1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
{
BLAKE3 - cryptographic hash function.
The C code is copyright Samuel Neves and Jack O'Connor, 2019-2020.
The assembly code is copyright Samuel Neves, 2019-2020.
The Pascal translation by Alexander Koblov, 2020.
This work is released into the public domain with CC0 1.0.
Alternatively, it is licensed under the Apache License 2.0.
}
unit DCblake3;
{$mode objfpc}{$H+}
{$inline on}{$Q-}
{$macro on}{$R-}
interface
uses
Classes, SysUtils, CTypes;
const
BLAKE3_KEY_LEN = 32;
BLAKE3_OUT_LEN = 32;
BLAKE3_BLOCK_LEN = 64;
BLAKE3_CHUNK_LEN = 1024;
BLAKE3_MAX_DEPTH = 54;
BLAKE3_MAX_SIMD_DEGREE = 16;
{$if defined(CPUX86_64)}
MAX_SIMD_DEGREE = 16;
{$else}
MAX_SIMD_DEGREE = 1;
{$endif}
{$if (MAX_SIMD_DEGREE > 2)}
MAX_SIMD_DEGREE_OR_2 = MAX_SIMD_DEGREE;
{$else}
MAX_SIMD_DEGREE_OR_2 = 2;
{$endif}
const BLAKE3_IV: array[0..7] of cuint32 = (
$6A09E667, $BB67AE85, $3C6EF372, $A54FF53A,
$510E527F, $9B05688C, $1F83D9AB, $5BE0CD19
);
const MSG_SCHEDULE: array[0..6] of array[0..15] of cuint8 = (
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
(2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8),
(3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1),
(10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6),
(12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4),
(9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7),
(11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13)
);
type
ppcuint8 = ^pcuint8;
Tblake_cv = array[0..7] of cuint32;
Pblake3_chunk_state = ^blake3_chunk_state;
blake3_chunk_state = record
cv: array[0..7] of cuint32;
chunk_counter: cuint64;
buf: array[0..Pred(BLAKE3_BLOCK_LEN)] of cuint8;
buf_len: cuint8;
blocks_compressed: cuint8;
flags: cuint8;
end;
Pblake3_hasher = ^blake3_hasher;
blake3_hasher = record
key: array[0..7] of cuint32;
chunk: blake3_chunk_state;
cv_stack_len: cuint8;
cv_stack: array[0..Pred((BLAKE3_MAX_DEPTH + 1) * BLAKE3_OUT_LEN)] of cuint8;
end;
procedure blake3_hasher_init(self: Pblake3_hasher);
procedure blake3_hasher_update(self: Pblake3_hasher; const input: Pointer; input_len: csize_t);
procedure blake3_hasher_finalize(const self: Pblake3_hasher; out_: pcuint8; out_len: csize_t);
implementation
{$IF DEFINED(CPUX86_64)}
uses
CPU;
{$ENDIF}
type
blake3_flags = (
CHUNK_START = 1 shl 0,
CHUNK_END = 1 shl 1,
PARENT = 1 shl 2,
ROOT = 1 shl 3,
KEYED_HASH = 1 shl 4,
DERIVE_KEY_CONTEXT = 1 shl 5,
DERIVE_KEY_MATERIAL = 1 shl 6
);
Poutput_t = ^output_t;
output_t = record
input_cv: array[0..7] of cuint32;
counter: cuint64;
block: array[0..Pred(BLAKE3_BLOCK_LEN)] of cuint8;
block_len: cuint8;
flags: cuint8;
end;
function load32( const src: Pointer ): cuint32; inline;
begin
Result := NtoLE(pcuint32(src)^);
end;
procedure store32( dst: pointer; w: cuint32 ); inline;
begin
pcuint32(dst)^ := LEtoN(w);
end;
procedure store_cv_words(bytes_out: pcuint8; cv_words: pcuint32); inline;
begin
store32(@bytes_out[0 * 4], cv_words[0]);
store32(@bytes_out[1 * 4], cv_words[1]);
store32(@bytes_out[2 * 4], cv_words[2]);
store32(@bytes_out[3 * 4], cv_words[3]);
store32(@bytes_out[4 * 4], cv_words[4]);
