File: dcblake3.pp

package info (click to toggle)
doublecmd 1.0.10-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,380 kB
  • sloc: pascal: 368,788; ansic: 6,001; sh: 769; makefile: 196; python: 52; xml: 8
file content (742 lines) | stat: -rw-r--r-- 27,467 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
{
   BLAKE3 - cryptographic hash function.

   The C code is copyright Samuel Neves and Jack O'Connor, 2019-2020.
   The assembly code is copyright Samuel Neves, 2019-2020.
   The Pascal translation by Alexander Koblov, 2020.

   This work is released into the public domain with CC0 1.0.
   Alternatively, it is licensed under the Apache License 2.0.
}

unit DCblake3;

{$mode objfpc}{$H+}
{$inline on}{$Q-}
{$macro on}{$R-}

interface

uses
  Classes, SysUtils, CTypes;

const
  BLAKE3_KEY_LEN = 32;
  BLAKE3_OUT_LEN = 32;
  BLAKE3_BLOCK_LEN = 64;
  BLAKE3_CHUNK_LEN = 1024;
  BLAKE3_MAX_DEPTH = 54;
  BLAKE3_MAX_SIMD_DEGREE = 16;

{$if defined(CPUX86_64)}
  MAX_SIMD_DEGREE = 16;
{$else}
  MAX_SIMD_DEGREE = 1;
{$endif}

{$if (MAX_SIMD_DEGREE > 2)}
  MAX_SIMD_DEGREE_OR_2 = MAX_SIMD_DEGREE;
{$else}
  MAX_SIMD_DEGREE_OR_2 = 2;
{$endif}

const BLAKE3_IV: array[0..7] of cuint32 = (
  $6A09E667, $BB67AE85, $3C6EF372, $A54FF53A,
  $510E527F, $9B05688C, $1F83D9AB, $5BE0CD19
  );

const MSG_SCHEDULE: array[0..6] of array[0..15] of cuint8 = (
    (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
    (2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8),
    (3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1),
    (10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6),
    (12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4),
    (9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7),
    (11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13)
);

type
  ppcuint8 = ^pcuint8;

  Tblake_cv = array[0..7] of cuint32;

  Pblake3_chunk_state = ^blake3_chunk_state;
  blake3_chunk_state = record
    cv: array[0..7] of cuint32;
    chunk_counter: cuint64;
    buf: array[0..Pred(BLAKE3_BLOCK_LEN)] of cuint8;
    buf_len: cuint8;
    blocks_compressed: cuint8;
    flags: cuint8;
  end;

  Pblake3_hasher = ^blake3_hasher;
  blake3_hasher = record
    key: array[0..7] of cuint32;
    chunk: blake3_chunk_state;
    cv_stack_len: cuint8;
    cv_stack: array[0..Pred((BLAKE3_MAX_DEPTH + 1) * BLAKE3_OUT_LEN)] of cuint8;
  end;

procedure blake3_hasher_init(self: Pblake3_hasher);
procedure blake3_hasher_update(self: Pblake3_hasher; const input: Pointer; input_len: csize_t);
procedure blake3_hasher_finalize(const self: Pblake3_hasher; out_: pcuint8; out_len: csize_t);

implementation

{$IF DEFINED(CPUX86_64)}
uses
  CPU;
{$ENDIF}

type
  blake3_flags = (
    CHUNK_START         = 1 shl 0,
    CHUNK_END           = 1 shl 1,
    PARENT              = 1 shl 2,
    ROOT                = 1 shl 3,
    KEYED_HASH          = 1 shl 4,
    DERIVE_KEY_CONTEXT  = 1 shl 5,
    DERIVE_KEY_MATERIAL = 1 shl 6
  );

