1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
#version 120
/*
crt-pi - A Raspberry Pi friendly CRT shader.
Copyright (C) 2015-2016 davej
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
Notes:
This shader is designed to work well on Raspberry Pi GPUs (i.e. 1080P @ 60Hz on a game with a 4:3 aspect ratio). It pushes the Pi's GPU hard and enabling some features will slow it down so that it is no longer able to match 1080P @ 60Hz. You will need to overclock your Pi to the fastest setting in raspi-config to get the best results from this shader: 'Pi2' for Pi2 and 'Turbo' for original Pi and Pi Zero. Note: Pi2s are slower at running the shader than other Pis, this seems to be down to Pi2s lower maximum memory speed. Pi2s don't quite manage 1080P @ 60Hz - they drop about 1 in 1000 frames. You probably won't notice this, but if you do, try enabling FAKE_GAMMA.
SCANLINES enables scanlines. You'll almost certainly want to use it with MULTISAMPLE to reduce moire effects. SCANLINE_WEIGHT defines how wide scanlines are (it is an inverse value so a higher number = thinner lines). SCANLINE_GAP_BRIGHTNESS defines how dark the gaps between the scan lines are. Darker gaps between scan lines make moire effects more likely.
GAMMA enables gamma correction using the values in INPUT_GAMMA and OUTPUT_GAMMA. FAKE_GAMMA causes it to ignore the values in INPUT_GAMMA and OUTPUT_GAMMA and approximate gamma correction in a way which is faster than true gamma whilst still looking better than having none. You must have GAMMA defined to enable FAKE_GAMMA.
CURVATURE distorts the screen by CURVATURE_X and CURVATURE_Y. Curvature slows things down a lot.
By default the shader uses linear blending horizontally. If you find this too blury, enable SHARPER.
BLOOM_FACTOR controls the increase in width for bright scanlines.
MASK_TYPE defines what, if any, shadow mask to use. MASK_BRIGHTNESS defines how much the mask type darkens the screen.
*/
#pragma parameter CURVATURE_X "Screen curvature - horizontal" 0.10 0.0 1.0 0.01
#pragma parameter CURVATURE_Y "Screen curvature - vertical" 0.15 0.0 1.0 0.01
#pragma parameter MASK_BRIGHTNESS "Mask brightness" 0.70 0.0 1.0 0.01
#pragma parameter SCANLINE_WEIGHT "Scanline weight" 6.0 0.0 15.0 0.1
#pragma parameter SCANLINE_GAP_BRIGHTNESS "Scanline gap brightness" 0.12 0.0 1.0 0.01
#pragma parameter BLOOM_FACTOR "Bloom factor" 1.5 0.0 5.0 0.01
#pragma parameter INPUT_GAMMA "Input gamma" 2.4 0.0 5.0 0.01
#pragma parameter OUTPUT_GAMMA "Output gamma" 2.2 0.0 5.0 0.01
// Haven't put these as parameters as it would slow the code down.
