1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
# This script gathers available sentinel files from the database and checks the coverage in space and time for this data
# stack.
import os
import warnings
from collections import Counter, OrderedDict
from datetime import datetime
import shutil
import fiona
import numpy as np
from shapely.geometry import shape, mapping, box
from shapely.ops import cascaded_union
from . import image as image
from doris.doris_stack.functions.load_shape_unzip import extract_kml_preview, shape_im_kml, load_shape
from doris.doris_stack.main_code.dorisparameters import DorisParameters
from doris.doris_stack.functions.burst_metadata import center_shape_from_res
from doris.doris_stack.main_code.jobs import Jobs
class StackData(object):
# This function holds information for a full datastack of sentinel data and is used to select relevant images and
# bursts based on a given area of interest.
def __init__(self, track_dir, shape_dat, buffer=0.02, start_date='2014-04-01', end_date='', polarisation='vh', path='', db_type=1, precise_dir=''):
# Initialize variables:
Jobs.id = 0
# Datastack folder where all data from the datastack is stored (database,shapes,burst data, res files and results)
# You should have write acces to this folder!
self.path = path
self.unzip_path = ''
# Search path, shape, buffer and polarisation for this datastack. Currently only one polarisation is implemented. If
# needed this can be extended later.
self.search_path = []
self.start_date = []
self.end_date = []
self.master_date = []
self.shape = []
self.shape_filename = shape_dat
self.buffer = []
self.polarisation = ''
self.precise_orbits = ''
# All images included in this datastack. Including lists of shapes and acquistion dates
self.images = []
self.image_files = []
self.image_shapes = []
self.image_dates = []
# The shapes and names of the swaths
self.swath_names = list()
self.swath_shapes = list()
# The resulting dates, with underlying bursts. This information can be used to create res files and images
# of individual bursts. Variable data includes a structure using (dates > swaths > bursts).
self.dates = list()
self.datastack = dict()
self.concatenated = dict()
self.coordinates = dict()
self.burst_names = list()
self.burst_shapes = list()
self.burst_centers = list()
# Some important characteristics of the dataset of bursts. (matrices with names on y and dates on x axis)
self.burst_no = 0
self.burst_availability = []
self.burst_lon = []
self.burst_lat = []
self.burst_baselines = []
# Temporary variable to store images which are not yet checked for shape or dates.
self.image_dump = []
# parallel computing:
doris_parameters = DorisParameters(os.path.dirname(self.path))
self.doris_parameters = doris_parameters
self.nr_of_jobs = doris_parameters.nr_of_jobs
self.parallel = doris_parameters.parallel
self.function_path = doris_parameters.function_path
####################################################################
# This function initializes the datastack using a search path, start/end dates and a buffer shape. The start and
# end date should have the format yyyy-mm-dd and the shape should either be a shapefile or a list of coordinate
# pairs. [[lat,lon][lat,lon] enz. ]. Minimum input is a folder which contains the .SAFE folders (a track folder)
if not track_dir or not os.path.exists(track_dir):
warnings.warn('This function needs an existing path as input!')
return
self.search_files(track_dir)
if shape:
self.create_shape(shape_dat,buffer)
if end_date:
self.end_date = np.datetime64(end_date).astype('datetime64[s]') + np.timedelta64(1, 'D').astype('timedelta64[s]')
else:
self.end_date = np.datetime64('now').astype('datetime64[s]')
self.start_date = np.datetime64(start_date).astype('datetime64[s]')
if isinstance(polarisation, str):
polarisation = [polarisation]
for i in polarisation:
if not i in ['hh','vv','hv','vh']:
warnings.warn('This polarisation does not exist for sentinel data.')
return
self.polarisation = polarisation
self.search_path = track_dir
if not path:
warnings.warn('You did not specify an output path. Please do so later on using the add_path function')
else:
self.add_path(path)
if precise_dir:
if os.path.exists(precise_dir):
self.precise_orbits = precise_dir
else:
print('Precise orbit path does not exist')
def add_path(self,path):
# This function adds the output path.
if os.path.isdir(path):
self.path = path
elif os.path.isdir(os.path.dirname(path[:-1])):
os.mkdir(path)
self.path = path
else:
warnings.warn('Neither the directory itself nor the parents directory exists. Choose another path.')
