File: DPL2Decoder.cpp

package info (click to toggle)
dolphin-emu 5.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 29,052 kB
  • sloc: cpp: 213,146; java: 6,252; asm: 2,277; xml: 1,998; ansic: 1,514; python: 462; sh: 279; pascal: 247; makefile: 124; perl: 97
file content (395 lines) | stat: -rw-r--r-- 11,794 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

// Dolby Pro Logic 2 decoder from ffdshow-tryout
//  * Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
//  * Copyright (c) 2004-2006 Milan Cutka
//  * based on mplayer HRTF plugin by ylai

#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <string.h>
#include <vector>

#include "AudioCommon/DPL2Decoder.h"
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif

static int olddelay = -1;
static unsigned int oldfreq = 0;
static unsigned int dlbuflen;
static int cyc_pos;
static float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
static std::vector<float> fwrbuf_l, fwrbuf_r;
static float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
static std::vector<float> lf, rf, lr, rr, cf, cr;
static float LFE_buf[256];
static unsigned int lfe_pos;
static float *filter_coefs_lfe;
static unsigned int len125;

template<class T, class _ftype_t>
static _ftype_t DotProduct(int count, const T *buf, const _ftype_t *coefficients)
{
	int i;
	float sum0 = 0.0f, sum1 = 0.0f, sum2 = 0.0f, sum3 = 0.0f;

	// Unrolled loop
	for (i = 0; (i + 3) < count; i += 4)
	{
		sum0 += buf[i + 0] * coefficients[i + 0];
		sum1 += buf[i + 1] * coefficients[i + 1];
		sum2 += buf[i + 2] * coefficients[i + 2];
		sum3 += buf[i + 3] * coefficients[i + 3];
	}

	// Epilogue of unrolled loop
	for (; i < count; i++)
		sum0 += buf[i] * coefficients[i];

	return sum0 + sum1 + sum2 + sum3;
}

template<class T>
static T FIRFilter(const T *buf, int pos, int len, int count, const float *coefficients)
{
	int count1, count2;

	if (pos >= count)
	{
		pos -= count;
		count1 = count; count2 = 0;
	}
	else
	{
		count2 = pos;
		count1 = count - pos;
		pos = len - count1;
	}

	// high part of window
	const T *ptr = &buf[pos];

	float r1 = DotProduct(count1, ptr, coefficients); coefficients += count1;
	float r2 = DotProduct(count2, buf, coefficients);
	return T(r1 + r2);
}

/*
// Hamming
//                        2*pi*k
// w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
//                         N-1
//
// n window length
// w buffer for the window parameters
*/
static void Hamming(int n, float* w)
{
	float k = float(2*M_PI/((float)(n - 1))); // 2*pi/(N-1)

	// Calculate window coefficients
	for (int i = 0; i < n; i++)
		*w++ = float(0.54 - 0.46*cos(k*(float)i));
}

/******************************************************************************
*  FIR filter design
******************************************************************************/

/* Design FIR filter using the Window method

n     filter length must be odd for HP and BS filters
w     buffer for the filter taps (must be n long)
fc    cutoff frequencies (1 for LP and HP, 2 for BP and BS)
0 < fc < 1 where 1 <=> Fs/2
flags window and filter type as defined in filter.h
variables are ored together: i.e. LP|HAMMING will give a
low pass filter designed using a hamming window
opt   beta constant used only when designing using kaiser windows

returns 0 if OK, -1 if fail
*/
static float* DesignFIR(unsigned int *n, float* fc, float opt)
{
	unsigned int  o = *n & 1;                // Indicator for odd filter length
	unsigned int  end = ((*n + 1) >> 1) - o; // Loop end

	float k1 = 2 * float(M_PI);              // 2*pi*fc1
	float k2 = 0.5f * (float)(1 - o);        // Constant used if the filter has even length
	float g = 0.0f;                          // Gain
	float t1;                                // Temporary variables
	float fc1;                               // Cutoff frequencies

