1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
(**************************************************************************************)
(* Copyright (C) 2009 Pietro Abate <pietro.abate@pps.jussieu.fr> *)
(* Copyright (C) 2009 Mancoosi Project *)
(* *)
(* This library is free software: you can redistribute it and/or modify *)
(* it under the terms of the GNU Lesser General Public License as *)
(* published by the Free Software Foundation, either version 3 of the *)
(* License, or (at your option) any later version. A special linking *)
(* exception to the GNU Lesser General Public License applies to this *)
(* library, see the COPYING file for more information. *)
(**************************************************************************************)
(** Specialized Ocamlgraph modules *)
open ExtLib
open Graph
open Common
include Util.Logging(struct let label = __FILE__ end) ;;
let tr_timer = Util.Timer.create "Defaultgraph.GraphOper.transitive_reduction"
let trbar = Util.Progress.create "Defaultgraph.GraphOper.transitive_reduction"
(** generic operation over imperative graphs *)
module GraphOper (G : Sig.I) = struct
(** transitive reduction. Uses the transitive reduction algorithm from The
Transitive Reduction of a Directed Graph, Aho, Garey and Ullman, 1972 -
with the proviso that we know that our graph already is a transitive
closure *)
(* this is a VERY expensive operation on Labelled graphs ... *)
let transitive_reduction graph =
Util.Progress.set_total trbar (G.nb_vertex graph);
Util.Timer.start tr_timer;
G.iter_vertex (fun v ->
Util.Progress.progress trbar;
G.iter_succ (fun w ->
if not(G.V.equal v w) then
G.iter_succ (fun z ->
if not(G.V.equal w z) then
G.remove_edge graph v z
) graph w
) graph v;
) graph;
Util.Timer.stop tr_timer ();
Util.Progress.reset trbar
;;
module O = Oper.I(G)
module S = Set.Make(G.V)
(** extract the subgraph induced by the list l *)
let subgraph g l =
let to_set l = List.fold_left (fun s v -> S.add v s) S.empty l in
let s = to_set l in
let sg = G.create () in
S.iter (fun v1 ->
G.add_vertex sg v1;
List.iter (fun e ->
let v2 = G.E.dst e in
if S.mem v2 s then
G.add_edge_e sg e
) (G.succ_e g v1)
) s;
sg
;;
end
(** syntactic dependency graph. Vertex are Cudf packages and
are indexed considering only the pair name,version .
Edges are labelled with
- [OrDepends] : disjuctive dependency
- [DirDepends] : direct dependecy
- [Conflict] : conflict
*)
module SyntacticDependencyGraph = struct
module PkgV = struct
type t = Pkg of Cudf.package | Or of (Cudf.package * int)
let compare x y = match (x,y) with
|Or (p1,i1), Or (p2,i2) when (i1 = i2) && (CudfAdd.equal p1 p2) -> 0
|Pkg p1, Pkg p2 -> CudfAdd.compare p1 p2
|_, _ -> Pervasives.compare x y
let hash = function
|Pkg p -> Hashtbl.hash (p.Cudf.package,p.Cudf.version)
|Or (p,i) -> Hashtbl.hash (p.Cudf.package,p.Cudf.version,i)
let equal x y = match (x,y) with
|Or (p1,i1), Or (p2,i2) -> (i1 = i2) && (CudfAdd.equal p1 p2)
|Pkg p1, Pkg p2 -> CudfAdd.equal p1 p2
|_ -> false
end
module PkgE = struct
type t = OrDepends | DirDepends | Conflict
let compare = Pervasives.compare
let hash = Hashtbl.hash