def search_files(self, track_dir):
# This function searches for files within a certain folder. This folder should contain images from the same
# track. These images are added to the variable image dump.
images = list()
top_dir = next(os.walk(track_dir))
for data in top_dir[2]:
if data.endswith('.zip'):
images.append(os.path.join(track_dir, data))
for data in top_dir[1]:
if data.endswith('.SAFE'):
images.append(os.path.join(track_dir, data))
else: # Likely images are stored in a folder.
sec_dir = next(os.walk(os.path.join(track_dir, data)))
for dat in sec_dir[1]:
if dat.endswith('.SAFE'):
images.append(os.path.join(track_dir, data, dat))
for dat in sec_dir[2]:
if dat.endswith('.zip'):
images.append(os.path.join(track_dir, data, dat))
if images:
images = sorted(images)
else:
print('No images found in track_dir = ' + str(track_dir) + ', switching to archive folder')
track_name = self.doris_parameters.direction + '_t' + self.doris_parameters.track.zfill(3)
track_dir = os.path.join(track_dir, track_name)
print('Searching in folder ' + track_dir)
top_dirs = next(os.walk(track_dir))[1]
if len(top_dirs) == 1:
track_dir = os.path.join(track_dir, top_dirs[0])
elif len(top_dirs) > 1:
for top_dir in top_dirs:
user_input = input("Do you want to use folder " + top_dir + " as resource folder? (yes/no)").lower()
if user_input in ['yes', 'y']:
track_dir = os.path.join(track_dir, top_dir)
dir_new = next(os.walk(track_dir))
for dat in dir_new[1]:
dat_files = next(os.walk(os.path.join(track_dir, dat)))[2]
for data in dat_files:
if data.endswith('.zip'):
images.append(os.path.join(track_dir, dat, data))
if images:
images = sorted(images)
else:
warnings.warn('No images found! Please choose another data folder. Track_dir = ' + str(track_dir))
base = [] # Remove double hits because data is already unzipped.
for i in images: # Drop all .zip files which are unpacked already.
if i.endswith('.SAFE.zip'):
base.append(os.path.basename(i[:-9]))
elif i.endswith('.zip'):
base.append(os.path.basename(i[:-4]))
elif i.endswith('.SAFE'):
base.append(os.path.basename(i[:-5]))
b, id = np.unique(base, return_index=True)
rem = []
for i in range(len(base)):
if i in id:
self.image_dump.append(images[i])
else:
rem.append(images[i])
if rem:
print('removed the following zip files from stack:')
for r in rem:
print(r)
print('It is advised to work with zipfiles instead of unpacked data. This saves diskspace and will ')
def create_shape(self,shape_dat,buffer=0.02):
# This function creates a shape to make a selection of usable bursts later on. Buffer around shape is in
# degrees.
self.shape = load_shape(shape_dat, buffer)
self.buffer = buffer
def check_new_images(self, master):
# This function checks which images are already processed, and which are not. If certain dates are already
# processed they are removed from the list. You have to specify the master date, otherwise the script will not
# know how many burst are expected per date.
# Which dates are available?
image_dates = [im.astype('datetime64[D]') for im in self.image_dates]
# What is the master date
date = np.datetime64(master).astype('datetime64[D]')
date_folders = [d for d in next(os.walk(self.path))[1] if len(d) == 8]
rm_id = []
if date_folders:
dates = [np.datetime64(d[0:4] + '-' + d[4:6] + '-' + d[6:8]) for d in date_folders]
if date in dates:
date_folder = date_folders[np.where(dates == date)[0][0]]
# Check existing files in master folder
swaths = dict()
swath_folders = next(os.walk(os.path.join(self.path, date_folder)))[1]
if len(swath_folders) == 0:
print('No swaths in master folder')
return
for swath in swath_folders:
self.swath_names.append(swath)
swaths[swath] = sorted(next(os.walk(os.path.join(self.path, date_folder, swath)))[1])