#define SCANLINES
#define MULTISAMPLE
#define GAMMA
//#define FAKE_GAMMA
//#define CURVATURE
//#define SHARPER
// MASK_TYPE: 0 = none, 1 = green/magenta, 2 = trinitron(ish)
#define MASK_TYPE 1
#ifdef GL_ES
#define COMPAT_PRECISION mediump
precision mediump float;
#else
#define COMPAT_PRECISION
#endif
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CURVATURE_X;
uniform COMPAT_PRECISION float CURVATURE_Y;
uniform COMPAT_PRECISION float MASK_BRIGHTNESS;
uniform COMPAT_PRECISION float SCANLINE_WEIGHT;
uniform COMPAT_PRECISION float SCANLINE_GAP_BRIGHTNESS;
uniform COMPAT_PRECISION float BLOOM_FACTOR;
uniform COMPAT_PRECISION float INPUT_GAMMA;
uniform COMPAT_PRECISION float OUTPUT_GAMMA;
#else
#define CURVATURE_X 0.10
#define CURVATURE_Y 0.25
#define MASK_BRIGHTNESS 0.70
#define SCANLINE_WEIGHT 6.0
#define SCANLINE_GAP_BRIGHTNESS 0.12
#define BLOOM_FACTOR 1.5
#define INPUT_GAMMA 2.4
#define OUTPUT_GAMMA 2.2
#endif
/* COMPATIBILITY
- GLSL compilers
*/
uniform vec2 rubyTextureSize;
#if defined(CURVATURE)
varying vec2 screenScale;
#endif
varying vec2 v_texCoord;
varying float filterWidth;
#if defined(VERTEX)
attribute vec4 a_position;
attribute vec2 TexCoord;
uniform vec2 rubyInputSize;
uniform vec2 rubyOutputSize;
void main()
{
#if defined(CURVATURE)
screenScale = rubyTextureSize / rubyInputSize;
#endif
filterWidth = (rubyInputSize.y / rubyOutputSize.y) / 3.0;
gl_Position = a_position;
v_texCoord = vec2(a_position.x + 1.0, 1.0 - a_position.y) / 2.0 * rubyInputSize / rubyTextureSize;
}
#elif defined(FRAGMENT)
/*
The following code allows the shader to override any texture filtering
configured in DOSBox. if 'output' is set to 'opengl', bilinear filtering
will be enabled and OPENGLNB will not be defined, if 'output' is set to
'openglnb', nearest neighbour filtering will be enabled and OPENGLNB will
be defined.
If you wish to use the default filtering method that is currently enabled
in DOSBox, use COMPAT_TEXTURE to lookup a texel from the input texture.
If you wish to force nearest-neighbor interpolation use NN_TEXTURE.
If you wish to force bilinear interpolation use BL_TEXTURE.
If DOSBox is configured to use the filtering method that is being forced,
the default hardware implementation will be used, otherwise the custom
implementations below will be used instead.
These custom implementations rely on the `rubyTextureSize` uniform variable.
The code could calculate the texture size from the sampler using the
textureSize() GLSL function, but this would require a minimum of GLSL
version 130, which may prevent the shader from working on older systems.
*/
#if defined(OPENGLNB)
#define NN_TEXTURE texture2D
#define BL_TEXTURE blTexture
vec4 blTexture(in sampler2D sampler, in vec2 uv)
{
// subtract 0.5 here and add it again after the floor to centre the texel
vec2 texCoord = uv * rubyTextureSize - vec2(0.5);
vec2 s0t0 = floor(texCoord) + vec2(0.5);
vec2 s0t1 = s0t0 + vec2(0.0, 1.0);
vec2 s1t0 = s0t0 + vec2(1.0, 0.0);
vec2 s1t1 = s0t0 + vec2(1.0);
vec2 invTexSize = 1.0 / rubyTextureSize;
vec4 c_s0t0 = texture2D(sampler, s0t0 * invTexSize);
vec4 c_s0t1 = texture2D(sampler, s0t1 * invTexSize);
vec4 c_s1t0 = texture2D(sampler, s1t0 * invTexSize);
vec4 c_s1t1 = texture2D(sampler, s1t1 * invTexSize);
vec2 weight = fract(texCoord);
vec4 c0 = c_s0t0 + (c_s1t0 - c_s0t0) * weight.x;
vec4 c1 = c_s0t1 + (c_s1t1 - c_s0t1) * weight.x;
return (c0 + (c1 - c0) * weight.y);
}
#else
#define BL_TEXTURE texture2D
#define NN_TEXTURE nnTexture
vec4 nnTexture(in sampler2D sampler, in vec2 uv)
{
vec2 texCoord = floor(uv * rubyTextureSize) + vec2(0.5);
vec2 invTexSize = 1.0 / rubyTextureSize;
return texture2D(sampler, texCoord * invTexSize);
}
#endif
uniform sampler2D rubyTexture;
#if defined(CURVATURE)
vec2 Distort(vec2 coord)
{
vec2 CURVATURE_DISTORTION = vec2(CURVATURE_X, CURVATURE_Y);
// Barrel distortion shrinks the display area a bit, this will allow us to counteract that.