store32(@bytes_out[5 * 4], cv_words[5]);
store32(@bytes_out[6 * 4], cv_words[6]);
store32(@bytes_out[7 * 4], cv_words[7]);
end;
function round_down_to_power_of_2(x: cuint64): cuint64; inline;
begin
Result := cuint64(1) shl BsrQWord(x or 1);
end;
procedure chunk_state_init(self: Pblake3_chunk_state; const key: pcuint32;
flags: cuint8); inline;
begin
Move(key^, self^.cv[0], BLAKE3_KEY_LEN);
self^.chunk_counter := 0;
FillChar(self^.buf[0], BLAKE3_BLOCK_LEN, 0);
self^.buf_len := 0;
self^.blocks_compressed := 0;
self^.flags := flags;
end;
procedure chunk_state_reset(self: Pblake3_chunk_state; const key: pcuint32;
chunk_counter: cuint64); inline;
begin
Move(key^, self^.cv[0], BLAKE3_KEY_LEN);
self^.chunk_counter := chunk_counter;
self^.blocks_compressed := 0;
FillChar(self^.buf, BLAKE3_BLOCK_LEN, 0);
self^.buf_len := 0;
end;
function chunk_state_len(const self: Pblake3_chunk_state): csize_t; inline;
begin
Result := (BLAKE3_BLOCK_LEN * csize_t(self^.blocks_compressed)) + (csize_t(self^.buf_len));
end;
function chunk_state_fill_buf(self: Pblake3_chunk_state;
const input: pcuint8; input_len: csize_t): csize_t; inline;
var
dest: pcuint8;
begin
Result := BLAKE3_BLOCK_LEN - (csize_t(self^.buf_len));
if (Result > input_len) then begin
Result := input_len;
end;
dest := PByte(self^.buf) + (csize_t(self^.buf_len));
Move(input^, dest^, Result);
self^.buf_len += cuint8(Result);
end;
function chunk_state_maybe_start_flag(const self: Pblake3_chunk_state): cuint8; inline;
begin
if (self^.blocks_compressed = 0) then
Result := cuint8(CHUNK_START)
else begin
Result := 0;
end;
end;
function make_output(const input_cv: Tblake_cv; const block: pcuint8;
block_len: cuint8; counter: cuint64; flags: cuint8): output_t; inline;
begin
Move(input_cv[0], Result.input_cv[0], 32);
Move(block^, Result.block[0], BLAKE3_BLOCK_LEN);
Result.block_len := block_len;
Result.counter := counter;
Result.flags := flags;
end;
{$IF DEFINED(CPUX86_64)}
{$include blake3_sse2.inc}
{$include blake3_sse41.inc}
{$include blake3_avx2.inc}
{$ELSE}
{$include blake3_pas.inc}
{$ENDIF}
var
blake3_simd_degree: csize_t; // The dynamically detected SIMD degree of the current platform
blake3_compress_in_place: procedure(cv: pcuint32;
const block: pcuint8;
block_len: cuint8; counter: cuint64;
flags: cuint8);
blake3_compress_xof: procedure(const cv: pcuint32;
const block: pcuint8;
block_len: cuint8; counter: cuint64;
flags: cuint8; out_: pcuint8);
blake3_hash_many: procedure(inputs: ppcuint8; num_inputs: csize_t;
blocks: csize_t; const key: pcuint32;
counter: cuint64; increment_counter: boolean32;
flags: cuint8; flags_start: cuint8;
flags_end: cuint8; out_: pcuint8);
procedure output_chaining_value(const self: Poutput_t; cv: pcuint8); inline;
var
cv_words: Tblake_cv;
begin
Move(self^.input_cv[0], cv_words[0], 32);
blake3_compress_in_place(cv_words, self^.block, self^.block_len,
self^.counter, self^.flags);
store_cv_words(cv, cv_words);
end;
procedure output_root_bytes(const self: Poutput_t; seek: cuint64; out_: pcuint8;
out_len: csize_t); inline;
var
memcpy_len: csize_t;
available_bytes: csize_t;
offset_within_block: csize_t;
output_block_counter: cuint64;