# Now check if the burst also in slave folders exist....
for folder, d in zip(date_folders, dates):
# Check existing files in master folder
try:
swath_folders = next(os.walk(os.path.join(self.path, folder)))[1]
if not set(swath_folders) == set(swaths.keys()):
raise LookupError('Amount of swaths is not the same for ' + folder)
for swath in swath_folders:
bursts = sorted(next(os.walk(os.path.join(self.path, date_folder, swath)))[1])
if not set(bursts) == set(swaths[swath]):
raise LookupError('Amount of bursts is not the same for ' + folder)
if d == date:
# If the master is already processed we have to create the list of center and coverage of
# bursts.
# TODO make this robust for the case no seperate input data folders are created.
res_files = []
for burst in bursts:
dat_file = [r for r in next(os.walk(os.path.join(self.path, date_folder, swath, burst)))[2]
if (r.startswith('slave_iw') and len(r) < 25)]
res_file = os.path.join(self.path, date_folder, swath, burst, 'slave.res')
res_files.append(res_file)
center, coverage = center_shape_from_res(resfile=res_file)
# Assign coverage, center coordinates and burst name.
self.burst_shapes.append(coverage)
self.burst_centers.append(center)
burst_num = os.path.basename(dat_file[0])[17:-4]
self.burst_names.append(swath + '_burst_' + burst_num)
self.burst_no += 1
# If all bursts are the same these files are not processed.
for id in np.where(image_dates == d)[0][::-1]:
del self.image_dates[id]
del image_dates[id]
del self.images[id]
del self.image_files[id]
except LookupError as error:
print(error)
def select_image(self,start_date='',end_date='', dest_folder=''):
# This function selects usable images based on .kml files and dates
if not dest_folder:
dest_folder = os.path.join(self.path, 'kml')
if not os.path.exists(dest_folder):
os.makedirs(dest_folder)
if not self.shape:
warnings.warn('There is no shape loaded to select images. Please use the create_shape function to do so.')
if start_date:
self.start_date = np.datetime64(start_date).astype('datetime64[s]')
if end_date:
self.end_date = np.datetime64(end_date).astype('datetime64[s]') + np.timedelta64(1, 'D').astype('timedelta64[s]')
# First select images based on dates and check if polygons intersect.
for i in self.image_dump:
d = os.path.basename(i)[17:32]
acq_time = np.datetime64(d[0:4] + '-' + d[4:6] + '-' + d[6:11] + ':' + d[11:13] + ':' + d[13:] + '-0000')
if acq_time >= self.start_date and acq_time <= self.end_date:
im = image.ImageMeta(path=i)
kml, png = extract_kml_preview(i, dir=dest_folder, png=False, overwrite=True)
succes = shape_im_kml(self.shape, kml)
if succes:
self.images.append(im)
self.image_dates.append(acq_time)
self.image_files.append(os.path.basename(i))
self.dates = sorted(list(set([d.astype('datetime64[D]') for d in self.image_dates])))
for date in self.dates:
print(date)
def select_burst(self, date=''):
# This function selects the usefull bursts at one epoch (user defined or automatically selected) and searches
# usefull burst at other dates. This function uses the extend_burst function, which is intended to search for
# bursts at other dates. This function can be run later on to update the datastack.
if self.burst_names:
print('Master data is already loaded from earlier processed data.')
return
image_dates = [im.astype('datetime64[D]') for im in self.image_dates]
# First select which date will be the master
if date:
date = np.datetime64(date).astype('datetime64[D]')
# date = deepcopy(image_dates[min(abs(self.image_dates-date))])
else: # if no date is specified
date = Counter(image_dates).most_common(1)[0][0]
# Load the metadata for this date for the bursts and swaths
for date in image_dates:
print(date)
print(date)
image_id = np.where(image_dates == date)[0]
for i in image_id:
print('processing data: ' + self.images[i].unzip_path)
self.images[i].meta_swath(precise_folder=self.precise_orbits)