  Poutput_t = ^output_t;
  output_t = record
    input_cv: array[0..7] of cuint32;
    counter: cuint64;
    block: array[0..Pred(BLAKE3_BLOCK_LEN)] of cuint8;
    block_len: cuint8;
    flags: cuint8;
  end;

function load32( const src: Pointer ): cuint32; inline;
begin
  Result := NtoLE(pcuint32(src)^);
end;

procedure store32( dst: pointer; w: cuint32 ); inline;
begin
  pcuint32(dst)^ := LEtoN(w);
end;

procedure store_cv_words(bytes_out: pcuint8; cv_words: pcuint32); inline;
begin
  store32(@bytes_out[0 * 4], cv_words[0]);
  store32(@bytes_out[1 * 4], cv_words[1]);
  store32(@bytes_out[2 * 4], cv_words[2]);
  store32(@bytes_out[3 * 4], cv_words[3]);
  store32(@bytes_out[4 * 4], cv_words[4]);
  store32(@bytes_out[5 * 4], cv_words[5]);
  store32(@bytes_out[6 * 4], cv_words[6]);
  store32(@bytes_out[7 * 4], cv_words[7]);
end;

function round_down_to_power_of_2(x: cuint64): cuint64; inline;
begin
  Result := cuint64(1) shl BsrQWord(x or 1);
end;

procedure chunk_state_init(self: Pblake3_chunk_state; const key: pcuint32;
                           flags: cuint8); inline;
begin
  Move(key^, self^.cv[0], BLAKE3_KEY_LEN);
  self^.chunk_counter := 0;
  FillChar(self^.buf[0], BLAKE3_BLOCK_LEN, 0);
  self^.buf_len := 0;
  self^.blocks_compressed := 0;
  self^.flags := flags;
end;

procedure chunk_state_reset(self: Pblake3_chunk_state; const key: pcuint32;
                            chunk_counter: cuint64); inline;
begin
  Move(key^, self^.cv[0], BLAKE3_KEY_LEN);
  self^.chunk_counter := chunk_counter;
  self^.blocks_compressed := 0;
  FillChar(self^.buf, BLAKE3_BLOCK_LEN, 0);
  self^.buf_len := 0;
end;

function chunk_state_len(const self: Pblake3_chunk_state): csize_t; inline;
begin
  Result := (BLAKE3_BLOCK_LEN * csize_t(self^.blocks_compressed)) + (csize_t(self^.buf_len));
end;

function chunk_state_fill_buf(self: Pblake3_chunk_state;
                                   const input: pcuint8; input_len: csize_t): csize_t; inline;
var
  dest: pcuint8;
begin
  Result := BLAKE3_BLOCK_LEN - (csize_t(self^.buf_len));
  if (Result > input_len) then begin
    Result := input_len;
  end;
  dest := PByte(self^.buf) + (csize_t(self^.buf_len));
  Move(input^, dest^, Result);
  self^.buf_len += cuint8(Result);
end;

function chunk_state_maybe_start_flag(const self: Pblake3_chunk_state): cuint8; inline;
begin
  if (self^.blocks_compressed = 0) then
    Result := cuint8(CHUNK_START)
   else begin
    Result := 0;
  end;
end;

function make_output(const input_cv: Tblake_cv; const block: pcuint8;
                     block_len: cuint8; counter: cuint64; flags: cuint8): output_t; inline;
begin
  Move(input_cv[0], Result.input_cv[0], 32);
  Move(block^, Result.block[0], BLAKE3_BLOCK_LEN);
  Result.block_len := block_len;
  Result.counter := counter;
  Result.flags := flags;
end;

{$IF DEFINED(CPUX86_64)}
  {$include blake3_sse2.inc}
  {$include blake3_sse41.inc}
  {$include blake3_avx2.inc}
{$ELSE}
  {$include blake3_pas.inc}
{$ENDIF}

var
  blake3_simd_degree: csize_t; // The dynamically detected SIMD degree of the current platform

  blake3_compress_in_place: procedure(cv: pcuint32;
                                      const block: pcuint8;
                                      block_len: cuint8; counter: cuint64;
                                      flags: cuint8);

  blake3_compress_xof: procedure(const cv: pcuint32;
                                 const block: pcuint8;
                                 block_len: cuint8; counter: cuint64;
                                 flags: cuint8; out_: pcuint8);

  blake3_hash_many: procedure(inputs: ppcuint8; num_inputs: csize_t;
                              blocks: csize_t; const key: pcuint32;
                              counter: cuint64; increment_counter: boolean32;
                              flags: cuint8; flags_start: cuint8;
                              flags_end: cuint8; out_: pcuint8);