	// Sanity check
	if (*n == 0)
		return nullptr;

	fc[0] = MathUtil::Clamp(fc[0], 0.001f, 1.0f);

	float *w = (float*)calloc(sizeof(float), *n);

	// Get window coefficients
	Hamming(*n, w);

	fc1 = *fc;
	// Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
	fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1 / 2 : 0.25f;
	k1 *= fc1;

	// Low pass filter

	// If the filter length is odd, there is one point which is exactly
	// in the middle. The value at this point is 2*fCutoff*sin(x)/x,
	// where x is zero. To make sure nothing strange happens, we set this
	// value separately.
	if (o)
	{
		w[end] = fc1 * w[end] * 2.0f;
		g = w[end];
	}

	// Create filter
	for (u32 i = 0; i < end; i++)
	{
		t1 = (float)(i + 1) - k2;
		w[end - i - 1] = w[*n - end + i] = float(w[end - i - 1] * sin(k1 * t1)/(M_PI * t1)); // Sinc
		g += 2*w[end - i - 1]; // Total gain in filter
	}


	// Normalize gain
	g = 1/g;
	for (u32 i = 0; i < *n; i++)
		w[i] *= g;

	return w;
}

static void OnSeek()
{
	l_fwr = r_fwr = lpr_fwr = lmr_fwr = 0;
	std::fill(fwrbuf_l.begin(), fwrbuf_l.end(), 0.0f);
	std::fill(fwrbuf_r.begin(), fwrbuf_r.end(), 0.0f);
	adapt_l_gain = adapt_r_gain = adapt_lpr_gain = adapt_lmr_gain = 0;
	std::fill(lf.begin(), lf.end(), 0.0f);
	std::fill(rf.begin(), rf.end(), 0.0f);
	std::fill(lr.begin(), lr.end(), 0.0f);
	std::fill(rr.begin(), rr.end(), 0.0f);
	std::fill(cf.begin(), cf.end(), 0.0f);
	std::fill(cr.begin(), cr.end(), 0.0f);
	lfe_pos = 0;
	memset(LFE_buf, 0, sizeof(LFE_buf));
}

static void Done()
{
	OnSeek();

	if (filter_coefs_lfe)
	{
		free(filter_coefs_lfe);
	}

	filter_coefs_lfe = nullptr;
}

static float* CalculateCoefficients125HzLowpass(int rate)
{
	len125 = 256;
	float f = 125.0f / (rate / 2);
	float *coeffs = DesignFIR(&len125, &f, 0);
	static const float M3_01DB = 0.7071067812f;
	for (unsigned int i = 0; i < len125; i++)
	{
		coeffs[i] *= M3_01DB;
	}
	return coeffs;
}

static float PassiveLock(float x)
{
	static const float MATAGCLOCK = 0.2f;  /* AGC range (around 1) where the matrix behaves passively */
	const float x1 = x - 1;
	const float ax1s = fabs(x - 1) * (1.0f / MATAGCLOCK);
	return x1 - x1 / (1 + ax1s * ax1s) + 1;
}

static void MatrixDecode(const float *in, const int k, const int il,
	const int ir, bool decode_rear,
	const int _dlbuflen,
	float _l_fwr, float _r_fwr,
	float _lpr_fwr, float _lmr_fwr,
	float *_adapt_l_gain, float *_adapt_r_gain,
	float *_adapt_lpr_gain, float *_adapt_lmr_gain,
	float *_lf, float *_rf, float *_lr,
	float *_rr, float *_cf)
{
	static const float M9_03DB = 0.3535533906f;
	static const float MATAGCTRIG = 8.0f;   /* (Fuzzy) AGC trigger */
	static const float MATAGCDECAY = 1.0f;  /* AGC baseline decay rate (1/samp.) */
	static const float MATCOMPGAIN = 0.37f; /* Cross talk compensation gain,  0.50 - 0.55 is full cancellation. */

