File: Clipper.Offset.pas

package info (click to toggle)
doublecmd 1.1.30-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 43,968 kB
  • sloc: pascal: 374,335; sh: 1,180; ansic: 724; makefile: 132; python: 52; xml: 16
file content (1031 lines) | stat: -rw-r--r-- 31,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
unit Clipper.Offset;

(*******************************************************************************
* Author    :  Angus Johnson                                                   *
* Date      :  22 November 2024                                                *
* Website   :  http://www.angusj.com                                           *
* Copyright :  Angus Johnson 2010-2024                                         *
* Purpose   :  Path Offset (Inflate/Shrink)                                    *
* License   :  http://www.boost.org/LICENSE_1_0.txt                            *
*******************************************************************************)

{$I Clipper.inc}

interface

uses
  Classes, Clipper.Core, Clipper.Engine;

type

  TJoinType = (jtMiter, jtSquare, jtBevel, jtRound);
  //jtSquare: Joins are 'squared' at exactly the offset distance (complex code)
  //jtBevel : offset distances vary depending on the angle (simple code, faster)

  TEndType = (etPolygon, etJoined, etButt, etSquare, etRound);
  // etButt   : offsets both sides of a path, with square blunt ends
  // etSquare : offsets both sides of a path, with square extended ends
  // etRound  : offsets both sides of a path, with round extended ends
  // etJoined : offsets both sides of a path, with joined ends
  // etPolygon: offsets only one side of a closed path

  TDeltaCallback64 = function (const path: TPath64;
    const path_norms: TPathD; currIdx, prevIdx: integer): double of object;

  TDoubleArray = array of double;
  BooleanArray = array of Boolean;

  TGroup = class
	  paths         : TPaths64;
	  joinType      : TJoinType;
	  endType       : TEndType;
    reversed      : Boolean;
    lowestPathIdx : integer;
    constructor Create(const pathsIn: TPaths64; jt: TJoinType; et: TEndType);
  end;

  TClipperOffset = class
  private
    fDelta        : Double;
    fGroupDelta   : Double; //*0.5 for open paths; *-1.0 for neg areas
    fMinLenSqrd   : double;
    fJoinType     : TJoinType;
    fEndType      : TEndType;
    fTmpLimit     : Double;
    fMiterLimit   : Double;
    fArcTolerance : Double;
    fStepsPerRad  : Double;
    fStepSin      : Double;
    fStepCos      : Double;
    fNorms        : TPathD;
    fGroupList    : TListEx;
    fInPath       : TPath64;
    fOutPath      : TPath64;
    fOutPathLen   : Integer;
    fSolution     : TPaths64;
    fSolutionLen  : Integer;
    fSolutionTree : TPolyTree64;
    fPreserveCollinear  : Boolean;
    fReverseSolution    : Boolean;
    fDeltaCallback64    : TDeltaCallback64;
{$IFDEF USINGZ}
    fZCallback64 : TZCallback64;
    procedure ZCB(const bot1, top1, bot2, top2: TPoint64;
      var intersectPt: TPoint64);
    procedure AddPoint(x,y: double; z: ZType); overload;
    procedure AddPoint(const pt: TPoint64); overload;
      {$IFDEF INLINING} inline; {$ENDIF}
    procedure AddPoint(const pt: TPoint64; newZ: ZType); overload;
      {$IFDEF INLINING} inline; {$ENDIF}
{$ELSE}
    procedure AddPoint(x,y: double); overload;

    procedure AddPoint(const pt: TPoint64); overload;
      {$IFDEF INLINING} inline; {$ENDIF}
{$ENDIF}
    procedure DoSquare(j, k: Integer);
    procedure DoBevel(j, k: Integer);
    procedure DoMiter(j, k: Integer; cosA: Double);
    procedure DoRound(j, k: integer; angle: double);
    procedure OffsetPoint(j: Integer; var k: integer);

    procedure BuildNormals;
    procedure DoGroupOffset(group: TGroup);
    procedure OffsetPolygon;
    procedure OffsetOpenJoined;
    procedure OffsetOpenPath;
    function CalcSolutionCapacity: integer;
    procedure UpdateSolution; {$IFDEF INLINING} inline; {$ENDIF}