# Order the selected images by acquisition time.
image_id = [x for (y,x) in sorted(zip([self.image_dates[i] for i in image_id],image_id))]
date = date.astype(datetime).strftime('%Y-%m-%d')
self.master_date = date
self.datastack[date] = dict()
swath_nums = ['1', '2', '3']
for p in self.polarisation:
for swath in swath_nums:
swath_id = 'iw' + swath + '-slc-' + p
swath_name = 'swath_' + swath
burst_no = 1
data = []
for i in image_id:
# Check which swath should be selected.
if not self.images[i].swaths_data:
continue
swath_names = [os.path.basename(data) for data in self.images[i].swaths_data]
swath_no = [no for no in range(len(swath_names)) if swath_id in swath_names[no]]
if not swath_no: # If there is no data for this swath
continue
swath_no = swath_no[0]
for burst in self.images[i].swaths[swath_no].bursts:
if burst.burst_coverage.intersects(self.shape):
# Check if we do not have a copy of former bursts...
if len(self.burst_centers) != 0:
dist_center = [np.sqrt((burst.burst_center[0] - center[0])**2 +
(burst.burst_center[1] - center[1])**2) for center in self.burst_centers]
if min(dist_center) < 0.02:
print('Possible duplicate burst deleted')
continue
# If there are bursts in this swath, which intersect, add burst to list.
if swath_name not in self.datastack[date].keys(): # If there are burst and no burst list exists
self.datastack[date][swath_name] = dict()
if swath_name not in self.swath_names:
self.swath_names.append(swath_name)
# Assign burst to data stack
burst_name = 'burst_' + str(burst_no)
burst.new_burst_num = burst_no
self.datastack[date][swath_name][burst_name] = burst
# Create .res file data
burst.meta_burst(swath_meta=self.images[i].swaths[swath_no].metadata)
# Assign coverage, center coordinates and burst name.
self.burst_shapes.append(burst.burst_coverage)
self.burst_centers.append(burst.burst_center)
self.burst_names.append(swath_name + '_' + burst_name)
burst_no += 1
# Finally add also to the number of bursts from the image
self.images[i].burst_no += 1
self.burst_no += 1
def extend_burst(self):
# Searches for burst at dates other than the dates that are already available. This means that if there are
# images added for dates which are already indexed, this data will not be used!
image_dates = [d.astype('datetime64[D]') for d in self.image_dates]
for date in self.dates:
# Append data to datastack variable
date_str = date.astype(datetime).strftime('%Y-%m-%d')
self.datastack[date_str] = dict()
data = []
# Load the metadata for this date for the bursts and swaths
image_id = np.where(image_dates == date)[0]
if len(image_id) == 0:
continue
for i in image_id:
if date_str == self.master_date:
continue
print('processing data: ' + self.images[i].unzip_path)
self.images[i].meta_swath(precise_folder=self.precise_orbits)
for swath in self.swath_names:
# Add swath to datastack
self.datastack[date_str][swath] = OrderedDict()
for i in image_id:
# Select correct swath in image
swath_id = swath[-1] + '-slc-' + self.polarisation[0]
swath_names = [os.path.basename(data) for data in self.images[i].swaths_data]
swath_no = [no for no in range(len(swath_names)) if swath_id in swath_names[no]]
if not swath_no: # If there is no data for this swath
continue
swath_no = swath_no[0]
for burst in self.images[i].swaths[swath_no].bursts:
x_dist = np.array([xy[0] - burst.burst_center[0] for xy in self.burst_centers])
y_dist = np.array([xy[1] - burst.burst_center[1] for xy in self.burst_centers])
dist = np.sqrt(x_dist**2 + y_dist**2)
burst_id = np.argmin(dist)
if dist[burst_id] < 0.1:
# Assign burst to data stack
burst.new_burst_num = int(self.burst_names[burst_id][14:])
self.datastack[date_str][swath][self.burst_names[burst_id][8:]] = burst
# Create .res file data
burst.meta_burst(swath_meta=self.images[i].swaths[swath_no].metadata)
else:
print('No corresponding burst found! Closest is ' + str(dist[burst_id]) + ' ' +
date_str + ' ' + swath + ' ' + self.burst_names[burst_id])
# Remove all unnecessary dates from stack
for dat_key in self.datastack.keys():
if not self.datastack[dat_key]:
del self.datastack[dat_key]
def remove_incomplete_images(self):