wide_buf: array[0..63] of cuint8;
begin
output_block_counter := seek div 64;
offset_within_block := seek mod 64;
while (out_len > 0) do
begin
blake3_compress_xof(self^.input_cv, self^.block, self^.block_len,
output_block_counter, self^.flags or cuint8(ROOT), wide_buf);
available_bytes := 64 - offset_within_block;
if (out_len > available_bytes) then
memcpy_len := available_bytes
else begin
memcpy_len := out_len;
end;
Move(wide_buf[offset_within_block], out_^, memcpy_len);
out_ += memcpy_len;
out_len -= memcpy_len;
output_block_counter += 1;
offset_within_block := 0;
end;
end;
procedure chunk_state_update(self: Pblake3_chunk_state; input: pcuint8;
input_len: csize_t); inline;
var
take: csize_t;
begin
if (self^.buf_len > 0) then
begin
take := chunk_state_fill_buf(self, input, input_len);
input += take;
input_len -= take;
if (input_len > 0) then
begin
blake3_compress_in_place(
self^.cv, self^.buf, BLAKE3_BLOCK_LEN, self^.chunk_counter,
self^.flags or chunk_state_maybe_start_flag(self));
self^.blocks_compressed += 1;
self^.buf_len := 0;
FillChar(self^.buf[0], BLAKE3_BLOCK_LEN, 0);
end;
end;
while (input_len > BLAKE3_BLOCK_LEN) do
begin
blake3_compress_in_place(self^.cv, input, BLAKE3_BLOCK_LEN,
self^.chunk_counter,
self^.flags or chunk_state_maybe_start_flag(self));
self^.blocks_compressed += 1;
input += BLAKE3_BLOCK_LEN;
input_len -= BLAKE3_BLOCK_LEN;
end;
take := chunk_state_fill_buf(self, input, input_len);
input += take;
input_len -= take;
end;
function chunk_state_output(const self: Pblake3_chunk_state): output_t; inline;
var
block_flags: cuint8;
begin
block_flags := self^.flags or chunk_state_maybe_start_flag(self) or cuint8(CHUNK_END);
Result := make_output(self^.cv, self^.buf, self^.buf_len, self^.chunk_counter, block_flags);
end;
function parent_output(const block: pcuint8; const key: pcuint32; flags: cuint8): output_t; inline;
begin
Result := make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags or cuint8(PARENT));
end;
function left_len(content_len: csize_t): csize_t; inline;
var
full_chunks: csize_t;
begin
full_chunks := (content_len - 1) div BLAKE3_CHUNK_LEN;
Result := round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
end;
function compress_chunks_parallel(const input: pcuint8; input_len: csize_t;
const key: pcuint32;
chunk_counter: cuint64; flags: cuint8;
out_: pcuint8): csize_t; inline;
var
counter: cuint64;
output: output_t;
input_position: csize_t = 0;
chunks_array_len: csize_t = 0;
chunk_state: blake3_chunk_state;
chunks_array: array[0..Pred(MAX_SIMD_DEGREE)] of pcuint8;
begin
assert(0 < input_len);
assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);
while (input_len - input_position >= BLAKE3_CHUNK_LEN) do
begin
chunks_array[chunks_array_len] := @input[input_position];
input_position += BLAKE3_CHUNK_LEN;
chunks_array_len += 1;
end;
blake3_hash_many(chunks_array, chunks_array_len,
BLAKE3_CHUNK_LEN div BLAKE3_BLOCK_LEN, key, chunk_counter,
true, flags, cuint8(CHUNK_START), cuint8(CHUNK_END), out_);
// Hash the remaining partial chunk, if there is one. Note that the empty
// chunk (meaning the empty message) is a different codepath.