procedure output_chaining_value(const self: Poutput_t; cv: pcuint8); inline;
var
  cv_words: Tblake_cv;
begin
  Move(self^.input_cv[0], cv_words[0], 32);
  blake3_compress_in_place(cv_words, self^.block, self^.block_len,
                           self^.counter, self^.flags);
  store_cv_words(cv, cv_words);
end;

procedure output_root_bytes(const self: Poutput_t; seek: cuint64; out_: pcuint8;
                            out_len: csize_t); inline;
var
  memcpy_len: csize_t;
  available_bytes: csize_t;
  offset_within_block: csize_t;
  output_block_counter: cuint64;
  wide_buf: array[0..63] of cuint8;
begin
  output_block_counter := seek div 64;
  offset_within_block := seek mod 64;
  while (out_len > 0) do
  begin
    blake3_compress_xof(self^.input_cv, self^.block, self^.block_len,
                        output_block_counter, self^.flags or cuint8(ROOT), wide_buf);
    available_bytes := 64 - offset_within_block;

    if (out_len > available_bytes) then
      memcpy_len := available_bytes
    else begin
      memcpy_len := out_len;
    end;
    Move(wide_buf[offset_within_block], out_^, memcpy_len);
    out_ += memcpy_len;
    out_len -= memcpy_len;
    output_block_counter += 1;
    offset_within_block := 0;
  end;
end;

procedure chunk_state_update(self: Pblake3_chunk_state; input: pcuint8;
                             input_len: csize_t); inline;
var
  take: csize_t;
begin
  if (self^.buf_len > 0) then
  begin
    take := chunk_state_fill_buf(self, input, input_len);
    input += take;
    input_len -= take;
    if (input_len > 0) then
    begin
      blake3_compress_in_place(
          self^.cv, self^.buf, BLAKE3_BLOCK_LEN, self^.chunk_counter,
          self^.flags or chunk_state_maybe_start_flag(self));
      self^.blocks_compressed += 1;
      self^.buf_len := 0;
      FillChar(self^.buf[0], BLAKE3_BLOCK_LEN, 0);
    end;
  end;

  while (input_len > BLAKE3_BLOCK_LEN) do
  begin
    blake3_compress_in_place(self^.cv, input, BLAKE3_BLOCK_LEN,
                             self^.chunk_counter,
                             self^.flags or chunk_state_maybe_start_flag(self));
    self^.blocks_compressed += 1;
    input += BLAKE3_BLOCK_LEN;
    input_len -= BLAKE3_BLOCK_LEN;
  end;

  take := chunk_state_fill_buf(self, input, input_len);
  input += take;
  input_len -= take;
end;

function chunk_state_output(const self: Pblake3_chunk_state): output_t; inline;
var
  block_flags: cuint8;
begin
  block_flags := self^.flags or chunk_state_maybe_start_flag(self) or cuint8(CHUNK_END);
  Result := make_output(self^.cv, self^.buf, self^.buf_len, self^.chunk_counter, block_flags);
end;

function parent_output(const block: pcuint8; const key: pcuint32; flags: cuint8): output_t; inline;
begin
  Result := make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags or cuint8(PARENT));
end;

function left_len(content_len: csize_t): csize_t; inline;
var
  full_chunks: csize_t;
begin
  full_chunks := (content_len - 1) div BLAKE3_CHUNK_LEN;
  Result := round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
end;

function compress_chunks_parallel(const input: pcuint8; input_len: csize_t;
                                       const key: pcuint32;
                                       chunk_counter: cuint64; flags: cuint8;
                                       out_: pcuint8): csize_t; inline;
var
  counter: cuint64;
  output: output_t;
  input_position: csize_t = 0;
  chunks_array_len: csize_t = 0;
  chunk_state: blake3_chunk_state;
  chunks_array: array[0..Pred(MAX_SIMD_DEGREE)] of pcuint8;
begin
  assert(0 < input_len);
  assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);

  while (input_len - input_position >= BLAKE3_CHUNK_LEN) do
  begin
    chunks_array[chunks_array_len] := @input[input_position];
    input_position += BLAKE3_CHUNK_LEN;
    chunks_array_len += 1;
  end;

  blake3_hash_many(chunks_array, chunks_array_len,
                   BLAKE3_CHUNK_LEN div BLAKE3_BLOCK_LEN, key, chunk_counter,
                   true, flags, cuint8(CHUNK_START), cuint8(CHUNK_END), out_);