# This function removes all the images with less than maximum bursts. This will make a stack more consistent.
for key in self.datastack.keys():
burst_no = 0
for key_swath in self.datastack[key].keys():
burst_no += len(self.datastack[key][key_swath])
if burst_no != self.burst_no:
self.datastack.pop(key)
print('Number of burst for ' + key + ' is ' + str(burst_no) + ' instead of ' + str(self.burst_no) +
' and is removed from the datastack.')
def define_burst_coordinates(self,slaves=False):
# This function defines the exact coordinates in pixels of every burst based on the lower left corner of the first
# burst image. In this way the total overlap of these bursts can easily be monitored. Results are written to the
# coordinates variable
if slaves is True:
dates = list(self.datastack.keys())
else:
dates = [self.master_date]
self.coordinates = OrderedDict()
for date in dates:
self.coordinates[date] = OrderedDict()
self.coordinates[date]['shapes'] = []
ref = False
min_line = 1; min_pixel = 1
max_line = 1; max_pixel = 1
for swath in self.datastack[date].keys():
self.coordinates[date][swath] = OrderedDict()
self.coordinates[date][swath]['corners'] = np.zeros([len(list(self.datastack[date][swath].keys())), 4, 2],dtype='int')
b = 0
for burst in sorted(self.datastack[date][swath].keys(), key = lambda x: int(x[6:])):
if ref is False:
self.coordinates[date]['ref_az_time'] = self.datastack[date][swath][burst].processes['readfiles']['First_pixel_azimuth_time (UTC)']
self.coordinates[date]['ref_range_time'] = self.datastack[date][swath][burst].processes['readfiles']['Range_time_to_first_pixel (2way) (ms)']
ref = True
az_first = self.datastack[date][swath][burst].processes['readfiles']['First_pixel_azimuth_time (UTC)']
az_samp = self.datastack[date][swath][burst].processes['readfiles']['Pulse_Repetition_Frequency (computed, Hz)']
first_line = int(self.datastack[date][swath][burst].processes['crop']['First_line (w.r.t. original_image)'])
last_line = int(self.datastack[date][swath][burst].processes['crop']['Last_line (w.r.t. original_image)'])
range_first = self.datastack[date][swath][burst].processes['readfiles']['Range_time_to_first_pixel (2way) (ms)']
range_samp = self.datastack[date][swath][burst].processes['readfiles']['Range_sampling_rate (computed, MHz)']
first_pixel = int(self.datastack[date][swath][burst].processes['crop']['First_pixel (w.r.t. original_image)'])
last_pixel = int(self.datastack[date][swath][burst].processes['crop']['Last_pixel (w.r.t. original_image)'])
no_lines = int(self.datastack[date][swath][burst].processes['readfiles']['Number_of_lines_original'])
no_pixels = int(self.datastack[date][swath][burst].processes['readfiles']['Number_of_pixels_original'])
# Calculate difference w.r.t. reference point.
range_time_diff = (float(range_first) - float(self.coordinates[date]['ref_range_time']))
pixel_diff = int(round((float(range_samp) * 1e3) * range_time_diff))
az_time1 = datetime.strptime(az_first, '%Y-%b-%d %H:%M:%S.%f')
az_time2 = datetime.strptime(self.coordinates[date]['ref_az_time'], '%Y-%b-%d %H:%M:%S.%f')
az_time_diff = (az_time1 - az_time2).total_seconds()
line_diff = int(round(float(az_samp) * az_time_diff))
# Calculate final corner coordinates.
ll = np.array([line_diff + first_line, pixel_diff + first_pixel], ndmin=2)
ul = np.array([line_diff + last_line, pixel_diff + first_pixel], ndmin=2)
ur = np.array([line_diff + last_line, pixel_diff + last_pixel], ndmin=2)
lr = np.array([line_diff + first_line, pixel_diff + last_pixel], ndmin=2)
self.coordinates[date][swath]['corners'][b,:,:] = np.vstack([ll,ul,ur,lr])
