1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// Dolby Pro Logic 2 decoder from ffdshow-tryout
// * Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
// * Copyright (c) 2004-2006 Milan Cutka
// * based on mplayer HRTF plugin by ylai
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <string.h>
#include <vector>
#include "AudioCommon/DPL2Decoder.h"
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif
static int olddelay = -1;
static unsigned int oldfreq = 0;
static unsigned int dlbuflen;
static int cyc_pos;
static float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
static std::vector<float> fwrbuf_l, fwrbuf_r;
static float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
static std::vector<float> lf, rf, lr, rr, cf, cr;
static float LFE_buf[256];
static unsigned int lfe_pos;
static float *filter_coefs_lfe;
static unsigned int len125;
template<class T, class _ftype_t>
static _ftype_t DotProduct(int count, const T *buf, const _ftype_t *coefficients)
{
int i;
float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f, sum3 = 0.0f;
// Unrolled loop
for (i = 0; (i + 3) < count; i += 4)
{
sum0 += buf[i + 0] * coefficients[i + 0];
sum1 += buf[i + 1] * coefficients[i + 1];
sum2 += buf[i + 2] * coefficients[i + 2];
sum3 += buf[i + 3] * coefficients[i + 3];
}
// Epilogue of unrolled loop
for (; i < count; i++)
sum0 += buf[i] * coefficients[i];
return sum0 + sum1 + sum2 + sum3;
}
template<class T>
static T FIRFilter(const T *buf, int pos, int len, int count, const float *coefficients)
{
int count1, count2;
if (pos >= count)
{
pos -= count;
count1 = count; count2 = 0;
}
else
{
count2 = pos;
count1 = count - pos;
pos = len - count1;
}
// high part of window
const T *ptr = &buf[pos];
float r1 = DotProduct(count1, ptr, coefficients); coefficients += count1;
float r2 = DotProduct(count2, buf, coefficients);
return T(r1 + r2);
}
/*
// Hamming
// 2*pi*k
// w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
// N-1
//
// n window length
// w buffer for the window parameters
*/
static void Hamming(int n, float* w)
{
float k = float(2*M_PI/((float)(n - 1))); // 2*pi/(N-1)
// Calculate window coefficients
for (int i = 0; i < n; i++)
*w++ = float(0.54 - 0.46*cos(k*(float)i));
}
/******************************************************************************
* FIR filter design
******************************************************************************/
/* Design FIR filter using the Window method
n filter length must be odd for HP and BS filters
w buffer for the filter taps (must be n long)
fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
0 < fc < 1 where 1 <=> Fs/2
flags window and filter type as defined in filter.h
variables are ored together: i.e. LP|HAMMING will give a
low pass filter designed using a hamming window
opt beta constant used only when designing using kaiser windows
returns 0 if OK, -1 if fail
*/
static float* DesignFIR(unsigned int *n, float* fc, float opt)
{
unsigned int o = *n & 1; // Indicator for odd filter length
unsigned int end = ((*n + 1) >> 1) - o; // Loop end
float k1 = 2 * float(M_PI); // 2*pi*fc1
float k2 = 0.5f * (float)(1 - o); // Constant used if the filter has even length
float g = 0.0f; // Gain
float t1; // Temporary variables
float fc1; // Cutoff frequencies
// Sanity check
if (*n == 0)
return nullptr;
fc[0] = MathUtil::Clamp(fc[0], 0.001f, 1.0f);
float *w = (float*)calloc(sizeof(float), *n);
// Get window coefficients
Hamming(*n, w);
fc1 = *fc;
// Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1 / 2 : 0.25f;
k1 *= fc1;
// Low pass filter
// If the filter length is odd, there is one point which is exactly
// in the middle. The value at this point is 2*fCutoff*sin(x)/x,
// where x is zero. To make sure nothing strange happens, we set this
// value separately.
