8)a2.offset);
	}
	else
	{
		Write8(0x69);
		if (a2.GetImmBits() == 16 && bits == 16)
		{
			a1.WriteRest(this, 2, regOp);
			Write16((u16)a2.offset);
		}
		else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
		{
			a1.WriteRest(this, 4, regOp);
			Write32((u32)a2.offset);
		}
		else
		{
			_assert_msg_(DYNA_REC, 0, "IMUL - unhandled case!");
		}
	}
}
void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
{
	CheckFlags();
	if (bits == 8)
	{
		_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
		return;
	}
	if (a.IsImm())
	{
		IMUL(bits, regOp, R(regOp), a) ;
		return;
	}
	if (bits == 16)
		Write8(0x66);
	a.WriteREX(this, bits, bits, regOp);
	Write8(0x0F);
	Write8(0xAF);
	a.WriteRest(this, 0, regOp);
}
void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
{
	if (opPrefix)
		Write8(opPrefix);
	arg.operandReg = regOp;
	arg.WriteREX(this, 0, 0);
	Write8(0x0F);
	if (op > 0xFF)
		Write8((op >> 8) & 0xFF);
	Write8(op & 0xFF);
	arg.WriteRest(this, extrabytes);
}
static int GetVEXmmmmm(u16 op)
{
	// Currently, only 0x38 and 0x3A are used as secondary escape byte.
	if ((op >> 8) == 0x3A)
		return 3;
	else if ((op >> 8) == 0x38)
		return 2;
	else
		return 1;
}
static int GetVEXpp(u8 opPrefix)
{
	if (opPrefix == 0x66)
		return 1;
	else if (opPrefix == 0xF3)
		return 2;
	else if (opPrefix == 0xF2)
		return 3;
	else
		return 0;
}
void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W, int extrabytes)
{
	int mmmmm = GetVEXmmmmm(op);
	int pp = GetVEXpp(opPrefix);
	// FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
	arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W);
	Write8(op & 0xFF);
	arg.WriteRest(this, extrabytes, regOp1);
}
void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3, int W)
{
	WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1);
	Write8((u8)regOp3 << 4);
}
void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W, int extrabytes)
{
	if (!cpu_info.bAVX)
		PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer.");
	WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
}
void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3, int W)
{
	if (!cpu_info.bAVX)
		PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer.");
	WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W);
}
void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W)
{
	if (!cpu_info.bFMA)
		PanicAlert("Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd.");
	WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W);
}
void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W)
{
	if (!cpu_info.bFMA4)
		PanicAlert("Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd.");
	WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W);
}
void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
	if (arg.IsImm())
		PanicAlert("BMI1/2 instructions don't support immediate operands.");
	if (size != 32 && size != 64)
		PanicAlert("BMI1/2 instructions only support 32-bit and 64-bit modes!");
	int W = size == 64;
	WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
}
void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
	CheckFlags();
	if (!cpu_info.bBMI1)
		PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
	WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes)
{
	if (!cpu_info.bBMI2)
		PanicAlert("Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
	WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x6E, dest, arg, 0);}
void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src) {WriteSSEOp(0x66, 0x7E, src, arg, 0);}
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
{
		// Alternate encoding
		// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
		arg.operandReg = dest;
		Write8(0x66);
		arg.WriteREX(this, 64, 0);
		Write8(0x0f);
		Write8(0x6E);
		arg.WriteRest(this, 0);
}
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
{
	if (src > 7 || arg.IsSimpleReg())
	{
		// Alternate encoding
		// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
		arg.operandReg = src;
		Write8(0x66);
		arg.WriteREX(this, 64, 0);
		Write8(0x0f);
		Write8(0x7E);
		arg.WriteRest(this, 0);
	}
	else
	{
		arg.operandReg = src;
		arg.WriteREX(this, 0, 0);
		Write8(0x66);
		Write8(0x0f);
		Write8(0xD6);
		arg.WriteRest(this, 0);
	}
}
void XEmitter::WriteMXCSR(OpArg arg, int ext)
{
	if (arg.IsImm() || arg.IsSimpleReg())
		_assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand");
	arg.operandReg = ext;
	arg.WriteREX(this, 0, 0);
	Write8(0x0F);
	Write8(0xAE);
	arg.WriteRest(this);
}
void XEmitter::STMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 3);}
void XEmitter::LDMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 2);}
void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);}
void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);}
void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);}
void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseADD, regOp, arg);}
void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseADD, regOp, arg);}
void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseSUB, regOp, arg);}
void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseSUB, regOp, arg);}
void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);}
void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);}
void XEmitter::MULSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseMUL, regOp, arg);}
void XEmitter::MULSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseMUL, regOp, arg);}
void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseDIV, regOp, arg);}
void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseDIV, regOp, arg);}
void XEmitter::MINSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseMIN, regOp, arg);}
void XEmitter::MINSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseMIN, regOp, arg);}
void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseMAX, regOp, arg);}
void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseMAX, regOp, arg);}
void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0xF3, sseSQRT, regOp, arg);}
void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0xF2, sseSQRT, regOp, arg);}
void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseRCP, regOp, arg);}
void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);}
void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseADD, regOp, arg);}
void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseADD, regOp, arg);}
void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseSUB, regOp, arg);}
void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseSUB, regOp, arg);}
void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);}
void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);}
void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseAND, regOp, arg);}
void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseAND, regOp, arg);}
void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseANDN, regOp, arg);}
void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseANDN, regOp, arg);}
void XEmitter::ORPS(X64Reg regOp, const OpArg& arg)    {WriteSSEOp(0x00, sseOR, regOp, arg);}