b += 1
# Check for max/min line/pixel to prevent negative pixel numbers.
min_line = min(1 + line_diff, min_line)
max_line = max(line_diff + no_lines, max_line)
min_pixel = min(1 + pixel_diff, min_pixel)
max_pixel = max(pixel_diff + no_pixels, max_pixel)
if min_line < 1:
max_line = max_line + (1 - min_line)
if min_pixel < 1:
max_pixel = max_pixel + (1 - min_pixel)
for swath in self.datastack[date].keys():
# If one of the lines or pixels is lower then 1, correct all coordinates to have positive coordinates for all
# bursts.
if min_line < 1:
self.coordinates[date][swath]['corners'][:,:,0] = self.coordinates[date][swath]['corners'][:,:,0] + (1 - min_line)
if min_pixel < 1:
self.coordinates[date][swath]['corners'][:,:,1] = self.coordinates[date][swath]['corners'][:,:,1] + (1 - min_pixel)
for burst in range(len(self.datastack[date][swath].keys())):
shape_c = self.coordinates[date][swath]['corners'][burst,:,:]
shape = box(shape_c[0,1],shape_c[0,0],shape_c[2,1],shape_c[2,0])
self.coordinates[date]['shapes'].append(shape)
# Finally add information to the .res file if already loaded
if self.datastack[date][swath]['burst_' + str(burst+1)].processes['readfiles']:
read = self.datastack[date][swath]['burst_' + str(burst+1)].processes['readfiles']
read['First_line (w.r.t. output_image)'] = str(shape_c[0,0])
read['Last_line (w.r.t. output_image)'] = str(shape_c[2,0])
read['First_pixel (w.r.t. output_image)'] = str(shape_c[0,1])
read['Last_pixel (w.r.t. output_image)'] = str(shape_c[2,1])
read['Number_of_pixels_output_image'] = str(max_pixel)
read['Number_of_lines_output_image'] = str(max_line)
self.datastack[date][swath]['burst_' + str(burst+1)].processes['readfiles'] = read
else:
print('No resfile available, so information is not added to resfile')
def write_stack(self,write_path='',no_data=False):
# This function writes the full datastack to a given folder using the dates / swaths / bursts setup. This
# also generates the res readfiles data.
if write_path and os.path.exists(write_path):
self.path = write_path
if (not write_path or not os.path.exists(write_path)) and not self.path:
warnings.warn('Please specify a path that exists to write the data')
return
write_jobs = []
burst_num = []
for date in self.datastack.keys():
date_basic = date.translate(None,'-')
date_path = os.path.join(self.path, date_basic)
if not os.path.exists(date_path):
os.mkdir(date_path)
for swath in self.datastack[date].keys():
swath_path = os.path.join(date_path, swath)
if not os.path.exists(swath_path):
os.mkdir(swath_path)
for burst in self.datastack[date][swath].keys():
burst_path = os.path.join(date_path, swath, burst)
if not os.path.exists(burst_path):
os.mkdir(burst_path)
# Finally write the bursts with their res files and precise orbits
xml = self.datastack[date][swath][burst].swath_xml
data = self.datastack[date][swath][burst].swath_data
image_no = str(self.datastack[date][swath][burst].burst_num)
stack_no = burst[6:]
xml_base = os.path.basename(xml)
res_name = os.path.join(burst_path, 'slave.res')
outdata = os.path.join(burst_path, 'slave_iw_' + xml_base[6] + '_burst_' + stack_no + '.raw')
self.datastack[date][swath][burst].write(res_name)
if not os.path.exists(res_name) or not os.path.exists(outdata):
write_jobs.append(sys.executable + ' ' + self.function_path + 'sentinel_dump_data_function.py ' + data + ' ' + res_name + ' ' + outdata)
burst_num.append(stack_no + '_' + xml_base[6] + '_' + xml_base[15:23])