let equal x y = ((compare x y) = 0)
let default = DirDepends
end
module G = Imperative.Digraph.ConcreteBidirectionalLabeled(PkgV)(PkgE)
let string_of_vertex vertex =
match G.V.label vertex with
|PkgV.Pkg p -> Printf.sprintf "Pkg %s" (CudfAdd.string_of_package p)
|PkgV.Or (p, _) -> Printf.sprintf "Or %s" (CudfAdd.string_of_package p)
let string_of_edge edge =
let label =
match G.E.label edge with
|PkgE.DirDepends -> "Direct"
|PkgE.OrDepends -> "Disjunctive"
|PkgE.Conflict -> "Conflict"
in
let src = G.E.src edge in
let dst = G.E.dst edge in
Printf.sprintf "%s %s %s"
(string_of_vertex src)
label
(string_of_vertex dst)
module DotPrinter = struct
module Display = struct
include G
let vertex_name v =
match G.V.label v with
|PkgV.Pkg i -> Printf.sprintf "\"%s\"" (CudfAdd.string_of_package i)
|PkgV.Or (i,c) -> Printf.sprintf "\"Or%s-%d\"" (CudfAdd.string_of_package i) c
let graph_attributes = fun _ -> [`Rankdir `LeftToRight]
let get_subgraph = fun _ -> None
let default_edge_attributes = fun _ -> []
let default_vertex_attributes = fun _ -> [`Shape `Box]
let vertex_attributes v =
match G.V.label v with
|PkgV.Or _ -> [`Label "Or" ; `Shape `Diamond]
|PkgV.Pkg p when p.Cudf.installed -> [ `Color 0x00FF00 ]
|_ -> []
let edge_attributes e =
match G.E.label e with
|PkgE.DirDepends -> [`Style `Solid]
|PkgE.OrDepends -> [`Style `Dashed]
|PkgE.Conflict -> [`Color 0xFF0000; `Style `Solid; `Label "#"]
(*
|PkgE.DirDepends -> [`Style [`Solid]]
|PkgE.OrDepends -> [`Style [`Dashed]]
|PkgE.Conflict -> [`Color 0xFF0000; `Style [`Solid]; `Label "#"]
*)
end
include Graph.Graphviz.Dot(Display)
let print fmt g = fprint_graph fmt g
end
module S = Set.Make(PkgV)
module GmlPrinter = Gml.Print (G) (
struct
let node (v: G.V.label) = []
let edge (e: G.E.label) = []
end)
module GraphmlPrinter = Graphml.Print (G) (
struct
let vertex_properties =
["package","string",None;
"version","string",None;
"architecture","string",None;
"type","string",None;
"source","string",None;
"sourcenumber","string",None;
"multiarch","string",None;
]
let edge_properties = [
"vpkglist","string",None;
"binaries","string",None;
]
let map_edge e = []
let map_vertex = function
|PkgV.Pkg pkg ->
let name = ("package",CudfAdd.decode pkg.Cudf.package) in
let version = ("version",CudfAdd.string_of_version pkg) in
let props =
List.filter_map (fun (key,_,_) ->
try let value = Cudf.lookup_package_property pkg key in
Some(key,value)
with Not_found -> None
) vertex_properties
in
name :: version :: props
|PkgV.Or (pkg, _) -> []
let edge_uid e = Hashtbl.hash e
let vertex_uid v = Hashtbl.hash v
end)
let depgraphbar = Util.Progress.create "SyntacticDependencyGraph.dependency_graph"
(** Build the syntactic dependency graph from the give cudf universe *)
let dependency_graph univ =
let timer = Util.Timer.create "SyntacticDependencyGraph.dependency_graph" in
Util.Timer.start timer;
let conflicts = CudfAdd.init_conflicts univ in
Util.Progress.set_total depgraphbar (Cudf.universe_size univ);
let gr = G.create () in
Cudf.iter_packages (fun pkg ->
Util.Progress.progress depgraphbar;
let vpid = G.V.create (PkgV.Pkg pkg) in
G.add_vertex gr vpid;
let c = ref 0 in