if (input_len > input_position) then
begin
counter := chunk_counter + cuint64(chunks_array_len);
chunk_state_init(@chunk_state, key, flags);
chunk_state.chunk_counter := counter;
chunk_state_update(@chunk_state, @input[input_position],
input_len - input_position);
output := chunk_state_output(@chunk_state);
output_chaining_value(@output, @out_[chunks_array_len * BLAKE3_OUT_LEN]);
Result := chunks_array_len + 1;
end
else begin
Result := chunks_array_len;
end;
end;
function compress_parents_parallel(const child_chaining_values: pcuint8;
num_chaining_values: csize_t;
const key: pcuint32; flags: cuint8;
out_: pcuint8): csize_t; inline;
var
parents_array_len: csize_t = 0;
parents_array: array[0..Pred(MAX_SIMD_DEGREE_OR_2)] of puint8;
begin
assert(2 <= num_chaining_values);
assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
while (num_chaining_values - (2 * parents_array_len) >= 2) do
begin
parents_array[parents_array_len] :=
@child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
parents_array_len += 1;
end;
blake3_hash_many(parents_array, parents_array_len, 1, key,
0, // Parents always use counter 0.
false, flags or cuint8(PARENT),
0, // Parents have no start flags.
0, // Parents have no end flags.
out_);
// If there's an odd child left over, it becomes an output.
if (num_chaining_values > 2 * parents_array_len) then
begin
Move(child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
out_[parents_array_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
Result := parents_array_len + 1;
end
else begin
Result := parents_array_len;
end;
end;
function blake3_compress_subtree_wide(const input: pcuint8;
input_len: csize_t;
const key: pcuint32;
chunk_counter: cuint64;
flags: cuint8; out_: pcuint8): csize_t;
var
left_n: csize_t;
degree: csize_t;
right_n: csize_t;
right_cvs: pcuint8;
right_input: pcuint8;
left_input_len: csize_t;
right_input_len: csize_t;
right_chunk_counter: cuint64;
num_chaining_values: csize_t;
cv_array: array[0..Pred(2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN)] of cuint8;
begin
// Note that the single chunk case does *not* bump the SIMD degree up to 2
// when it is 1. If this implementation adds multi-threading in the future,
// this gives us the option of multi-threading even the 2-chunk case, which
// can help performance on smaller platforms.
if (input_len <= blake3_simd_degree * BLAKE3_CHUNK_LEN) then
begin
Result:= compress_chunks_parallel(input, input_len, key, chunk_counter, flags, out_);
Exit;
end;
// With more than simd_degree chunks, we need to recurse. Start by dividing
// the input into left and right subtrees. (Note that this is only optimal
// as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
// of 3 or something, we'll need a more complicated strategy.)
left_input_len := left_len(input_len);
right_input_len := input_len - left_input_len;
right_input := @input[left_input_len];
right_chunk_counter := chunk_counter + cuint64(left_input_len div BLAKE3_CHUNK_LEN);
// Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
// account for the special case of returning 2 outputs when the SIMD degree
// is 1.
degree := blake3_simd_degree;
if (left_input_len > BLAKE3_CHUNK_LEN) and (degree = 1) then
begin
// The special case: We always use a degree of at least two, to make
// sure there are two outputs. Except, as noted above, at the chunk
// level, where we allow degree=1. (Note that the 1-chunk-input case is
// a different codepath.)
degree := 2;
end;
right_cvs := @cv_array[degree * BLAKE3_OUT_LEN];
// Recurse! If this implementation adds multi-threading support in the
// future, this is where it will go.