	const int kr = (k + olddelay) % _dlbuflen;
	float l_gain = (_l_fwr + _r_fwr) / (1 + _l_fwr + _l_fwr);
	float r_gain = (_l_fwr + _r_fwr) / (1 + _r_fwr + _r_fwr);
	// The 2nd axis has strong gain fluctuations, and therefore require
	// limits.  The factor corresponds to the 1 / amplification of (Lt
	// - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
	// dialogues).  It should be bigger than -12 dB to prevent
	// distortion.
	float lmr_lim_fwr = _lmr_fwr > M9_03DB * _lpr_fwr ? _lmr_fwr : M9_03DB * _lpr_fwr;
	float lpr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + _lpr_fwr + _lpr_fwr);
	float lmr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + lmr_lim_fwr + lmr_lim_fwr);
	float lmr_unlim_gain = (_lpr_fwr + _lmr_fwr) / (1 + _lmr_fwr + _lmr_fwr);
	float lpr, lmr;
	float l_agc, r_agc, lpr_agc, lmr_agc;
	float f, d_gain, c_gain, c_agc_cfk;

	/*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
	/* AGC adaption */
	d_gain = (fabs(l_gain - *_adapt_l_gain) + fabs(r_gain - *_adapt_r_gain)) * 0.5f;
	f = d_gain * (1.0f / MATAGCTRIG);
	f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
	*_adapt_l_gain = (1 - f) * *_adapt_l_gain + f * l_gain;
	*_adapt_r_gain = (1 - f) * *_adapt_r_gain + f * r_gain;
	/* Matrix */
	l_agc = in[il] * PassiveLock(*_adapt_l_gain);
	r_agc = in[ir] * PassiveLock(*_adapt_r_gain);
	_cf[k] = (l_agc + r_agc) * (float)M_SQRT1_2;
	if (decode_rear)
	{
		_lr[kr] = _rr[kr] = (l_agc - r_agc) * (float)M_SQRT1_2;
		// Stereo rear channel is steered with the same AGC steering as
		// the decoding matrix. Note this requires a fast updating AGC
		// at the order of 20 ms (which is the case here).
		_lr[kr] *= (_l_fwr + _l_fwr) / (1 + _l_fwr + _r_fwr);
		_rr[kr] *= (_r_fwr + _r_fwr) / (1 + _l_fwr + _r_fwr);
	}

	/*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
	lpr = (in[il] + in[ir]) * (float)M_SQRT1_2;
	lmr = (in[il] - in[ir]) * (float)M_SQRT1_2;
	/* AGC adaption */
	d_gain = fabs(lmr_unlim_gain - *_adapt_lmr_gain);
	f = d_gain * (1.0f / MATAGCTRIG);
	f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
	*_adapt_lpr_gain = (1 - f) * *_adapt_lpr_gain + f * lpr_gain;
	*_adapt_lmr_gain = (1 - f) * *_adapt_lmr_gain + f * lmr_gain;
	/* Matrix */
	lpr_agc = lpr * PassiveLock(*_adapt_lpr_gain);
	lmr_agc = lmr * PassiveLock(*_adapt_lmr_gain);
	_lf[k] = (lpr_agc + lmr_agc) * (float)M_SQRT1_2;
	_rf[k] = (lpr_agc - lmr_agc) * (float)M_SQRT1_2;