if (o)
{
w[end] = fc1 * w[end] * 2.0f;
g = w[end];
}
// Create filter
for (u32 i = 0; i < end; i++)
{
t1 = (float)(i + 1) - k2;
w[end - i - 1] = w[*n - end + i] = float(w[end - i - 1] * sin(k1 * t1)/(M_PI * t1)); // Sinc
g += 2*w[end - i - 1]; // Total gain in filter
}
// Normalize gain
g = 1/g;
for (u32 i = 0; i < *n; i++)
w[i] *= g;
return w;
}
static void OnSeek()
{
l_fwr = r_fwr = lpr_fwr = lmr_fwr = 0;
std::fill(fwrbuf_l.begin(), fwrbuf_l.end(), 0.0f);
std::fill(fwrbuf_r.begin(), fwrbuf_r.end(), 0.0f);
adapt_l_gain = adapt_r_gain = adapt_lpr_gain = adapt_lmr_gain = 0;
std::fill(lf.begin(), lf.end(), 0.0f);
std::fill(rf.begin(), rf.end(), 0.0f);
std::fill(lr.begin(), lr.end(), 0.0f);
std::fill(rr.begin(), rr.end(), 0.0f);
std::fill(cf.begin(), cf.end(), 0.0f);
std::fill(cr.begin(), cr.end(), 0.0f);
lfe_pos = 0;
memset(LFE_buf, 0, sizeof(LFE_buf));
}
static void Done()
{
OnSeek();
if (filter_coefs_lfe)
{
free(filter_coefs_lfe);
}
filter_coefs_lfe = nullptr;
}
static float* CalculateCoefficients125HzLowpass(int rate)
{
len125 = 256;
float f = 125.0f / (rate / 2);
float *coeffs = DesignFIR(&len125, &f, 0);
static const float M3_01DB = 0.7071067812f;
for (unsigned int i = 0; i < len125; i++)
{
coeffs[i] *= M3_01DB;
}
return coeffs;
}
static float PassiveLock(float x)
{
static const float MATAGCLOCK = 0.2f; /* AGC range (around 1) where the matrix behaves passively */
const float x1 = x - 1;
const float ax1s = fabs(x - 1) * (1.0f / MATAGCLOCK);
return x1 - x1 / (1 + ax1s * ax1s) + 1;
}
static void MatrixDecode(const float *in, const int k, const int il,
const int ir, bool decode_rear,
const int _dlbuflen,
float _l_fwr, float _r_fwr,
float _lpr_fwr, float _lmr_fwr,
float *_adapt_l_gain, float *_adapt_r_gain,
float *_adapt_lpr_gain, float *_adapt_lmr_gain,
float *_lf, float *_rf, float *_lr,
float *_rr, float *_cf)
{
static const float M9_03DB = 0.3535533906f;
static const float MATAGCTRIG = 8.0f; /* (Fuzzy) AGC trigger */
static const float MATAGCDECAY = 1.0f; /* AGC baseline decay rate (1/samp.) */
static const float MATCOMPGAIN = 0.37f; /* Cross talk compensation gain, 0.50 - 0.55 is full cancellation. */
const int kr = (k + olddelay) % _dlbuflen;
float l_gain = (_l_fwr + _r_fwr) / (1 + _l_fwr + _l_fwr);
float r_gain = (_l_fwr + _r_fwr) / (1 + _r_fwr + _r_fwr);
// The 2nd axis has strong gain fluctuations, and therefore require
// limits. The factor corresponds to the 1 / amplification of (Lt
// - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
// dialogues). It should be bigger than -12 dB to prevent
// distortion.
float lmr_lim_fwr = _lmr_fwr > M9_03DB * _lpr_fwr ? _lmr_fwr : M9_03DB * _lpr_fwr;
float lpr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + _lpr_fwr + _lpr_fwr);
float lmr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + lmr_lim_fwr + lmr_lim_fwr);
float lmr_unlim_gain = (_lpr_fwr + _lmr_fwr) / (1 + _lmr_fwr + _lmr_fwr);
float lpr, lmr;
float l_agc, r_agc, lpr_agc, lmr_agc;
float f, d_gain, c_gain, c_agc_cfk;
/*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
/* AGC adaption */
d_gain = (fabs(l_gain - *_adapt_l_gain) + fabs(r_gain - *_adapt_r_gain)) * 0.5f;
f = d_gain * (1.0f / MATAGCTRIG);
f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
*_adapt_l_gain = (1 - f) * *_adapt_l_gain + f * l_gain;
*_adapt_r_gain = (1 - f) * *_adapt_r_gain + f * r_gain;
/* Matrix */
l_agc = in[il] * PassiveLock(*_adapt_l_gain);
r_agc = in[ir] * PassiveLock(*_adapt_r_gain);
_cf[k] = (l_agc + r_agc) * (float)M_SQRT1_2;
if (decode_rear)
{
_lr[kr] = _rr[kr] = (l_agc - r_agc) * (float)M_SQRT1_2;
// Stereo rear channel is steered with the same AGC steering as
// the decoding matrix. Note this requires a fast updating AGC
// at the order of 20 ms (which is the case here).