void XEmitter::ORPD(X64Reg regOp, const OpArg& arg)    {WriteSSEOp(0x66, sseOR, regOp, arg);}
void XEmitter::XORPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseXOR, regOp, arg);}
void XEmitter::XORPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseXOR, regOp, arg);}
void XEmitter::MULPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseMUL, regOp, arg);}
void XEmitter::MULPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseMUL, regOp, arg);}
void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseDIV, regOp, arg);}
void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseDIV, regOp, arg);}
void XEmitter::MINPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseMIN, regOp, arg);}
void XEmitter::MINPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseMIN, regOp, arg);}
void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseMAX, regOp, arg);}
void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x66, sseMAX, regOp, arg);}
void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseSQRT, regOp, arg);}
void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseSQRT, regOp, arg);}
void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0x00, sseRCP, regOp, arg);}
void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);}
void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);}
void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);}
void XEmitter::COMISS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed
void XEmitter::COMISD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered
void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered
void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);}
void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);}
void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);}
void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);}
void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);}
void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);}
void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);}
void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);}
void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);}
void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);}
void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);}
void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);}
void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);}
void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);}
void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg)   {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);}
void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp)   {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);}
void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp)   {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);}
void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg);}
void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg);}
void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg);}
void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg);}
void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg);}
void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg)  {WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg);}
void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg);}
void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp)  {WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg);}
void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));}
void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));}
void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);}
void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);}
void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);}
void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);}
void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);}
void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);}
void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);}
void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);}
void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);}
void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);}
void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);}
void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);}
void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);}
void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);}
void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);}
void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);}
void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src)  {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));}
void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x50, dest, arg);}
void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x50, dest, arg);}
void XEmitter::LDDQU(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only
void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x14, dest, arg);}
void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x15, dest, arg);}
void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x14, dest, arg);}
void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x15, dest, arg);}
// Pretty much every x86 CPU nowadays supports SSE3,
// but the SSE2 fallbacks are easy.
void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg)
{
	if (cpu_info.bSSE3)
	{
		WriteSSEOp(0xF3, 0x12, regOp, arg);
	}
	else
	{
		if (!arg.IsSimpleReg(regOp))
			MOVAPD(regOp, arg);
		UNPCKLPS(regOp, R(regOp));
	}
}
void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg)
{
	if (cpu_info.bSSE3)
	{
		WriteSSEOp(0xF3, 0x16, regOp, arg);
	}
	else
	{
		if (!arg.IsSimpleReg(regOp))
			MOVAPD(regOp, arg);
		UNPCKHPS(regOp, R(regOp));
	}
}
void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
{
	if (cpu_info.bSSE3)
	{
		WriteSSEOp(0xF2, 0x12, regOp, arg);
	}
	else
	{
		if (!arg.IsSimpleReg(regOp))
			MOVSD(regOp, arg);
		UNPCKLPD(regOp, R(regOp));
	}
}
//There are a few more left
// Also some integer instructions are missing
void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x6B, dest, arg);}
void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x63, dest, arg);}
void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x67, dest, arg);}
void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x60, dest, arg);}
void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x61, dest, arg);}
void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x62, dest, arg);}
void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x6C, dest, arg);}
void XEmitter::PSRLW(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
	Write8(shift);
}
void XEmitter::PSRLD(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
	Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
	Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg)
{
	WriteSSEOp(0x66, 0xd3, reg, arg);
}
void XEmitter::PSRLDQ(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg));
	Write8(shift);
}
void XEmitter::PSLLW(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
	Write8(shift);
}
void XEmitter::PSLLD(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