  // Hash the remaining partial chunk, if there is one. Note that the empty
  // chunk (meaning the empty message) is a different codepath.
  if (input_len > input_position) then
  begin
    counter := chunk_counter + cuint64(chunks_array_len);
    chunk_state_init(@chunk_state, key, flags);
    chunk_state.chunk_counter := counter;
    chunk_state_update(@chunk_state, @input[input_position],
                       input_len - input_position);
    output := chunk_state_output(@chunk_state);
    output_chaining_value(@output, @out_[chunks_array_len * BLAKE3_OUT_LEN]);
    Result := chunks_array_len + 1;
  end
  else begin
    Result := chunks_array_len;
  end;
end;

function compress_parents_parallel(const child_chaining_values: pcuint8;
                                        num_chaining_values: csize_t;
                                        const key: pcuint32; flags: cuint8;
                                        out_: pcuint8): csize_t; inline;
var
 parents_array_len: csize_t = 0;
 parents_array: array[0..Pred(MAX_SIMD_DEGREE_OR_2)] of puint8;
begin
  assert(2 <= num_chaining_values);
  assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);


  while (num_chaining_values - (2 * parents_array_len) >= 2) do
  begin
    parents_array[parents_array_len] :=
        @child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
    parents_array_len += 1;
  end;

  blake3_hash_many(parents_array, parents_array_len, 1, key,
                   0, // Parents always use counter 0.
                   false, flags or cuint8(PARENT),
                   0, // Parents have no start flags.
                   0, // Parents have no end flags.
                   out_);

  // If there's an odd child left over, it becomes an output.
  if (num_chaining_values > 2 * parents_array_len) then
  begin
    Move(child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
         out_[parents_array_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
    Result := parents_array_len + 1;
  end
  else begin
    Result := parents_array_len;
  end;
end;

function blake3_compress_subtree_wide(const input: pcuint8;
                                      input_len: csize_t;
                                      const key: pcuint32;
                                      chunk_counter: cuint64;
                                      flags: cuint8; out_: pcuint8): csize_t;
var
 left_n: csize_t;
 degree: csize_t;
 right_n: csize_t;
 right_cvs: pcuint8;
 right_input: pcuint8;
 left_input_len: csize_t;
 right_input_len: csize_t;
 right_chunk_counter: cuint64;
 num_chaining_values: csize_t;
 cv_array: array[0..Pred(2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN)] of cuint8;
begin
  // Note that the single chunk case does *not* bump the SIMD degree up to 2
  // when it is 1. If this implementation adds multi-threading in the future,
  // this gives us the option of multi-threading even the 2-chunk case, which
  // can help performance on smaller platforms.
  if (input_len <= blake3_simd_degree * BLAKE3_CHUNK_LEN) then
  begin
    Result:= compress_chunks_parallel(input, input_len, key, chunk_counter, flags, out_);
    Exit;
  end;

  // With more than simd_degree chunks, we need to recurse. Start by dividing
  // the input into left and right subtrees. (Note that this is only optimal
  // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
  // of 3 or something, we'll need a more complicated strategy.)
  left_input_len := left_len(input_len);
  right_input_len := input_len - left_input_len;
  right_input := @input[left_input_len];
  right_chunk_counter := chunk_counter + cuint64(left_input_len div BLAKE3_CHUNK_LEN);

  // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
  // account for the special case of returning 2 outputs when the SIMD degree
  // is 1.
  degree := blake3_simd_degree;
  if (left_input_len > BLAKE3_CHUNK_LEN) and (degree = 1)  then
  begin
    // The special case: We always use a degree of at least two, to make
    // sure there are two outputs. Except, as noted above, at the chunk
    // level, where we allow degree=1. (Note that the 1-chunk-input case is
    // a different codepath.)
    degree := 2;
  end;
  right_cvs := @cv_array[degree * BLAKE3_OUT_LEN];