    function CheckReverseOrientation: Boolean;
    procedure ExecuteInternal(delta: Double);
  public
    constructor Create(miterLimit: double = 2.0;
      arcTolerance: double = 0.0;
      PreserveCollinear: Boolean = False;
      ReverseSolution: Boolean = False);
    destructor Destroy; override;
    procedure AddPath(const path: TPath64;
      joinType: TJoinType; endType: TEndType);
    procedure AddPaths(const paths: TPaths64;
      joinType: TJoinType; endType: TEndType);
    procedure Clear;
    procedure Execute(delta: Double; out solution: TPaths64); overload;
    procedure Execute(delta: Double; polytree: TPolyTree64); overload;
    procedure Execute(DeltaCallback: TDeltaCallback64; out solution: TPaths64); overload;

    // MiterLimit: needed for mitered offsets (see offset_triginometry3.svg)
    property MiterLimit: Double read fMiterLimit write fMiterLimit;
    // ArcTolerance: needed for rounded offsets (See offset_triginometry2.svg)
    property ArcTolerance: Double read fArcTolerance write fArcTolerance;
    property PreserveCollinear: Boolean
      read fPreserveCollinear write fPreserveCollinear;
    property ReverseSolution: Boolean
      read fReverseSolution write fReverseSolution;
    property DeltaCallback: TDeltaCallback64 read
      fDeltaCallback64 write fDeltaCallback64;
{$IFDEF USINGZ}
    property ZCallback: TZCallback64 read fZCallback64 write fZCallback64;
{$ENDIF}
  end;

implementation

uses
  Math;

resourcestring
  rsClipper_CoordRangeError =
    'Offsetting will exceed the valid coordinate range';

const
  TwoPi     : Double = 2 * PI;
  InvTwoPi  : Double = 1/(2 * PI);

//------------------------------------------------------------------------------
//  Miscellaneous offset support functions
//------------------------------------------------------------------------------

function DotProduct(const vec1, vec2: TPointD): double;
  {$IFDEF INLINING} inline; {$ENDIF}
begin
  result := vec1.X * vec2.X + vec1.Y * vec2.Y;
end;
//------------------------------------------------------------------------------

function ValueAlmostZero(val: double; epsilon: double = 0.001): Boolean;
  {$IFDEF INLINE} inline; {$ENDIF}
begin
  Result := Abs(val) < epsilon;
end;
//------------------------------------------------------------------------------

function NormalizeVector(const vec: TPointD): TPointD;
  {$IFDEF INLINE} inline; {$ENDIF}
var
  h, inverseHypot: Double;
begin
  h := Hypot(vec.X, vec.Y);
  if ValueAlmostZero(h) then
  begin
    Result := NullPointD;
    Exit;
  end;
  inverseHypot := 1 / h;
  Result.X := vec.X * inverseHypot;
  Result.Y := vec.Y * inverseHypot;
end;
//------------------------------------------------------------------------------

function GetAvgUnitVector(const vec1, vec2: TPointD): TPointD;
begin
  Result := NormalizeVector(PointD(vec1.X + vec2.X, vec1.Y + vec2.Y));
end;
//------------------------------------------------------------------------------

function GetUnitNormal(const pt1, pt2: TPoint64): TPointD;
var
  dx, dy, inverseHypot: Double;
begin
  dx := (pt2.X - pt1.X);
  dy := (pt2.Y - pt1.Y);
  if (dx = 0) and (dy = 0) then
  begin
    Result.X := 0;
    Result.Y := 0;
  end else
  begin
    inverseHypot := 1 / Hypot(dx, dy);
    Result.X := dy * inverseHypot;
    Result.Y := -dx * inverseHypot; //ie left side of vector
  end;
end;
//------------------------------------------------------------------------------

function GetLowestPolygonIdx(const paths: TPaths64): integer;
var
  i,j: integer;
  botPt: TPoint64;
begin
	Result := -1;
  botPt := Point64(MaxInt64, MinInt64);
  for i := 0 to High(paths) do
  begin
    for j := 0 to High(paths[i]) do
      with paths[i][j] do
      begin
        if (Y < botPt.Y) or
          ((Y = botPt.Y) and (X >= botPt.X)) then Continue;
        result := i;
        botPt.X := X;
        botPt.Y := Y;
      end;
  end;
end;
//------------------------------------------------------------------------------

function UnsafeGet(List: TList; Index: Integer): Pointer;
  {$IFDEF INLINING} inline; {$ENDIF}
begin
  Result := List.List[Index];
end;

