1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
#!/usr/bin/python
import argparse
import csv
import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import dates
import os.path
from itertools import groupby
from operator import itemgetter, attrgetter, methodcaller
import collections
# takes as a input a cvs file and a list of distributions and
# creates a plot of the evolution of broken and outdated packages
# vs time.
# cvs format "date suite packages broken (outdated)"
# ex : 20111125 unstable 35056 337 (73)
# parse a time line file of the form :
# Title: ...
# Date: Mar 25 2013
# <other infos>: ignored
def parse_timeline(fname,timeline) :
records = []
for empty, record in groupby(open(fname), key=str.isspace):
if not empty:
pairs = map(lambda s : s.split(': '), record)
pairs = dict(map(lambda (k,v) : (k,v.rstrip()), pairs))
pairs['Date'] = dt.datetime.strptime(pairs['Date'],"%b %d %Y")
pairs['Timeline'] = timeline
records.append(pairs)
return records
def aggregate_timeline(timelines) :
t = sorted(timelines,key=lambda t : t['Date'])
l = []
i=0
while i < len(t) - 1 :
if t[i]['Timeline'] == 'release' :
if t[i+1]['Timeline'] == 'release' :
#l.append(t[i])
i=i+1
else :
i=i+1
elif t[i]['Timeline'] == 'freeze' :
if t[i+1]['Timeline'] == 'release' :
l.append((t[i],t[i+1]))
i=i+2
else :
i=i+1
else :
i=i+1
return l
def initdict(dists,distname) :
dists[distname] = {'date' : [], 'total' : [], 'broken' : [], 'outdated' : [] }
return dists
def parse(dataset,outdated=False):
dists = collections.OrderedDict()
csv_reader = csv.reader(dataset,delimiter=' ')
for line in sorted(csv_reader,key=lambda k: k[0]):
distname = line[1]
if distname not in dists :
dists = initdict(dists,distname)
dists[distname]['date'].append(dt.datetime.strptime(line[0],'%Y%m%d'))
dists[distname]['total'].append(int(line[2]))
dists[distname]['broken'].append(int(line[3]))
if outdated :
dists[distname]['outdated'].append(int(line[4]))
return dists
def plot(dists,output,title,intervals,outdated=False) :
distlist = dists.keys()
fig = plt.figure()
fig.suptitle(title)
plotsidx = [311,312,313] if outdated else [211,212]
ax1 = fig.add_subplot(plotsidx[0],title='Total Packages vs Time')
ax2 = fig.add_subplot(plotsidx[1],title='Non-Installable Packages vs Time')
if outdated :
ax3 = fig.add_subplot(plotsidx[2],title='Outdated Packages vs Time')
for k in distlist :
ax1.plot(dists[k]['date'],dists[k]['total'],',-',label=k.capitalize())
ax2.plot(dists[k]['date'],dists[k]['broken'],',-',label=k.capitalize())
if intervals :
mdate = min(dists[k]['date'])
for (f,r) in intervals :
if f['Date'] > mdate :
ax2.axvspan(f['Date'],r['Date'], alpha=0.5, color='red')
if outdated :
ax3.plot(dists[k]['date'],dists[k]['outdated'],',-',label=k.capitalize())
if len(distlist) > 1 :
ax1.legend(loc='upper left')
ax2.legend(loc='upper left')
#ax2.legend()
if outdated :
ax3.legend(loc='upper left')
fig.autofmt_xdate()
plt.savefig(output)
def multiplot(dists,output,title,timelines,intervals) :
fig = plt.figure()
fig.suptitle(title)
subplotnum = len(dists)
#fig.set_figheight((subplotnum+1) * 3)
fig.set_figheight(24)
ax = {}
plotsidx = []
for i in range(1, subplotnum+2) :
plotsidx.append(int(("%d1%d") % (subplotnum+1,i)))
print plotsidx
# First graph puts all dists together in one
ax[0] = fig.add_subplot(plotsidx[0],title='Total Packages vs Time')
for k in dists :
ax[0].plot(dists[k]['date'],dists[k]['total'],',-',label=k.capitalize())
ax[0].legend(loc='upper left')
i = 1
for n in dists.keys() :
ax[i] = fig.add_subplot(plotsidx[i])
if i == 1 :