List.iter (fun vpkgs ->
match CudfAdd.resolve_deps univ vpkgs with
|[] -> ()
|[p] ->
let vp = G.V.create (PkgV.Pkg p) in
let edge = G.E.create vpid PkgE.DirDepends vp in
G.add_edge_e gr edge
|l ->
begin
let vor = G.V.create (PkgV.Or (pkg,!c)) in
let edgeor = G.E.create vpid PkgE.OrDepends vor in
G.add_edge_e gr edgeor;
incr c;
List.iter (fun p ->
let vp = G.V.create (PkgV.Pkg p) in
let oredge = G.E.create vor PkgE.OrDepends vp in
G.add_edge_e gr oredge
) l
end
) pkg.Cudf.depends
;
List.iter (fun p ->
if not(CudfAdd.equal p pkg) then
let vp = G.V.create (PkgV.Pkg p) in
let edge = G.E.create vpid PkgE.Conflict vp in
G.add_edge_e gr edge
) (CudfAdd.who_conflicts conflicts univ pkg)
) univ
;
Util.Timer.stop timer gr
;;
end
(******************************************************)
(** Imperative bidirectional graph for dependecies. *)
(** Imperative unidirectional graph for conflicts. *)
(* Note: ConcreteBidirectionalLabelled graphs are slower and we do not use them
* here *)
module MakePackageGraph(PkgV : Sig.COMPARABLE with type t = Cudf.package )= struct
module G = Imperative.Digraph.ConcreteBidirectional(PkgV)
module UG = Imperative.Graph.Concrete(PkgV)
module O = GraphOper(G)
module S = Set.Make(PkgV)
module DotPrinter = struct
module Display = struct
include G
let vertex_name v = Printf.sprintf "\"%s\"" (CudfAdd.string_of_package v)
let graph_attributes = fun _ -> []
let get_subgraph = fun _ -> None
let default_edge_attributes = fun _ -> []
let default_vertex_attributes = fun _ -> []
let vertex_attributes p =
if p.Cudf.installed then [ `Color 0x00FF00 ] else []
let edge_attributes e = []
end
include Graph.Graphviz.Dot(Display)
let print fmt g = fprint_graph fmt g
end
module GmlPrinter = Gml.Print (G) (
struct
let node (v: G.V.label) = []
let edge (e: G.E.label) = []
end
)
module GraphmlPrinter = Graphml.Print (G)(
struct
let vertex_properties =
["package","string",None;
"version","string",None;
"architecture","string",None;
"type","string",None;
"source","string",None;
"sourcenumber","string",None;
"multiarch","string",None;
]
let edge_properties = [
"vpkglist","string",None;
"binaries","string",None;
]
let map_edge e = []
let map_vertex pkg =
let name = ("package",CudfAdd.decode pkg.Cudf.package) in
let version = ("version",CudfAdd.string_of_version pkg) in
let props =
List.filter_map (fun (key,_,_) ->
try let value = Cudf.lookup_package_property pkg key in
Some(key,value)
with Not_found -> None
) vertex_properties
in
name :: version :: props
let edge_uid e = Hashtbl.hash e
let vertex_uid v = Hashtbl.hash v
end)
(* Maintenance Of Transitive Closures And Transitive Reductions Of Graphs *)
(* J.A. La Poutre and J. van Leeuwen *)
let add_edge ?transitive graph i j =
let rec adapt g k red =
let new_red =
S.fold (fun l acc ->
if not(G.V.equal k l) then G.add_edge g k l;
G.fold_succ (fun m acc' ->
if not (G.mem_edge g k m) then S.add m acc'
else acc'
) g l acc
) red S.empty
in
if S.is_empty new_red then ()
else adapt g k new_red
in
let insert g i j =
adapt g i (S.singleton j);
G.iter_pred (fun k ->
if not (G.mem_edge g k j) then
adapt g k (S.singleton j)
) g i
in
match transitive with