_lr[kr] *= (_l_fwr + _l_fwr) / (1 + _l_fwr + _r_fwr);
_rr[kr] *= (_r_fwr + _r_fwr) / (1 + _l_fwr + _r_fwr);
}
/*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
lpr = (in[il] + in[ir]) * (float)M_SQRT1_2;
lmr = (in[il] - in[ir]) * (float)M_SQRT1_2;
/* AGC adaption */
d_gain = fabs(lmr_unlim_gain - *_adapt_lmr_gain);
f = d_gain * (1.0f / MATAGCTRIG);
f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
*_adapt_lpr_gain = (1 - f) * *_adapt_lpr_gain + f * lpr_gain;
*_adapt_lmr_gain = (1 - f) * *_adapt_lmr_gain + f * lmr_gain;
/* Matrix */
lpr_agc = lpr * PassiveLock(*_adapt_lpr_gain);
lmr_agc = lmr * PassiveLock(*_adapt_lmr_gain);
_lf[k] = (lpr_agc + lmr_agc) * (float)M_SQRT1_2;
_rf[k] = (lpr_agc - lmr_agc) * (float)M_SQRT1_2;
/*** CENTER FRONT CANCELLATION ***/
// A heuristic approach exploits that Lt + Rt gain contains the
// information about Lt, Rt correlation. This effectively reshapes
// the front and rear "cones" to concentrate Lt + Rt to C and
// introduce Lt - Rt in L, R.
/* 0.67677 is the empirical lower bound for lpr_gain. */
c_gain = 8 * (*_adapt_lpr_gain - 0.67677f);
c_gain = c_gain > 0 ? c_gain : 0;
// c_gain should not be too high, not even reaching full
// cancellation (~ 0.50 - 0.55 at current AGC implementation), or
// the center will sound too narrow. */
c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
c_agc_cfk = c_gain * _cf[k];
_lf[k] -= c_agc_cfk;
_rf[k] -= c_agc_cfk;
_cf[k] += c_agc_cfk + c_agc_cfk;
}
void DPL2Decode(float *samples, int numsamples, float *out)
{
static const unsigned int FWRDURATION = 240; // FWR average duration (samples)
static const int cfg_delay = 0;
static const unsigned int fmt_freq = 48000;
static const unsigned int fmt_nchannels = 2; // input channels
int cur = 0;
if (olddelay != cfg_delay || oldfreq != fmt_freq)
{
Done();
olddelay = cfg_delay;
oldfreq = fmt_freq;
dlbuflen = std::max(FWRDURATION, (fmt_freq * cfg_delay / 1000)); //+(len7000-1);
cyc_pos = dlbuflen - 1;
fwrbuf_l.resize(dlbuflen);
fwrbuf_r.resize(dlbuflen);
lf.resize(dlbuflen);
rf.resize(dlbuflen);
lr.resize(dlbuflen);
rr.resize(dlbuflen);
cf.resize(dlbuflen);
cr.resize(dlbuflen);
filter_coefs_lfe = CalculateCoefficients125HzLowpass(fmt_freq);
lfe_pos = 0;
memset(LFE_buf, 0, sizeof(LFE_buf));
}
float *in = samples; // Input audio data
float *end = in + numsamples * fmt_nchannels; // Loop end
while (in < end)
{
const int k = cyc_pos;
const int fwr_pos = (k + FWRDURATION) % dlbuflen;
/* Update the full wave rectified total amplitude */
/* Input matrix decoder */
l_fwr += fabs(in[0]) - fabs(fwrbuf_l[fwr_pos]);
r_fwr += fabs(in[1]) - fabs(fwrbuf_r[fwr_pos]);
lpr_fwr += fabs(in[0] + in[1]) - fabs(fwrbuf_l[fwr_pos] + fwrbuf_r[fwr_pos]);
lmr_fwr += fabs(in[0] - in[1]) - fabs(fwrbuf_l[fwr_pos] - fwrbuf_r[fwr_pos]);
/* Matrix encoded 2 channel sources */
fwrbuf_l[k] = in[0];
fwrbuf_r[k] = in[1];
MatrixDecode(in, k, 0, 1, true, dlbuflen,
l_fwr, r_fwr,
lpr_fwr, lmr_fwr,
&adapt_l_gain, &adapt_r_gain,
&adapt_lpr_gain, &adapt_lmr_gain,
&lf[0], &rf[0], &lr[0], &rr[0], &cf[0]);
out[cur + 0] = lf[k];
out[cur + 1] = rf[k];
out[cur + 2] = cf[k];
LFE_buf[lfe_pos] = (lf[k] + rf[k] + 2.0f * cf[k] + lr[k] + rr[k]) / 2.0f;
out[cur + 3] = FIRFilter(LFE_buf, lfe_pos, len125, len125, filter_coefs_lfe);
lfe_pos++;
if (lfe_pos == len125)
{
lfe_pos = 0;
}
out[cur + 4] = lr[k];
out[cur + 5] = rr[k];
// Next sample...
in += 2;
cur += 6;
cyc_pos--;
if (cyc_pos < 0)
{
cyc_pos += dlbuflen;
}
}
}
void DPL2Reset()
{
olddelay = -1;
oldfreq = 0;
filter_coefs_lfe = nullptr;
}
|