//------------------------------------------------------------------------------
// TGroup methods
//------------------------------------------------------------------------------

constructor TGroup.Create(const pathsIn: TPaths64; jt: TJoinType; et: TEndType);
var
  i, len: integer;
  isJoined: boolean;
begin
  Self.joinType := jt;
  Self.endType := et;

  isJoined := et in [etPolygon, etJoined];
  len := Length(pathsIn);
  SetLength(paths, len);
  for i := 0 to len -1 do
    paths[i] := StripDuplicates(pathsIn[i], isJoined);

  reversed := false;
  if (et = etPolygon) then
  begin
    // the lowermost path must be an outer path, so if its orientation is
    // negative, then flag that the whole group is 'reversed' (so negate
    // delta etc.) as this is much more efficient than reversing every path.
	  lowestPathIdx := GetLowestPolygonIdx(pathsIn);
    reversed := (lowestPathIdx >= 0) and (Area(pathsIn[lowestPathIdx]) < 0);
  end else
    lowestPathIdx := -1;
end;

//------------------------------------------------------------------------------
// TClipperOffset methods
//------------------------------------------------------------------------------

constructor TClipperOffset.Create(miterLimit: double;
  arcTolerance: double; PreserveCollinear: Boolean;
  ReverseSolution: Boolean);
begin
  fMiterLimit   := MiterLimit;
  fArcTolerance := ArcTolerance;
  fGroupList    := TListEx.Create;
  fPreserveCollinear := preserveCollinear;
  fReverseSolution := ReverseSolution;
end;
//------------------------------------------------------------------------------

destructor TClipperOffset.Destroy;
begin
  Clear;
  fGroupList.Free;
  inherited;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.Clear;
var
  i: integer;
begin
  for i := 0 to fGroupList.Count -1 do
    TGroup(fGroupList[i]).Free;
  fGroupList.Clear;
  fSolution := nil;
  fSolutionLen := 0;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.AddPath(const path: TPath64;
  joinType: TJoinType; endType: TEndType);
var
  paths: TPaths64;
begin
  if not assigned(path) then Exit;
  SetLength(paths, 1);
  paths[0] := path;
  AddPaths(Paths, joinType, endType);
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.AddPaths(const paths: TPaths64;
  joinType: TJoinType; endType: TEndType);
var
  group: TGroup;
begin
  if Length(paths) = 0 then Exit;
  group := TGroup.Create(paths, joinType, endType);
  fGroupList.Add(group);
end;
//------------------------------------------------------------------------------

function GetPerpendic(const pt: TPoint64; const norm: TPointD; delta: double): TPoint64; overload;
  {$IFDEF INLINING} inline; {$ENDIF}
begin
  result := Point64(pt.X + norm.X * delta, pt.Y + norm.Y * delta);
{$IFDEF USINGZ}
  result.Z := pt.Z;
{$ENDIF}
end;
//------------------------------------------------------------------------------

function GetPerpendicD(const pt: TPoint64; const norm: TPointD; delta: double): TPointD; overload;
  {$IFDEF INLINING} inline; {$ENDIF}
begin
  result := PointD(pt.X + norm.X * delta, pt.Y + norm.Y * delta);
{$IFDEF USINGZ}
  result.Z := pt.Z;
{$ENDIF}
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.DoGroupOffset(group: TGroup);
var
  i,j, len, steps: Integer;
  r, stepsPer360, arcTol: Double;
  absDelta: double;
  rec: TRect64;
  pt0: TPoint64;
begin

  if group.endType = etPolygon then
  begin
    if (group.lowestPathIdx < 0) then fDelta := Abs(fDelta);
    fGroupDelta := Iif(group.reversed, -fDelta, fDelta);
  end
  else
    fGroupDelta := Abs(fDelta);

  absDelta := Abs(fGroupDelta);

  fJoinType := group.joinType;
  fEndType := group.endType;

  if (group.joinType = jtRound) or (group.endType = etRound) then
  begin
		// calculate the number of steps required to approximate a circle
    // (see http://www.angusj.com/clipper2/Docs/Trigonometry.htm)
		// arcTol - when arc_tolerance_ is undefined (0) then curve imprecision
    // will be relative to the size of the offset (delta). Obviously very
    //large offsets will almost always require much less precision.
    arcTol := Iif(fArcTolerance > 0.01,
      Min(absDelta, fArcTolerance),
      Log10(2 + absDelta) * 0.25); // empirically derived