ax[i].set_title('Non-Installable Packages vs Time')
ax[i].plot(dists[n]['date'],dists[n]['broken'],',-',label=n.capitalize())
ax[i].legend(loc='upper left')
if intervals :
mdate = min(dists[k]['date'])
for (f,r) in intervals :
if f['Date'] > mdate :
ax[i].axvspan(f['Date'],r['Date'], alpha=0.5, color='red')
i += 1
fig.autofmt_xdate()
plt.savefig(output)
# plot two distribution with different scales
def multiscale(dists,dist1,dist2,output,title,outdated=False) :
fig = plt.figure()
fig.suptitle(title)
fig.autofmt_xdate()
plotsidx = [311,312,313] if outdated else [211,212]
ax1 = fig.add_subplot(plotsidx[0],title='Total Packages vs Time')
ax1.plot(dists[dist1]['date'],dists[dist1]['total'],',-',label=dist1.capitalize())
ax1.plot(dists[dist2]['date'],dists[dist2]['total'],',-',label=dist2.capitalize())
ax1.legend(loc='upper left')
ax1.xaxis.set_visible(False)
ax2 = fig.add_subplot(plotsidx[1],title='Non-Installable Packages vs Time')
ax2.plot(dists[dist1]['date'],dists[dist1]['broken'],'o-',label=dist1.capitalize())
ax2.xaxis.set_visible(False)
ax22 = ax2.twinx()
ax22.plot(dists[dist2]['date'],dists[dist2]['broken'],'s-',label=dist2.capitalize())
ax22.set_ylim(0, 70)
if outdated :
ax3 = fig.add_subplot(plotsidx[2],title='Outdated Packages vs Time')
ax3.plot(dists[dist1]['date'],dists[dist1]['outdated'],'o-',label=dist1.capitalize())
ax33 = ax3.twinx()
ax33.plot(dists[dist2]['date'],dists[dist2]['outdated'],'gs-',label=dist2.capitalize())
ax33.set_ylim(0, 10)
# ax33.set_yticks([-1,0,1])
plt.setp(ax3.xaxis.get_majorticklabels(), rotation=30)
plt.savefig(output)
def main():
parser = argparse.ArgumentParser(description='plot outdated/broken')
parser.add_argument('-v', '--verbose')
parser.add_argument('-d', '--debug', action='store_true', default=False)
parser.add_argument('-o', '--output', action='store')
parser.add_argument('-t', '--title', action='store')
parser.add_argument('-s', '--split', action='store_true', default=False)
parser.add_argument('--ms', action='store_true', default=False, help="multi plot")
parser.add_argument('--mp', action='store_true', default=False, help="multi scale")
parser.add_argument('--releases', type=str, nargs=1, help="release timeline")
parser.add_argument('--freezes', type=str, nargs=1, help="freeze timeline")
parser.add_argument('--outdated', action='store_true', default=False)
parser.add_argument('dataset', type=str, nargs=1, help="dataset")
args = parser.parse_args()
fname = args.dataset[0]
dataset = open(fname)
dists = parse(dataset)
dataset.close()
title = args.title[0] if args.title else ""
timelines = {}
intervals = []
if args.releases :
timelines['releases'] = parse_timeline(args.releases[0],'release')
if args.freezes :
timelines['freezes'] = parse_timeline(args.freezes[0],'freeze')
if args.releases and args.freezes :
intervals = aggregate_timeline(timelines['releases'] + timelines['freezes'])
if args.ms :
output = "aggregate-%s-ms.png" % os.path.splitext(os.path.basename(fname))[0]
multiscale(dists, output, title, args.outdated)
elif args.mp :
output = "aggregate-%s-mp.png" % os.path.splitext(os.path.basename(fname))[0]
multiplot(dists, output, title, timelines, intervals)
else :
if args.split :
# different graphs, one for each suite
for d in dists.keys() :
output = "%s-%s.png" % (d,os.path.splitext(os.path.basename(fname))[0])
plot(dists, [d] , output, title, intervals, args.outdated)
else :
# all in one graph
output = "aggregate-%s.png" % os.path.splitext(os.path.basename(fname))[0]
plot(dists, output, title, intervals, args.outdated)
if __name__ == '__main__':
main()
|