1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
#version 120
/*
CRT-interlaced
Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
(cgwg gave their consent to have the original version of this shader
distributed under the GPL in this message:
http://board.byuu.org/viewtopic.php?p=26075#p26075
"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
)
This shader variant is pre-configured with screen curvature
*/
#pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1
#pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1
#pragma parameter d "CRTGeom Distance" 1.6 0.1 3.0 0.1
#pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0
#pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1
#pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005
#pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0
#pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0
#pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0
#pragma parameter DOTMASK "CRTGeom Dot Mask Toggle" 0.3 0.0 0.3 0.3
#pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0
#pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05
#pragma parameter lum "CRTGeom Luminance" 0.0 0.0 1.0 0.01
#pragma parameter interlace_detect "CRTGeom Interlacing Simulation" 1.0 0.0 1.0 1.0
#ifndef PARAMETER_UNIFORM
#define CRTgamma 2.4
#define monitorgamma 2.2
#define d 1.6
#define CURVATURE 1.0
#define R 2.0
#define cornersize 0.03
#define cornersmooth 1000.0
#define x_tilt 0.0
#define y_tilt 0.0
#define overscan_x 100.0
#define overscan_y 100.0
#define DOTMASK 0.3
#define SHARPER 1.0
#define scanline_weight 0.3
#define lum 0.0
#define interlace_detect 1.0
#endif
#if defined(VERTEX)
#if __VERSION__ >= 130
#define COMPAT_VARYING out
#define COMPAT_ATTRIBUTE in
#define COMPAT_TEXTURE texture
#else
#define COMPAT_VARYING varying
#define COMPAT_ATTRIBUTE attribute
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
COMPAT_ATTRIBUTE vec4 a_position;
COMPAT_VARYING vec2 v_texCoord;
uniform COMPAT_PRECISION vec2 rubyOutputSize;
uniform COMPAT_PRECISION vec2 rubyTextureSize;
uniform COMPAT_PRECISION vec2 rubyInputSize;
COMPAT_VARYING vec2 overscan;
COMPAT_VARYING vec2 aspect;
COMPAT_VARYING vec3 stretch;
COMPAT_VARYING vec2 sinangle;
COMPAT_VARYING vec2 cosangle;
COMPAT_VARYING vec2 one;
COMPAT_VARYING float mod_factor;
COMPAT_VARYING vec2 ilfac;
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CRTgamma;
uniform COMPAT_PRECISION float monitorgamma;
uniform COMPAT_PRECISION float d;
uniform COMPAT_PRECISION float CURVATURE;
uniform COMPAT_PRECISION float R;
uniform COMPAT_PRECISION float cornersize;
uniform COMPAT_PRECISION float cornersmooth;
uniform COMPAT_PRECISION float x_tilt;
uniform COMPAT_PRECISION float y_tilt;
uniform COMPAT_PRECISION float overscan_x;
uniform COMPAT_PRECISION float overscan_y;
uniform COMPAT_PRECISION float DOTMASK;
uniform COMPAT_PRECISION float SHARPER;
uniform COMPAT_PRECISION float scanline_weight;
uniform COMPAT_PRECISION float lum;
uniform COMPAT_PRECISION float interlace_detect;
#endif
#define FIX(c) max(abs(c), 1e-5);
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
vec2 fwtrans(vec2 uv)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
vec3 maxscale()
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, fwtrans(vec2(c.x,-a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, fwtrans(vec2(c.x,+a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
void main()
{
// START of parameters
// gamma of simulated CRT
// CRTgamma = 1.8;
// gamma of display monitor (typically 2.2 is correct)
// monitorgamma = 2.2;
// overscan (e.g. 1.02 for 2% overscan)
overscan = vec2(1.00,1.00);
// aspect ratio
aspect = vec2(1.0, 0.75);
// lengths are measured in units of (approximately) the width
// of the monitor simulated distance from viewer to monitor
// d = 2.0;
// radius of curvature
// R = 1.5;
// tilt angle in radians
// (behavior might be a bit wrong if both components are
// nonzero)
const vec2 angle = vec2(0.0,0.0);
// size of curved corners
// cornersize = 0.03;
// border smoothness parameter
// decrease if borders are too aliased
// cornersmooth = 1000.0;
// END of parameters
gl_Position = a_position;
v_texCoord = vec2(a_position.x + 1.0, 1.0 - a_position.y) / 2.0 * rubyInputSize / rubyTextureSize;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
sinangle = sin(vec2(x_tilt, y_tilt)) + vec2(0.001);//sin(vec2(max(abs(x_tilt), 1e-3), max(abs(y_tilt), 1e-3)));
cosangle = cos(vec2(x_tilt, y_tilt)) + vec2(0.001);//cos(vec2(max(abs(x_tilt), 1e-3), max(abs(y_tilt), 1e-3)));
stretch = maxscale();
// Disable interlacing as per https://emulation-general.fandom.com/wiki/CRT_Geom
// ilfac = vec2(1.0,clamp(floor(rubyInputSize.y/200.0), 1.0, 2.0));
ilfac = vec2(1.0,1.0);
// The size of one texel, in texture-coordinates.
vec2 sharpTextureSize = vec2(SHARPER * rubyTextureSize.x, rubyTextureSize.y);
one = ilfac / sharpTextureSize;
// Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = v_texCoord.x * rubyTextureSize.x * rubyOutputSize.x / rubyInputSize.x;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
struct output_dummy {
vec4 _color;
};
COMPAT_VARYING vec2 v_texCoord;
uniform COMPAT_PRECISION int rubyFrameCount;
uniform COMPAT_PRECISION vec2 rubyOutputSize;
uniform COMPAT_PRECISION vec2 rubyTextureSize;
uniform COMPAT_PRECISION vec2 rubyInputSize;
uniform sampler2D rubyTexture;
// Comment the next line to disable interpolation in linear gamma (and
// gain speed).