|None -> G.add_edge graph i j
|Some true ->
(* add an edge and maintain the transitive clousure of the graph *)
insert graph i j
|Some false ->
(* TODO : add an edge and maintain the transitive reduction of the graph *)
G.add_edge graph i j
(** add to the graph all conjunctive dependencies of package id *)
let conjdepgraph_int ?(transitive=false) graph univ p =
G.add_vertex graph p;
List.iter (fun vpkgs ->
match CudfAdd.resolve_deps univ vpkgs with
|[q] when not(CudfAdd.equal q p) -> add_edge ~transitive graph p q
|_ -> ()
) p.Cudf.depends
(** for all id \in idlist add to the graph all conjunctive dependencies *)
let conjdepgraph univ idlist =
let graph = G.create ~size:(List.length idlist) () in
List.iter (conjdepgraph_int graph univ) idlist;
graph
(** given a graph return the conjunctive dependency closure of the package id *)
let conjdeps graph =
let h = Hashtbl.create (G.nb_vertex graph) in
fun id ->
try Hashtbl.find h id
with Not_found -> begin
let module Dfs = Traverse.Dfs(G) in
let l = ref [] in
let collect id = l := id :: !l in
Dfs.prefix_component collect graph id;
Hashtbl.add h id !l;
!l
end
(** Build the dependency graph from the given cudf universe *)
let dependency_graph ?(conjunctive=false) universe =
let gr = G.create () in
Cudf.iter_packages (fun pkg ->
G.add_vertex gr pkg;
List.iter (fun vpkgs ->
match CudfAdd.resolve_deps universe vpkgs with
|[p] -> G.add_edge gr pkg p
|l when not conjunctive -> List.iter (G.add_edge gr pkg) l
|_ -> ()
) pkg.Cudf.depends
) universe
;
gr
(** Build the dependency graph from the given list of packages *)
let dependency_graph_list ?(conjunctive=false) universe pkglist =
let gr = G.create () in
List.iter (fun pkg ->
G.add_vertex gr pkg;
List.iter (fun vpkgs ->
match CudfAdd.resolve_deps universe vpkgs with
|[p] -> G.add_edge gr pkg p
|l when not conjunctive -> List.iter (G.add_edge gr pkg) l
|_ -> ()
) pkg.Cudf.depends
) pkglist
;
gr
(** Build the conflict graph from the given cudf universe *)
let conflict_graph universe =
let gr = UG.create () in
Cudf.iter_packages (fun pkg ->
List.iter (fun (pkgname,constr) ->
List.iter (UG.add_edge gr pkg)
(CudfAdd.who_provides universe (pkgname,constr))
) pkg.Cudf.conflicts
) universe
;
gr
let undirect graph =
let gr = UG.create () in
G.iter_edges (UG.add_edge gr) graph;
G.iter_vertex (UG.add_vertex gr) graph;
gr
(** Return the list of connected component of an undirected graph *)
let connected_components graph =
let module C = Graph.Components.Make(UG) in
C.scc_list graph
let pred_list graph q =
G.fold_pred (fun p acc -> p :: acc ) graph q []
let succ_list graph q =
G.fold_succ (fun p acc -> p :: acc ) graph q []
let pred_set graph q =
if G.mem_vertex graph q then
G.fold_pred (fun p acc -> S.add p acc) graph q S.empty
else S.empty
let succ_set graph q =
if G.mem_vertex graph q then
G.fold_succ (fun p acc -> S.add p acc) graph q S.empty
else S.empty
let cycle_reduction g =
let module Hashtbl = CudfAdd.Cudf_hashtbl in
let module Set = CudfAdd.Cudf_set in
let visited = Hashtbl.create (G.nb_vertex g) in
let rec get_cycle res path v =
match path with
|[] -> fatal "No cycle in path!"