left_n := blake3_compress_subtree_wide(input, left_input_len, key,
chunk_counter, flags, cv_array);
right_n := blake3_compress_subtree_wide(
right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
// The special case again. If simd_degree=1, then we'll have left_n=1 and
// right_n=1. Rather than compressing them into a single output, return
// them directly, to make sure we always have at least two outputs.
if (left_n = 1) then
begin
Move(cv_array[0], out_^, 2 * BLAKE3_OUT_LEN);
Exit(2);
end;
// Otherwise, do one layer of parent node compression.
num_chaining_values := left_n + right_n;
Result := compress_parents_parallel(cv_array, num_chaining_values, key, flags, out_);
end;
procedure compress_subtree_to_parent_node(
const input: pcuint8; input_len: csize_t; const key: pcuint32;
chunk_counter: cuint64; flags: cuint8; out_: pcuint8); inline;
var
num_cvs: csize_t;
cv_array: array[0..Pred(MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN)] of cuint8;
out_array: array[0..Pred(MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN div 2)] of cuint8;
begin
assert(input_len > BLAKE3_CHUNK_LEN);
num_cvs := blake3_compress_subtree_wide(input, input_len, key,
chunk_counter, flags, cv_array);
// If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
// compress_subtree_wide() returns more than 2 chaining values. Condense
// them into 2 by forming parent nodes repeatedly.
while (num_cvs > 2) do
begin
num_cvs :=
compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
Move(out_array[0], cv_array[0], num_cvs * BLAKE3_OUT_LEN);
end;
Move(cv_array[0], out_^, 2 * BLAKE3_OUT_LEN);
end;
procedure hasher_init_base(self: Pblake3_hasher; const key: pcuint32;
flags: cuint8); inline;
begin
Move(key^, self^.key[0], BLAKE3_KEY_LEN);
chunk_state_init(@self^.chunk, key, flags);
self^.cv_stack_len := 0;
end;
procedure blake3_hasher_init(self: Pblake3_hasher); inline;
begin
hasher_init_base(self, BLAKE3_IV, 0);
end;
procedure hasher_merge_cv_stack(self: Pblake3_hasher; total_len: cuint64); inline;
var
output: output_t;
parent_node: pcuint8;
post_merge_stack_len: csize_t;
begin
post_merge_stack_len := csize_t(popcnt(total_len));
while (self^.cv_stack_len > post_merge_stack_len) do
begin
parent_node := @self^.cv_stack[(self^.cv_stack_len - 2) * BLAKE3_OUT_LEN];
output := parent_output(parent_node, self^.key, self^.chunk.flags);
output_chaining_value(@output, parent_node);
self^.cv_stack_len -= 1;
end;
end;
procedure hasher_push_cv(self: Pblake3_hasher; new_cv: pcuint8;
chunk_counter: cuint64); inline;
begin
hasher_merge_cv_stack(self, chunk_counter);
Move(new_cv^, self^.cv_stack[self^.cv_stack_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
self^.cv_stack_len += 1;
end;
procedure blake3_hasher_update(self: Pblake3_hasher; const input: Pointer;
input_len: csize_t);
var
take: csize_t;
output: output_t;
subtree_len: csize_t;
input_bytes: pcuint8;
count_so_far: cuint64;
subtree_chunks: cuint64;
chunk_state: blake3_chunk_state;
chunk_cv: array[0..31] of cuint8;
cv: array[0..Pred(BLAKE3_OUT_LEN)] of cuint8;
cv_pair: array[0..Pred(2 * BLAKE3_OUT_LEN)] of cuint8;
begin
// Explicitly checking for zero avoids causing UB by passing a null pointer
// to memcpy. This comes up in practice with things like:
// std::vector<uint8_t> v;
// blake3_hasher_update(&hasher, v.data(), v.size());
if (input_len = 0) then Exit;
input_bytes := pcuint8(input);
// If we have some partial chunk bytes in the internal chunk_state, we need
// to finish that chunk first.