  // Recurse! If this implementation adds multi-threading support in the
  // future, this is where it will go.
  left_n := blake3_compress_subtree_wide(input, left_input_len, key,
                                               chunk_counter, flags, cv_array);
  right_n := blake3_compress_subtree_wide(
      right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);

  // The special case again. If simd_degree=1, then we'll have left_n=1 and
  // right_n=1. Rather than compressing them into a single output, return
  // them directly, to make sure we always have at least two outputs.
  if (left_n = 1) then
  begin
    Move(cv_array[0], out_^, 2 * BLAKE3_OUT_LEN);
    Exit(2);
  end;

  // Otherwise, do one layer of parent node compression.
  num_chaining_values := left_n + right_n;
  Result := compress_parents_parallel(cv_array, num_chaining_values, key, flags, out_);
end;

procedure compress_subtree_to_parent_node(
    const input: pcuint8; input_len: csize_t; const key: pcuint32;
    chunk_counter: cuint64; flags: cuint8; out_: pcuint8); inline;
var
  num_cvs: csize_t;
  cv_array: array[0..Pred(MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN)] of cuint8;
  out_array: array[0..Pred(MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN div 2)] of cuint8;
begin
  assert(input_len > BLAKE3_CHUNK_LEN);

  num_cvs := blake3_compress_subtree_wide(input, input_len, key,
                                                chunk_counter, flags, cv_array);

  // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
  // compress_subtree_wide() returns more than 2 chaining values. Condense
  // them into 2 by forming parent nodes repeatedly.
  while (num_cvs > 2) do
  begin
    num_cvs :=
        compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
    Move(out_array[0], cv_array[0], num_cvs * BLAKE3_OUT_LEN);
  end;
  Move(cv_array[0], out_^, 2 * BLAKE3_OUT_LEN);
end;

procedure hasher_init_base(self: Pblake3_hasher; const key: pcuint32;
                             flags: cuint8); inline;
begin
  Move(key^, self^.key[0], BLAKE3_KEY_LEN);
  chunk_state_init(@self^.chunk, key, flags);
  self^.cv_stack_len := 0;
end;

procedure blake3_hasher_init(self: Pblake3_hasher); inline;
begin
  hasher_init_base(self, BLAKE3_IV, 0);
end;

procedure hasher_merge_cv_stack(self: Pblake3_hasher; total_len: cuint64); inline;
var
  output: output_t;
  parent_node: pcuint8;
  post_merge_stack_len: csize_t;
begin
  post_merge_stack_len := csize_t(popcnt(total_len));
  while (self^.cv_stack_len > post_merge_stack_len) do
  begin
    parent_node := @self^.cv_stack[(self^.cv_stack_len - 2) * BLAKE3_OUT_LEN];
    output := parent_output(parent_node, self^.key, self^.chunk.flags);
    output_chaining_value(@output, parent_node);
    self^.cv_stack_len -= 1;
  end;
end;

procedure hasher_push_cv(self: Pblake3_hasher; new_cv: pcuint8;
                           chunk_counter: cuint64); inline;
begin
  hasher_merge_cv_stack(self, chunk_counter);
  Move(new_cv^, self^.cv_stack[self^.cv_stack_len * BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
  self^.cv_stack_len += 1;
end;

procedure blake3_hasher_update(self: Pblake3_hasher; const input: Pointer;
                               input_len: csize_t);
var
  take: csize_t;
  output: output_t;
  subtree_len: csize_t;
  input_bytes: pcuint8;
  count_so_far: cuint64;
  subtree_chunks: cuint64;
  chunk_state: blake3_chunk_state;
  chunk_cv: array[0..31] of cuint8;
  cv: array[0..Pred(BLAKE3_OUT_LEN)] of cuint8;
  cv_pair: array[0..Pred(2 * BLAKE3_OUT_LEN)] of cuint8;
begin
  // Explicitly checking for zero avoids causing UB by passing a null pointer
  // to memcpy. This comes up in practice with things like:
  //   std::vector<uint8_t> v;
  //   blake3_hasher_update(&hasher, v.data(), v.size());
  if (input_len = 0) then Exit;

  input_bytes := pcuint8(input);