	/*** CENTER FRONT CANCELLATION ***/
	// A heuristic approach exploits that Lt + Rt gain contains the
	// information about Lt, Rt correlation.  This effectively reshapes
	// the front and rear "cones" to concentrate Lt + Rt to C and
	// introduce Lt - Rt in L, R.
	/* 0.67677 is the empirical lower bound for lpr_gain. */
	c_gain = 8 * (*_adapt_lpr_gain - 0.67677f);
	c_gain = c_gain > 0 ? c_gain : 0;
	// c_gain should not be too high, not even reaching full
	// cancellation (~ 0.50 - 0.55 at current AGC implementation), or
	// the center will sound too narrow. */
	c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
	c_agc_cfk = c_gain * _cf[k];
	_lf[k] -= c_agc_cfk;
	_rf[k] -= c_agc_cfk;
	_cf[k] += c_agc_cfk + c_agc_cfk;
}

void DPL2Decode(float *samples, int numsamples, float *out)
{
	static const unsigned int FWRDURATION = 240; // FWR average duration (samples)
	static const int cfg_delay = 0;
	static const unsigned int fmt_freq = 48000;
	static const unsigned int fmt_nchannels = 2; // input channels

	int cur = 0;

	if (olddelay != cfg_delay || oldfreq != fmt_freq)
	{
		Done();
		olddelay = cfg_delay;
		oldfreq = fmt_freq;
		dlbuflen = std::max(FWRDURATION, (fmt_freq * cfg_delay / 1000)); //+(len7000-1);
		cyc_pos = dlbuflen - 1;
		fwrbuf_l.resize(dlbuflen);
		fwrbuf_r.resize(dlbuflen);
		lf.resize(dlbuflen);
		rf.resize(dlbuflen);
		lr.resize(dlbuflen);
		rr.resize(dlbuflen);
		cf.resize(dlbuflen);
		cr.resize(dlbuflen);
		filter_coefs_lfe = CalculateCoefficients125HzLowpass(fmt_freq);
		lfe_pos = 0;
		memset(LFE_buf, 0, sizeof(LFE_buf));
	}

	float *in = samples; // Input audio data
	float *end = in + numsamples * fmt_nchannels; // Loop end

	while (in < end)
	{
		const int k = cyc_pos;

		const int fwr_pos = (k + FWRDURATION) % dlbuflen;
		/* Update the full wave rectified total amplitude */
		/* Input matrix decoder */
		l_fwr += fabs(in[0]) - fabs(fwrbuf_l[fwr_pos]);
		r_fwr += fabs(in[1]) - fabs(fwrbuf_r[fwr_pos]);
		lpr_fwr += fabs(in[0] + in[1]) - fabs(fwrbuf_l[fwr_pos] + fwrbuf_r[fwr_pos]);
		lmr_fwr += fabs(in[0] - in[1]) - fabs(fwrbuf_l[fwr_pos] - fwrbuf_r[fwr_pos]);

		/* Matrix encoded 2 channel sources */
		fwrbuf_l[k] = in[0];
		fwrbuf_r[k] = in[1];
		MatrixDecode(in, k, 0, 1, true, dlbuflen,
			l_fwr, r_fwr,
			lpr_fwr, lmr_fwr,
			&adapt_l_gain, &adapt_r_gain,
			&adapt_lpr_gain, &adapt_lmr_gain,
			&lf[0], &rf[0], &lr[0], &rr[0], &cf[0]);

		out[cur + 0] = lf[k];
		out[cur + 1] = rf[k];
		out[cur + 2] = cf[k];
		LFE_buf[lfe_pos] = (lf[k] + rf[k] + 2.0f * cf[k] + lr[k] + rr[k]) / 2.0f;
		out[cur + 3] = FIRFilter(LFE_buf, lfe_pos, len125, len125, filter_coefs_lfe);
		lfe_pos++;
		if (lfe_pos == len125)
		{
			lfe_pos = 0;
		}
		out[cur + 4] = lr[k];
		out[cur + 5] = rr[k];
		// Next sample...
		in += 2;
		cur += 6;
		cyc_pos--;
		if (cyc_pos < 0)
		{
			cyc_pos += dlbuflen;
		}
	}
}

void DPL2Reset()
{
	olddelay = -1;
	oldfreq = 0;
	filter_coefs_lfe = nullptr;
}