    stepsPer360 := Pi / ArcCos(1 - arcTol / absDelta);
		if (stepsPer360 > absDelta * Pi) then
			stepsPer360 := absDelta * Pi;  // avoid excessive precision
    fStepSin := sin(TwoPi/stepsPer360);
    fStepCos := cos(TwoPi/stepsPer360);
		if (fGroupDelta < 0.0) then fStepSin := -fStepSin;
    fStepsPerRad := stepsPer360 / TwoPi;
  end;

  for i := 0 to High(group.paths) do
  begin
    fInPath := group.paths[i];
    fNorms := nil;
    len := Length(fInPath);

		//if a single vertex then build a circle or a square ...
    if len = 1 then
    begin
      if fGroupDelta < 1 then Continue;
      pt0 := fInPath[0];

      if Assigned(fDeltaCallback64) then
      begin
        fGroupDelta := fDeltaCallback64(fInPath, fNorms, 0, 0);
        if TGroup(fGroupList[0]).reversed then fGroupDelta := -fGroupDelta;
        absDelta := Abs(fGroupDelta);
      end;

      if (group.endType = etRound) then
      begin
        r := absDelta;
        steps := Ceil(fStepsPerRad * TwoPi); //#617
        fOutPath := Path64(Ellipse(
          RectD(pt0.X-r, pt0.Y-r, pt0.X+r, pt0.Y+r), steps));
{$IFDEF USINGZ}
        for j := 0 to high(fOutPath) do
          fOutPath[j].Z := pt0.Z;
{$ENDIF}
      end else
      begin
        j := Round(absDelta);
        rec := Rect64(pt0.X -j, pt0.Y -j, pt0.X+j, pt0.Y+j);
        fOutPath := rec.AsPath;
{$IFDEF USINGZ}
        for j := 0 to high(fOutPath) do
          fOutPath[j].Z := pt0.Z;
{$ENDIF}
      end;
      UpdateSolution;
      Continue;
    end; // end of offsetting a single point

    if (len = 2) and (group.endType = etJoined) then
    begin
      if fJoinType = jtRound then
        fEndType := etRound else
        fEndType := etSquare;
    end;

    BuildNormals;
    if fEndType = etPolygon then
      OffsetPolygon
    else if fEndType = etJoined then
      OffsetOpenJoined
    else
      OffsetOpenPath;
  end;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.BuildNormals;
var
  i, len: integer;
begin
  len := Length(fInPath);
  SetLength(fNorms, len);
  if len = 0 then Exit;
  for i := 0 to len-2 do
    fNorms[i] := GetUnitNormal(fInPath[i], fInPath[i+1]);
  fNorms[len -1] := GetUnitNormal(fInPath[len -1], fInPath[0]);
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.UpdateSolution;
begin
  if fOutPathLen = 0 then Exit;
  SetLength(fOutPath, fOutPathLen);
  fSolution[fSolutionLen] := fOutPath;
  inc(fSolutionLen);
  fOutPath := nil;
  fOutPathLen := 0;
end;
//------------------------------------------------------------------------------

function TClipperOffset.CalcSolutionCapacity: integer;
var
  i: integer;
begin
  Result := 0;
  for i := 0 to fGroupList.Count -1 do
    with TGroup(fGroupList[i]) do
    if endType = etJoined then
      inc(Result, Length(paths) *2) else
      inc(Result, Length(paths));
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.OffsetPolygon;
var
  i,j: integer;
begin
  j := high(fInPath);
  for i := 0 to high(fInPath) do
    OffsetPoint(i, j);
  UpdateSolution;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.OffsetOpenJoined;
begin
  OffsetPolygon;
  fInPath := ReversePath(fInPath);
  // Rebuild normals // BuildNormals;
  fNorms := ReversePath(fNorms);
  fNorms := ShiftPath(fNorms, 1);
  fNorms := NegatePath(fNorms);
  OffsetPolygon;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.OffsetOpenPath;
var
  i, k, highI: integer;
begin
  highI := high(fInPath);

  if Assigned(fDeltaCallback64) then
    fGroupDelta := fDeltaCallback64(fInPath, fNorms, 0, 0);

  if (Abs(fGroupDelta) < Tolerance) and
    not Assigned(fDeltaCallback64) then
  begin
    inc(highI);
    SetLength(fOutPath, highI);
    Move(fInPath[0], fOutPath, highI + SizeOf(TPointD));
    fOutPathLen := highI;
    Exit;
  end;