  // If we have some partial chunk bytes in the internal chunk_state, we need
  // to finish that chunk first.
  if (chunk_state_len(@self^.chunk) > 0)  then
  begin
    take := BLAKE3_CHUNK_LEN - chunk_state_len(@self^.chunk);
    if (take > input_len) then begin
      take := input_len;
    end;
    chunk_state_update(@self^.chunk, input_bytes, take);
    input_bytes += take;
    input_len -= take;
    // If we've filled the current chunk and there's more coming, finalize this
    // chunk and proceed. In this case we know it's not the root.
    if (input_len > 0) then
    begin
      output := chunk_state_output(@self^.chunk);
      output_chaining_value(@output, chunk_cv);
      hasher_push_cv(self, chunk_cv, self^.chunk.chunk_counter);
      chunk_state_reset(@self^.chunk, self^.key, self^.chunk.chunk_counter + 1);
    end
    else begin
      Exit;
    end;
  end;

  // Now the chunk_state is clear, and we have more input. If there's more than
  // a single chunk (so, definitely not the root chunk), hash the largest whole
  // subtree we can, with the full benefits of SIMD (and maybe in the future,
  // multi-threading) parallelism. Two restrictions:
  // - The subtree has to be a power-of-2 number of chunks. Only subtrees along
  //   the right edge can be incomplete, and we don't know where the right edge
  //   is going to be until we get to finalize().
  // - The subtree must evenly divide the total number of chunks up until this
  //   point (if total is not 0). If the current incomplete subtree is only
  //   waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
  //   to complete the current subtree first.
  // Because we might need to break up the input to form powers of 2, or to
  // evenly divide what we already have, this part runs in a loop.
  while (input_len > BLAKE3_CHUNK_LEN) do
  begin
    subtree_len := round_down_to_power_of_2(input_len);
    count_so_far := self^.chunk.chunk_counter * BLAKE3_CHUNK_LEN;
    // Shrink the subtree_len until it evenly divides the count so far. We know
    // that subtree_len itself is a power of 2, so we can use a bitmasking
    // trick instead of an actual remainder operation. (Note that if the caller
    // consistently passes power-of-2 inputs of the same size, as is hopefully
    // typical, this loop condition will always fail, and subtree_len will
    // always be the full length of the input.)
    //
    // An aside: We don't have to shrink subtree_len quite this much. For
    // example, if count_so_far is 1, we could pass 2 chunks to
    // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
    // get the right answer in the end, and we might get to use 2-way SIMD
    // parallelism. The problem with this optimization, is that it gets us
    // stuck always hashing 2 chunks. The total number of chunks will remain
    // odd, and we'll never graduate to higher degrees of parallelism. See
    // https://github.com/BLAKE3-team/BLAKE3/issues/69.
    while (((cuint64(subtree_len - 1)) and count_so_far) <> 0) do
    begin
      subtree_len := subtree_len div 2;
    end;
    // The shrunken subtree_len might now be 1 chunk long. If so, hash that one
    // chunk by itself. Otherwise, compress the subtree into a pair of CVs.
    subtree_chunks := subtree_len div BLAKE3_CHUNK_LEN;
    if (subtree_len <= BLAKE3_CHUNK_LEN) then
    begin
      chunk_state_init(@chunk_state, self^.key, self^.chunk.flags);
      chunk_state.chunk_counter := self^.chunk.chunk_counter;
      chunk_state_update(@chunk_state, input_bytes, subtree_len);
      output := chunk_state_output(@chunk_state);
      output_chaining_value(@output, cv);
      hasher_push_cv(self, cv, chunk_state.chunk_counter);
    end
    else begin
      // This is the high-performance happy path, though getting here depends
      // on the caller giving us a long enough input.
      compress_subtree_to_parent_node(input_bytes, subtree_len, self^.key,
                                      self^.chunk.chunk_counter,
                                      self^.chunk.flags, cv_pair);
      hasher_push_cv(self, cv_pair, self^.chunk.chunk_counter);
      hasher_push_cv(self, @cv_pair[BLAKE3_OUT_LEN],
                     self^.chunk.chunk_counter + (subtree_chunks div 2));
    end;
    self^.chunk.chunk_counter += subtree_chunks;
    input_bytes += subtree_len;
    input_len -= subtree_len;
  end;