if (chunk_state_len(@self^.chunk) > 0) then
begin
take := BLAKE3_CHUNK_LEN - chunk_state_len(@self^.chunk);
if (take > input_len) then begin
take := input_len;
end;
chunk_state_update(@self^.chunk, input_bytes, take);
input_bytes += take;
input_len -= take;
// If we've filled the current chunk and there's more coming, finalize this
// chunk and proceed. In this case we know it's not the root.
if (input_len > 0) then
begin
output := chunk_state_output(@self^.chunk);
output_chaining_value(@output, chunk_cv);
hasher_push_cv(self, chunk_cv, self^.chunk.chunk_counter);
chunk_state_reset(@self^.chunk, self^.key, self^.chunk.chunk_counter + 1);
end
else begin
Exit;
end;
end;
// Now the chunk_state is clear, and we have more input. If there's more than
// a single chunk (so, definitely not the root chunk), hash the largest whole
// subtree we can, with the full benefits of SIMD (and maybe in the future,
// multi-threading) parallelism. Two restrictions:
// - The subtree has to be a power-of-2 number of chunks. Only subtrees along
// the right edge can be incomplete, and we don't know where the right edge
// is going to be until we get to finalize().
// - The subtree must evenly divide the total number of chunks up until this
// point (if total is not 0). If the current incomplete subtree is only
// waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
// to complete the current subtree first.
// Because we might need to break up the input to form powers of 2, or to
// evenly divide what we already have, this part runs in a loop.
while (input_len > BLAKE3_CHUNK_LEN) do
begin
subtree_len := round_down_to_power_of_2(input_len);
count_so_far := self^.chunk.chunk_counter * BLAKE3_CHUNK_LEN;
// Shrink the subtree_len until it evenly divides the count so far. We know
// that subtree_len itself is a power of 2, so we can use a bitmasking
// trick instead of an actual remainder operation. (Note that if the caller
// consistently passes power-of-2 inputs of the same size, as is hopefully
// typical, this loop condition will always fail, and subtree_len will
// always be the full length of the input.)
//
// An aside: We don't have to shrink subtree_len quite this much. For
// example, if count_so_far is 1, we could pass 2 chunks to
// compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
// get the right answer in the end, and we might get to use 2-way SIMD
// parallelism. The problem with this optimization, is that it gets us
// stuck always hashing 2 chunks. The total number of chunks will remain
// odd, and we'll never graduate to higher degrees of parallelism. See
// https://github.com/BLAKE3-team/BLAKE3/issues/69.
while (((cuint64(subtree_len - 1)) and count_so_far) <> 0) do
begin
subtree_len := subtree_len div 2;
end;
// The shrunken subtree_len might now be 1 chunk long. If so, hash that one
// chunk by itself. Otherwise, compress the subtree into a pair of CVs.
subtree_chunks := subtree_len div BLAKE3_CHUNK_LEN;
if (subtree_len <= BLAKE3_CHUNK_LEN) then
begin
chunk_state_init(@chunk_state, self^.key, self^.chunk.flags);
chunk_state.chunk_counter := self^.chunk.chunk_counter;
chunk_state_update(@chunk_state, input_bytes, subtree_len);
output := chunk_state_output(@chunk_state);
output_chaining_value(@output, cv);
hasher_push_cv(self, cv, chunk_state.chunk_counter);
end
else begin
// This is the high-performance happy path, though getting here depends
// on the caller giving us a long enough input.
compress_subtree_to_parent_node(input_bytes, subtree_len, self^.key,
self^.chunk.chunk_counter,
self^.chunk.flags, cv_pair);
hasher_push_cv(self, cv_pair, self^.chunk.chunk_counter);
hasher_push_cv(self, @cv_pair[BLAKE3_OUT_LEN],
self^.chunk.chunk_counter + (subtree_chunks div 2));
end;
self^.chunk.chunk_counter += subtree_chunks;
input_bytes += subtree_len;
input_len -= subtree_len;
end;
// If there's any remaining input less than a full chunk, add it to the chunk
// state. In that case, also do a final merge loop to make sure the subtree
// stack doesn't contain any unmerged pairs. The remaining input means we
// know these merges are non-root. This merge loop isn't strictly necessary
// here, because hasher_push_chunk_cv already does its own merge loop, but it
// simplifies blake3_hasher_finalize below.