#define LINEAR_PROCESSING
// Enable screen curvature.
//#define CURVATURE
// Enable 3x oversampling of the beam profile
#define OVERSAMPLE
// Use the older, purely gaussian beam profile
//#define USEGAUSSIAN
// Macros.
#define FIX(c) max(abs(c), 1e-5);
#define PI 3.141592653589
#ifdef LINEAR_PROCESSING
#define TEX2D(c) pow(COMPAT_TEXTURE(rubyTexture, (c)), vec4(CRTgamma))
#else
#define TEX2D(c) COMPAT_TEXTURE(rubyTexture, (c))
#endif
COMPAT_VARYING vec2 one;
COMPAT_VARYING float mod_factor;
COMPAT_VARYING vec2 ilfac;
COMPAT_VARYING vec2 overscan;
COMPAT_VARYING vec2 aspect;
COMPAT_VARYING vec3 stretch;
COMPAT_VARYING vec2 sinangle;
COMPAT_VARYING vec2 cosangle;
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CRTgamma;
uniform COMPAT_PRECISION float monitorgamma;
uniform COMPAT_PRECISION float d;
uniform COMPAT_PRECISION float CURVATURE;
uniform COMPAT_PRECISION float R;
uniform COMPAT_PRECISION float cornersize;
uniform COMPAT_PRECISION float cornersmooth;
uniform COMPAT_PRECISION float x_tilt;
uniform COMPAT_PRECISION float y_tilt;
uniform COMPAT_PRECISION float overscan_x;
uniform COMPAT_PRECISION float overscan_y;
uniform COMPAT_PRECISION float DOTMASK;
uniform COMPAT_PRECISION float SHARPER;
uniform COMPAT_PRECISION float scanline_weight;
uniform COMPAT_PRECISION float lum;
uniform COMPAT_PRECISION float interlace_detect;
#endif
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = FIX(R*acos(a));
return uv*r/sin(r/R);
}
vec2 transform(vec2 coord)
{
coord *= rubyTextureSize / rubyInputSize;
coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * rubyInputSize / rubyTextureSize;
}
float corner(vec2 coord)
{
coord *= rubyTextureSize / rubyInputSize;
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5);
coord = min(coord, vec2(1.0)-coord) * aspect;
vec2 cdist = vec2(cornersize);
coord = (cdist - min(coord,cdist));
float dist = sqrt(dot(coord,coord));
return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0);
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid);
return (lum + 0.4) * exp(-weights * weights) / wid;
#else
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
vec4 weights = vec4(distance / scanline_weight);
return (lum + 1.4) * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
void main()
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
// Texture coordinates of the texel containing the active pixel.
vec2 xy = (CURVATURE > 0.5) ? transform(v_texCoord.xy) : v_texCoord.xy;
float cval = corner(xy);
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
vec2 ilvec = vec2(0.0,ilfac.y * interlace_detect > 1.5 ? mod(float(rubyFrameCount),2.0) : 0.0);
vec2 ratio_scale = (xy * rubyTextureSize - vec2(0.5) + ilvec)/ilfac;
#ifdef OVERSAMPLE
float filter_ = rubyInputSize.y/rubyOutputSize.y;//fwidth(ratio_scale.y);
#endif
vec2 uv_ratio = fract(ratio_scale);
// Snap to the center of the underlying texel.
xy = (floor(ratio_scale)*ilfac + vec2(0.5) - ilvec) / rubyTextureSize;
// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
// Prevent division by zero.
coeffs = FIX(coeffs);
// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
// Normalize.
coeffs /= dot(coeffs, vec4(1.0));
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
vec4 col = clamp(mat4(
TEX2D(xy + vec2(-one.x, 0.0)),
TEX2D(xy),
TEX2D(xy + vec2(one.x, 0.0)),
TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs,
0.0, 1.0);
vec4 col2 = clamp(mat4(
TEX2D(xy + vec2(-one.x, one.y)),
TEX2D(xy + vec2(0.0, one.y)),
TEX2D(xy + one),
TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs,
0.0, 1.0);
#ifndef LINEAR_PROCESSING
col = pow(col , vec4(CRTgamma));
col2 = pow(col2, vec4(CRTgamma));
#endif
// Calculate the influence of the current and next scanlines on
// the current pixel.
vec4 weights = scanlineWeights(uv_ratio.y, col);
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#ifdef OVERSAMPLE
uv_ratio.y =uv_ratio.y+1.0/3.0*filter_;
weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
uv_ratio.y =uv_ratio.y-2.0/3.0*filter_;
weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
#endif
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
vec3 dotMaskWeights = mix(
vec3(1.0, 1.0 - DOTMASK, 1.0),
vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
floor(mod(mod_factor, 2.0))
);
mul_res *= dotMaskWeights;
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
// Color the texel.
output_dummy _OUT;
FragColor = vec4(mul_res, 1.0);
return;
}
#endif
|