  // If there's any remaining input less than a full chunk, add it to the chunk
  // state. In that case, also do a final merge loop to make sure the subtree
  // stack doesn't contain any unmerged pairs. The remaining input means we
  // know these merges are non-root. This merge loop isn't strictly necessary
  // here, because hasher_push_chunk_cv already does its own merge loop, but it
  // simplifies blake3_hasher_finalize below.
  if (input_len > 0) then
  begin
    chunk_state_update(@self^.chunk, input_bytes, input_len);
    hasher_merge_cv_stack(self, self^.chunk.chunk_counter);
  end;
end;

procedure blake3_hasher_finalize_seek(const self: Pblake3_hasher; seek: cuint64;
                                      out_: pcuint8; out_len: csize_t);
var
  output: output_t;
  cvs_remaining: csize_t;
  parent_block: array[0..Pred(BLAKE3_BLOCK_LEN)] of cuint8;
begin
  // Explicitly checking for zero avoids causing UB by passing a null pointer
  // to memcpy. This comes up in practice with things like:
  //   std::vector<uint8_t> v;
  //   blake3_hasher_finalize(&hasher, v.data(), v.size());
  if (out_len = 0) then Exit;

  // If the subtree stack is empty, then the current chunk is the root.
  if (self^.cv_stack_len = 0) then
  begin
    output := chunk_state_output(@self^.chunk);
    output_root_bytes(@output, seek, out_, out_len);
    Exit;
  end;
  // If there are any bytes in the chunk state, finalize that chunk and do a
  // roll-up merge between that chunk hash and every subtree in the stack. In
  // this case, the extra merge loop at the end of blake3_hasher_update
  // guarantees that none of the subtrees in the stack need to be merged with
  // each other first. Otherwise, if there are no bytes in the chunk state,
  // then the top of the stack is a chunk hash, and we start the merge from
  // that.
  if (chunk_state_len(@self^.chunk) > 0) then
  begin
    cvs_remaining := self^.cv_stack_len;
    output := chunk_state_output(@self^.chunk);
  end
  else begin
    // There are always at least 2 CVs in the stack in this case.
    cvs_remaining := self^.cv_stack_len - 2;
    output := parent_output(@self^.cv_stack[cvs_remaining * 32], self^.key,
                            self^.chunk.flags);
  end;
  while (cvs_remaining > 0) do
  begin
    cvs_remaining -= 1;
    Move(self^.cv_stack[cvs_remaining * 32], parent_block[0], 32);
    output_chaining_value(@output, @parent_block[32]);
    output := parent_output(parent_block, self^.key, self^.chunk.flags);
  end;
  output_root_bytes(@output, seek, out_, out_len);
end;

procedure blake3_hasher_finalize(const self: Pblake3_hasher; out_: pcuint8; out_len: csize_t);
begin
  blake3_hasher_finalize_seek(self, 0, out_, out_len);
end;

initialization
{$IF DEFINED(CPUX86_64)}
  if AVX2Support then
  begin
    blake3_simd_degree:= 8;
    blake3_compress_in_place:= @blake3_compress_in_place_sse41;
    blake3_compress_xof:= @blake3_compress_xof_sse41;
    blake3_hash_many:= @blake3_hash_many_avx2;
  end
  else if SSE41Support then
  begin
    blake3_simd_degree:= 4;
    blake3_compress_in_place:= @blake3_compress_in_place_sse41;
    blake3_compress_xof:= @blake3_compress_xof_sse41;
    blake3_hash_many:= @blake3_hash_many_sse41;
  end
  else begin
    blake3_simd_degree:= 4;
    blake3_compress_in_place:= @blake3_compress_in_place_sse2;
    blake3_compress_xof:= @blake3_compress_xof_sse2;
    blake3_hash_many:= @blake3_hash_many_sse2;
  end;
{$ELSE}
  blake3_simd_degree:= 1;
  blake3_compress_in_place:= @blake3_compress_in_place_portable;
  blake3_compress_xof:= @blake3_compress_xof_portable;
  blake3_hash_many:= @blake3_hash_many_portable;
{$ENDIF}
end.