# Burst are sorted in such a way that mainly read from different data files sorted by burst then swath then date.
ids = sorted(range(len(burst_num)), key=lambda x: burst_num[x])
jobList1 = []
for id_val in ids:
jobList1.append({"path": self.path, "command": write_jobs[id_val]})
if not self.parallel:
os.chdir(self.path)
# Resample
os.system(write_jobs[id_val])
if self.parallel:
jobs = Jobs(self.nr_of_jobs, self.doris_parameters)
jobs.run(jobList1)
def unpack_image(self, dest_folder=''):
if not dest_folder:
dest_folder = os.path.join(self.path, 'slc_data_files')
self.unzip_path = dest_folder
if not os.path.exists(dest_folder):
os.mkdir(dest_folder)
jobList1 = []
# This program unpacks the images which are needed for processing. If unpacking fails, they are removed..
for imagefile in self.images:
zipped_folder = imagefile.zip_path
if zipped_folder.endswith('.SAFE.zip'):
imagefile.unzip_path = os.path.join(dest_folder, os.path.basename(zipped_folder[:-9] + '.SAFE'))
elif zipped_folder.endswith('.zip'):
imagefile.unzip_path = os.path.join(dest_folder, os.path.basename(zipped_folder[:-4] + '.SAFE'))
shapefile = self.shape_filename
pol = self.polarisation[0]
overwrite = False
command1 = (sys.executable + ' ' + self.function_path + 'load_shape_unzip.py ' + zipped_folder + ' ' + dest_folder +
' ' + shapefile + ' ' + pol + ' ' + str(overwrite))
jobList1.append({"path": self.path, "command": command1})
if not self.parallel:
os.chdir(self.path)
# Resample
os.system(command1)
if self.parallel:
jobs = Jobs(self.nr_of_jobs, self.doris_parameters)
jobs.run(jobList1)
def del_unpacked_image(self):
# This program unpacks the images which are needed for processing.
for image_dat in self.images:
shutil.rmtree(image_dat.unzip_path)
def swath_coverage(self):
# Create a convex hull for the different swaths.
for swath in self.swath_names:
# Assign coverage of swath using convex hull.
burst_id = [i for i in range(len(self.burst_names)) if swath in self.burst_names[i]]
swath_shape = cascaded_union([self.burst_shapes[i] for i in burst_id])
self.swath_shapes.append(swath_shape)
def write_shapes(self,coverage=True,images=True,swaths=True,bursts=True):
# This function writes shapefiles of the area of interest, images and bursts.
if not coverage and not images and not bursts:
warnings.warn('Select at least one of shape types')
return
shapes = list(); shape_names = list(); shape_files = list()
if coverage and self.shape:
shape_files.append(self.path + 'area_of_interest.shp')
if self.shape.type == 'MultiPolygon':
shapes.append([sh for sh in self.shape])
shape_names.append([('coverage_with_buffer_of_' + str(self.buffer) + '_degrees_' + str(i)) for i in range(len(shapes[0]))])
elif self.shape.type == 'Polygon':
shape_names.append(['coverage_with_buffer_of_' + str(self.buffer) + '_degrees'])
shapes.append([self.shape])
if images and self.image_shapes:
shape_files.append(self.path + 'image_coverage.shp')
shape_names.append([date.astype(datetime).strftime('%Y-%m-%dT%H:%M:%S') for date in self.image_dates])
shapes.append(self.image_shapes)
if swaths and self.swath_shapes:
shape_files.append(self.path + 'swath_coverage.shp')
shape_names.append(self.swath_names)
shapes.append(self.swath_shapes)
if bursts and self.burst_shapes:
shape_files.append(self.path + 'burst_coverage.shp')
shape_names.append(self.burst_names)
shapes.append(self.burst_shapes)
shape_setup = {
'geometry': 'Polygon',
'properties': {'name': 'str'},
}
for i in range(len(shape_files)):
with fiona.open(shape_files[i], 'w', 'ESRI Shapefile', shape_setup) as sh:
for n in range(len(shapes[i])):
sh.write({
'geometry': mapping(shapes[i][n]),
'properties': {'name': shape_names[i][n]},
})
|