vec2 barrelScale = 1.0 - (0.23 * CURVATURE_DISTORTION);
coord *= screenScale;
coord -= vec2(0.5);
float rsq = coord.x * coord.x + coord.y * coord.y;
coord += coord * (CURVATURE_DISTORTION * rsq);
coord *= barrelScale;
if (abs(coord.x) >= 0.5 || abs(coord.y) >= 0.5)
coord = vec2(-1.0); // If out of bounds, return an invalid value.
else
{
coord += vec2(0.5);
coord /= screenScale;
}
return coord;
}
#endif
float CalcScanLineWeight(float dist)
{
return max(1.0-dist*dist*SCANLINE_WEIGHT, SCANLINE_GAP_BRIGHTNESS);
}
float CalcScanLine(float dy)
{
float scanLineWeight = CalcScanLineWeight(dy);
#if defined(MULTISAMPLE)
scanLineWeight += CalcScanLineWeight(dy-filterWidth);
scanLineWeight += CalcScanLineWeight(dy+filterWidth);
scanLineWeight *= 0.3333333;
#endif
return scanLineWeight;
}
void main()
{
#if defined(CURVATURE)
vec2 texcoord = Distort(v_texCoord);
if (texcoord.x < 0.0)
gl_FragColor = vec4(0.0);
else
#else
vec2 texcoord = v_texCoord;
#endif
{
vec2 texcoordInPixels = texcoord * rubyTextureSize;
#if defined(SHARPER)
vec2 tempCoord = floor(texcoordInPixels) + 0.5;
vec2 coord = tempCoord / rubyTextureSize;
vec2 deltas = texcoordInPixels - tempCoord;
float scanLineWeight = CalcScanLine(deltas.y);
vec2 signs = sign(deltas);
deltas.x *= 2.0;
deltas = deltas * deltas;
deltas.y = deltas.y * deltas.y;
deltas.x *= 0.5;
deltas.y *= 8.0;
deltas /= rubyTextureSize;
deltas *= signs;
vec2 tc = coord + deltas;
#else
float tempY = floor(texcoordInPixels.y) + 0.5;
float yCoord = tempY / rubyTextureSize.y;
float dy = texcoordInPixels.y - tempY;
float scanLineWeight = CalcScanLine(dy);
float signY = sign(dy);
dy = dy * dy;
dy = dy * dy;
dy *= 8.0;
dy /= rubyTextureSize.y;
dy *= signY;
vec2 tc = vec2(texcoord.x, yCoord + dy);
#endif
vec3 colour = BL_TEXTURE(rubyTexture, tc).rgb;
#if defined(SCANLINES)
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = colour * colour;
#else
colour = pow(colour, vec3(INPUT_GAMMA));
#endif
#endif
scanLineWeight *= BLOOM_FACTOR;
colour *= scanLineWeight;
#if defined(GAMMA)
#if defined(FAKE_GAMMA)
colour = sqrt(colour);
#else
colour = pow(colour, vec3(1.0/OUTPUT_GAMMA));
#endif
#endif
#endif
#if MASK_TYPE == 0
gl_FragColor = vec4(colour, 1.0);
#else
#if MASK_TYPE == 1
float whichMask = fract(gl_FragCoord.x * 0.5);
vec3 mask;
if (whichMask < 0.5)
mask = vec3(MASK_BRIGHTNESS, 1.0, MASK_BRIGHTNESS);
else
mask = vec3(1.0, MASK_BRIGHTNESS, 1.0);
#elif MASK_TYPE == 2
float whichMask = fract(gl_FragCoord.x * 0.3333333);
vec3 mask = vec3(MASK_BRIGHTNESS, MASK_BRIGHTNESS, MASK_BRIGHTNESS);
if (whichMask < 0.3333333)
mask.x = 1.0;
else if (whichMask < 0.6666666)
mask.y = 1.0;
else
mask.z = 1.0;
#endif
gl_FragColor = vec4(colour * mask, 1.0);
#endif
}
}
#endif
|