if (input_len > 0) then
begin
chunk_state_update(@self^.chunk, input_bytes, input_len);
hasher_merge_cv_stack(self, self^.chunk.chunk_counter);
end;
end;
procedure blake3_hasher_finalize_seek(const self: Pblake3_hasher; seek: cuint64;
out_: pcuint8; out_len: csize_t);
var
output: output_t;
cvs_remaining: csize_t;
parent_block: array[0..Pred(BLAKE3_BLOCK_LEN)] of cuint8;
begin
// Explicitly checking for zero avoids causing UB by passing a null pointer
// to memcpy. This comes up in practice with things like:
// std::vector<uint8_t> v;
// blake3_hasher_finalize(&hasher, v.data(), v.size());
if (out_len = 0) then Exit;
// If the subtree stack is empty, then the current chunk is the root.
if (self^.cv_stack_len = 0) then
begin
output := chunk_state_output(@self^.chunk);
output_root_bytes(@output, seek, out_, out_len);
Exit;
end;
// If there are any bytes in the chunk state, finalize that chunk and do a
// roll-up merge between that chunk hash and every subtree in the stack. In
// this case, the extra merge loop at the end of blake3_hasher_update
// guarantees that none of the subtrees in the stack need to be merged with
// each other first. Otherwise, if there are no bytes in the chunk state,
// then the top of the stack is a chunk hash, and we start the merge from
// that.
if (chunk_state_len(@self^.chunk) > 0) then
begin
cvs_remaining := self^.cv_stack_len;
output := chunk_state_output(@self^.chunk);
end
else begin
// There are always at least 2 CVs in the stack in this case.
cvs_remaining := self^.cv_stack_len - 2;
output := parent_output(@self^.cv_stack[cvs_remaining * 32], self^.key,
self^.chunk.flags);
end;
while (cvs_remaining > 0) do
begin
cvs_remaining -= 1;
Move(self^.cv_stack[cvs_remaining * 32], parent_block[0], 32);
output_chaining_value(@output, @parent_block[32]);
output := parent_output(parent_block, self^.key, self^.chunk.flags);
end;
output_root_bytes(@output, seek, out_, out_len);
end;
procedure blake3_hasher_finalize(const self: Pblake3_hasher; out_: pcuint8; out_len: csize_t);
begin
blake3_hasher_finalize_seek(self, 0, out_, out_len);
end;
initialization
{$IF DEFINED(CPUX86_64)}
if AVX2Support then
begin
blake3_simd_degree:= 8;
blake3_compress_in_place:= @blake3_compress_in_place_sse41;
blake3_compress_xof:= @blake3_compress_xof_sse41;
blake3_hash_many:= @blake3_hash_many_avx2;
end
else if SSE41Support then
begin
blake3_simd_degree:= 4;
blake3_compress_in_place:= @blake3_compress_in_place_sse41;
blake3_compress_xof:= @blake3_compress_xof_sse41;
blake3_hash_many:= @blake3_hash_many_sse41;
end
else begin
blake3_simd_degree:= 4;
blake3_compress_in_place:= @blake3_compress_in_place_sse2;
blake3_compress_xof:= @blake3_compress_xof_sse2;
blake3_hash_many:= @blake3_hash_many_sse2;
end;
{$ELSE}
blake3_simd_degree:= 1;
blake3_compress_in_place:= @blake3_compress_in_place_portable;
blake3_compress_xof:= @blake3_compress_xof_portable;
blake3_hash_many:= @blake3_hash_many_portable;
{$ENDIF}
end.
|