	Write8(shift);
}
void XEmitter::PSLLQ(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
	Write8(shift);
}
void XEmitter::PSLLDQ(X64Reg reg, int shift)
{
	WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg));
	Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAW(X64Reg reg, int shift)
{
	if (reg > 7)
		PanicAlert("The PSRAW-emitter does not support regs above 7");
	Write8(0x66);
	Write8(0x0f);
	Write8(0x71);
	Write8(0xE0 | reg);
	Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAD(X64Reg reg, int shift)
{
	if (reg > 7)
		PanicAlert("The PSRAD-emitter does not support regs above 7");
	Write8(0x66);
	Write8(0x0f);
	Write8(0x72);
	Write8(0xE0 | reg);
	Write8(shift);
}
void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
	if (!cpu_info.bSSSE3)
		PanicAlert("Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
	WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
	if (!cpu_info.bSSE4_1)
		PanicAlert("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
	WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg)   {WriteSSSE3Op(0x66, 0x3800, dest, arg);}
void XEmitter::PTEST(X64Reg dest, const OpArg& arg)    {WriteSSE41Op(0x66, 0x3817, dest, arg);}
void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);}
void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);}
void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);}
void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);}
void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);}
void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);}
void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);}
void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);}
void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);}
void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);}
void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);}
void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);}
void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);}
void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);}
void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);}
void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);}
void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) {WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend);}
void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) {WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend);}
void XEmitter::PAND(X64Reg dest, const OpArg& arg)     {WriteSSEOp(0x66, 0xDB, dest, arg);}
void XEmitter::PANDN(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xDF, dest, arg);}
void XEmitter::PXOR(X64Reg dest, const OpArg& arg)     {WriteSSEOp(0x66, 0xEF, dest, arg);}
void XEmitter::POR(X64Reg dest, const OpArg& arg)      {WriteSSEOp(0x66, 0xEB, dest, arg);}
void XEmitter::PADDB(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xFC, dest, arg);}
void XEmitter::PADDW(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xFD, dest, arg);}
void XEmitter::PADDD(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xFE, dest, arg);}
void XEmitter::PADDQ(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xD4, dest, arg);}
void XEmitter::PADDSB(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xEC, dest, arg);}
void XEmitter::PADDSW(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xED, dest, arg);}
void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0xDC, dest, arg);}
void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0xDD, dest, arg);}
void XEmitter::PSUBB(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xF8, dest, arg);}
void XEmitter::PSUBW(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xF9, dest, arg);}
void XEmitter::PSUBD(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xFA, dest, arg);}
void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xFB, dest, arg);}
void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xE8, dest, arg);}
void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xE9, dest, arg);}
void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0xD8, dest, arg);}
void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0xD9, dest, arg);}
void XEmitter::PAVGB(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xE0, dest, arg);}
void XEmitter::PAVGW(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xE3, dest, arg);}
void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0x74, dest, arg);}
void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0x75, dest, arg);}
void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0x76, dest, arg);}
void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0x64, dest, arg);}
void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0x65, dest, arg);}
void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0x66, dest, arg);}
void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg); Write8(subreg);}
void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg); Write8(subreg);}
void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSE41Op(0x66, 0x3A22, dest, arg); Write8(subreg);}
void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg)  {WriteSSEOp(0x66, 0xF5, dest, arg); }
void XEmitter::PSADBW(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xF6, dest, arg);}
void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xEE, dest, arg); }
void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xDE, dest, arg); }
void XEmitter::PMINSW(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xEA, dest, arg); }
void XEmitter::PMINUB(X64Reg dest, const OpArg& arg)   {WriteSSEOp(0x66, 0xDA, dest, arg); }
void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg)    {WriteSSEOp(0x66, 0xD7, dest, arg); }
void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle)    {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);}
void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle)   {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);}
void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle)   {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);}
// VEX
void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);}
void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);}
void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);}
void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);}
void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);}
void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);}
void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);}
void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);}
void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)  {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);}
void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare)  {WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1); Write8(compare);}
void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1); Write8(shuffle);}
void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);}
void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);}
void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3) {WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3);}