|h::t when G.V.equal h v -> (t, res)
|h::t -> get_cycle (h::res) t v
in
let reduce_cycle path v =
(* Somewhere, v should be in path. This is the cycle. *)
let (other, c) = get_cycle [] path v in
let nv =
let name = String.concat "/" (List.sort ~cmp:compare (List.map (fun p -> p.Cudf.package) (v::c))) in
{ Cudf.default_package with
Cudf.package = CudfAdd.encode name;
Cudf.version = 1;
}
in
G.add_vertex g nv;
let s = CudfAdd.to_set c in
List.iter (fun p ->
if G.mem_vertex g p then begin
G.iter_pred (fun q -> if not (Set.mem q s) then G.add_edge g q nv) g p;
G.iter_succ (fun q -> if not (Set.mem q s) then G.add_edge g nv q) g p;
G.remove_vertex g p;
end;
Hashtbl.remove visited p
) (v::c);
(other, nv)
in
let rec visit path v =
if G.mem_vertex g v then begin
Hashtbl.add visited v true;
G.iter_succ (fun w ->
try
if Hashtbl.find visited w then
let (other, nv) = reduce_cycle (v::path) w in
visit other nv
with Not_found -> visit (v::path) w
) g v;
Hashtbl.replace visited v false
end
in
G.iter_vertex (fun v -> if not (Hashtbl.mem visited v) then visit [] v) g
;;
let out ?(dump=None) ?(dot=None) ?(detrans=false) pkggraph =
info "Dumping Graph : nodes %d , edges %d"
(G.nb_vertex pkggraph) (G.nb_edges pkggraph) ;
if detrans then begin
O.transitive_reduction pkggraph;
debug "After transitive reduction : nodes %d , edges %d"
(G.nb_vertex pkggraph) (G.nb_edges pkggraph)
end ;
if dump <> None then begin
let f = Option.get dump in
debug "Saving marshal graph in %s\n" f ;
let oc = open_out f in
Marshal.to_channel oc ((detrans,pkggraph) :> (bool * G.t)) [];
close_out oc
end ;
if dot <> None then begin
let f = Option.get dot in
debug "Saving dot graph in %s\n" f ;
let oc = open_out f in
DotPrinter.output_graph oc pkggraph;
close_out oc
end
let load pkglist filename =
let timer = Util.Timer.create "Defaultgraph.PackageGrah.load" in
Util.Timer.start timer;
let ic = open_in filename in
let (detrans,graph) = ((Marshal.from_channel ic) :> (bool * G.t)) in
close_in ic ;
info "Loading Strong Dependencies graph";
(* we assume the graph is detransitivitized *)
let sg =
if detrans then begin
info "Computing transitive closure";
(* O.add_transitive_closure graph *)
graph
end else graph
in
Util.Timer.stop timer sg
end
(******************************************************)
module PkgV = struct
type t = Cudf.package
let compare = CudfAdd.compare
let hash = CudfAdd.hash
let equal = CudfAdd.equal
end
module PkgE = struct
type t = float
let compare = Pervasives.compare
let hash = Hashtbl.hash
let equal = (=)
let default = 0.0
end
module PackageGraph = MakePackageGraph(PkgV)
(** Integer Imperative Bidirectional Graph *)
module IntPkgGraph = struct
module PkgV = struct
type t = int
let compare = Pervasives.compare
let hash i = i
let equal = (=)
end
module G = Imperative.Digraph.ConcreteBidirectional(PkgV)
module S = Set.Make(PkgV)
module O = GraphOper(G)
module DotPrinter = struct
module Display = struct
include G
let vertex_name uid = Printf.sprintf "\"%d\"" uid
let graph_attributes = fun _ -> []
let get_subgraph = fun _ -> None
let default_edge_attributes = fun _ -> []
let default_vertex_attributes = fun _ -> []
let vertex_attributes v = []
let edge_attributes e = []
end
include Graph.Graphviz.Dot(Display)
let print fmt g = fprint_graph fmt g
end
module DIn = Dot.Parse (Builder.I(G))(
struct
let node (id,_) _ =
match id with
|Graph.Dot_ast.String s -> int_of_string s