void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg);}
void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg);}
void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)  {WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg);}
void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)  {WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg);}
void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg);}
void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg);}
void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg);}
void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg);}
void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg);}
void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg);}
void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)     {WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg);}
void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg);}
void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x98, regOp1, regOp2, arg);}
void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xA8, regOp1, regOp2, arg);}
void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xB8, regOp1, regOp2, arg);}
void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x98, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x99, regOp1, regOp2, arg);}
void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xA9, regOp1, regOp2, arg);}
void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xB9, regOp1, regOp2, arg);}
void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x99, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x9A, regOp1, regOp2, arg);}
void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xAA, regOp1, regOp2, arg);}
void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xBA, regOp1, regOp2, arg);}
void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x9B, regOp1, regOp2, arg);}
void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xAB, regOp1, regOp2, arg);}
void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xBB, regOp1, regOp2, arg);}
void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)    {WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9C, regOp1, regOp2, arg);}
void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAC, regOp1, regOp2, arg);}
void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBC, regOp1, regOp2, arg);}
void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9D, regOp1, regOp2, arg);}
void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAD, regOp1, regOp2, arg);}
void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBD, regOp1, regOp2, arg);}
void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9E, regOp1, regOp2, arg);}
void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAE, regOp1, regOp2, arg);}
void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBE, regOp1, regOp2, arg);}
void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9F, regOp1, regOp2, arg);}
void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAF, regOp1, regOp2, arg);}
void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBF, regOp1, regOp2, arg);}
void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1);}
void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)   {WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0x96, regOp1, regOp2, arg);}
void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xA6, regOp1, regOp2, arg);}
void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xB6, regOp1, regOp2, arg);}
void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0x96, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1);}
void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0x97, regOp1, regOp2, arg);}
void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xA7, regOp1, regOp2, arg);}
void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xB7, regOp1, regOp2, arg);}
void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0x97, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1);}
void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1);}
#define FMA4(name, op) \
void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1);} \
void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0);}
FMA4(VFMADDSUBPS, 0x5C)
FMA4(VFMADDSUBPD, 0x5D)
FMA4(VFMSUBADDPS, 0x5E)
FMA4(VFMSUBADDPD, 0x5F)
FMA4(VFMADDPS, 0x68)
FMA4(VFMADDPD, 0x69)
FMA4(VFMADDSS, 0x6A)
FMA4(VFMADDSD, 0x6B)
FMA4(VFMSUBPS, 0x6C)
FMA4(VFMSUBPD, 0x6D)
FMA4(VFMSUBSS, 0x6E)
FMA4(VFMSUBSD, 0x6F)
FMA4(VFNMADDPS, 0x78)
FMA4(VFNMADDPD, 0x79)
FMA4(VFNMADDSS, 0x7A)
FMA4(VFNMADDSD, 0x7B)
FMA4(VFNMSUBPS, 0x7C)
FMA4(VFNMSUBPD, 0x7D)
FMA4(VFNMSUBSS, 0x7E)
FMA4(VFNMSUBSD, 0x7F)
#undef FMA4
void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);}
void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);}
void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);}
void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate)      {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);}
void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);}
void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);}
void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);}
void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {CheckFlags(); WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);}
void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg)                 {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);}
void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg)               {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);}
void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg)                 {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);}
void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);}
void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);}
// Prefixes
void XEmitter::LOCK()  { Write8(0xF0); }
void XEmitter::REP()   { Write8(0xF3); }
void XEmitter::REPNE() { Write8(0xF2); }
void XEmitter::FSOverride() { Write8(0x64); }
void XEmitter::GSOverride() { Write8(0x65); }
void XEmitter::FWAIT()
{
	Write8(0x9B);
}
// TODO: make this more generic
void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg)
{
	int mf = 0;
	_assert_msg_(DYNA_REC, !(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction");
	switch (bits)
	{
	case 32: mf = 0; break;
	case 64: mf = 4; break;
	case 80: mf = 2; break;
	default: _assert_msg_(DYNA_REC, 0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
	}
	Write8(0xd9 | mf);
	// x87 instructions use the reg field of the ModR/M byte as opcode:
	if (bits == 80)
		op = op_80b;
	arg.WriteRest(this, 0, (X64Reg) op);
}
void XEmitter::FLD(int bits, const OpArg& src)   { WriteFloatLoadStore(bits, floatLD, floatLD80, src); }
void XEmitter::FST(int bits, const OpArg& dest)  { WriteFloatLoadStore(bits, floatST, floatINVALID, dest); }
void XEmitter::FSTP(int bits, const OpArg& dest) { WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest); }
void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); }
void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); }
}
 
     |