|_ -> assert false
let edge _ = ()
end
)
module GmlPrinter = Gml.Print (G) (
struct
let node (v: G.V.label) = []
let edge (e: G.E.label) = []
end
)
let add_edge transitive graph i j =
let rec adapt k red =
let new_red =
S.fold (fun l acc ->
if k <> l then G.add_edge graph k l;
G.fold_succ (fun m acc' ->
if not (G.mem_edge graph k m)
then S.add m acc'
else acc'
) graph l acc
) red S.empty
in
if S.is_empty new_red then ()
else adapt k new_red
in
begin
debug "Adding edge from %d to %d" i j;
G.add_edge graph i j;
if transitive then begin
adapt i (S.singleton j);
G.iter_pred (fun k ->
if not (G.mem_edge graph k j) then
adapt k (S.singleton j)
) graph i
end
end
(** add to the graph all conjunctive dependencies of package id *)
let conjdepgraph_int ?(transitive=false) graph univ id =
G.add_vertex graph id;
let p = CudfAdd.inttovar univ id in
List.iter (fun vpkgs ->
match CudfAdd.resolve_vpkgs_int univ vpkgs with
|[q] when q <> id -> add_edge transitive graph id q
|_ -> ()
) p.Cudf.depends
(** for all id \in idlist add to the graph all conjunctive dependencies *)
let conjdepgraph univ idlist =
let graph = G.create ~size:(List.length idlist) () in
List.iter (conjdepgraph_int graph univ) idlist;
graph
(** given a graph return the conjunctive dependency closure of the package id *)
let conjdeps graph =
let h = Hashtbl.create (G.nb_vertex graph) in
fun id ->
try Hashtbl.find h id
with Not_found -> begin
let module Dfs = Traverse.Dfs(G) in
let l = ref [] in
let collect id = l := id :: !l in
Dfs.prefix_component collect graph id;
Hashtbl.add h id !l;
!l
end
(** Build the dependency graph from the given index. conjunctive and
disjunctive dependencies are considered as equal *)
let dependency_graph ?(conjunctive=false) universe =
let size = Cudf.universe_size universe in
let graph = G.create ~size () in
Cudf.iteri_packages (fun id pkg ->
G.add_vertex graph id;
List.iter (fun vpkgs ->
match CudfAdd.resolve_vpkgs_int universe vpkgs with
|[p] -> G.add_edge graph id p
|l when not conjunctive -> List.iter (G.add_edge graph id) l
|_ -> ()
) pkg.Cudf.depends
) universe;
graph
let dependency_graph_list ?(conjunctive=false) universe idlist =
let queue = Queue.create () in
let graph = G.create () in
let visited = Hashtbl.create (2 * (List.length idlist)) in
List.iter (fun e -> Queue.add e queue) idlist;
while (Queue.length queue > 0) do
let id = Queue.take queue in
let pkg = Cudf.package_by_uid universe id in
if not(Hashtbl.mem visited id) then begin
G.add_vertex graph id;
Hashtbl.add visited id ();
List.iter (fun vpkgs ->
match CudfAdd.resolve_vpkgs_int universe vpkgs with
|[i] when not(Hashtbl.mem visited i) -> begin
Queue.add i queue;
G.add_edge graph id i
end
|dsj when not conjunctive ->
List.iter (fun i ->
if not(Hashtbl.mem visited i) then begin
Queue.add i queue;
G.add_edge graph id i
end
) dsj
|_ -> ()
) pkg.Cudf.depends
end
done;
graph
;;
let load pkglist filename =
let timer = Util.Timer.create "Defaultgraph.StrongDepGraph.load" in
Util.Timer.start timer;
let ic = open_in filename in
let (detrans,graph) = ((Marshal.from_channel ic) :> (bool * G.t)) in
close_in ic ;
info "Loading Strong Dependencies graph";
(* we assume the graph is detransitivitized *)
let sg =
if detrans then begin
info "Computing transitive closure";
(* O.add_transitive_closure graph *)
graph
end else graph
in
Util.Timer.stop timer sg
end
|