  // do the line start cap
  if Assigned(fDeltaCallback64) then
    fGroupDelta := fDeltaCallback64(fInPath, fNorms, 0, 0);

  if (Abs(fGroupDelta) < Tolerance) then
    AddPoint(fInPath[0])
  else
    case fEndType of
      etButt: DoBevel(0, 0);
      etRound: DoRound(0,0, PI);
      else DoSquare(0, 0);
    end;

  // offset the left side going forward
  k := 0;
  for i := 1 to highI -1 do //nb: -1 is important
    OffsetPoint(i, k);

  // reverse the normals ...
  for i := HighI downto 1 do
  begin
    fNorms[i].X := -fNorms[i-1].X;
    fNorms[i].Y := -fNorms[i-1].Y;
  end;
  fNorms[0] := fNorms[highI];

 // do the line end cap

 if Assigned(fDeltaCallback64) then
    fGroupDelta := fDeltaCallback64(fInPath, fNorms, highI, highI);
  if Abs(fGroupDelta) < Tolerance then
  begin
    AddPoint(fInPath[highI]);
  end else
  case fEndType of
    etButt: DoBevel(highI, highI);
    etRound: DoRound(highI,highI, PI);
    else DoSquare(highI, highI);
  end;

  // offset the left side going back
  k := highI;
  for i := highI -1 downto 1 do //and stop at 1!
    OffsetPoint(i, k);

  UpdateSolution;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.ExecuteInternal(delta: Double);
var
  i,j: integer;
  group: TGroup;
  pathsReversed: Boolean;
  fillRule: TFillRule;
  dummy: TPaths64;
begin
  fSolution := nil;
  fSolutionLen := 0;
  if fGroupList.Count = 0 then Exit;
  SetLength(fSolution, CalcSolutionCapacity);

  fMinLenSqrd := 1;
  if abs(delta) < Tolerance then
  begin
    // if delta == 0, just copy paths to Result
    for i := 0 to fGroupList.Count -1 do
    begin
      group := TGroup(fGroupList[i]);
      for j := 0 to High(group.paths) do
      begin
        fSolution[fSolutionLen] := group.paths[i];
        inc(fSolutionLen);
      end;
    end;
    Exit;
  end;

  fDelta := delta;
  // Miter Limit: see offset_triginometry3.svg
  if fMiterLimit > 1 then
    fTmpLimit := 2 / Sqr(fMiterLimit) else
    fTmpLimit := 2.0;

  // nb: delta will depend on whether paths are polygons or open
  for i := 0 to fGroupList.Count -1 do
  begin
    group := TGroup(fGroupList[i]);
    DoGroupOffset(group);
  end;
  SetLength(fSolution, fSolutionLen);

  pathsReversed := CheckReverseOrientation();
  if pathsReversed then
    fillRule := frNegative else
    fillRule := frPositive;

  // clean up self-intersections ...
  with TClipper64.Create do
  try
    PreserveCollinear := fPreserveCollinear;
    // the solution should retain the orientation of the input
    ReverseSolution := fReverseSolution <> pathsReversed;
{$IFDEF USINGZ}
    ZCallback := ZCB;
{$ENDIF}

    AddSubject(fSolution);
    if assigned(fSolutionTree) then
      Execute(ctUnion, fillRule, fSolutionTree, dummy);
      Execute(ctUnion, fillRule, fSolution);
  finally
    free;
  end;
end;
//------------------------------------------------------------------------------

function TClipperOffset.CheckReverseOrientation: Boolean;
var
  i: integer;
begin
  Result := false;
  // find the orientation of the first closed path
  for i := 0 to fGroupList.Count -1 do
    with TGroup(fGroupList[i]) do
      if endType = etPolygon then
      begin
        Result := reversed;
        break;
      end;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.Execute(delta: Double; out solution: TPaths64);
begin
  solution := nil;
  fSolutionTree := nil;
  if fGroupList.Count = 0 then Exit;
  ExecuteInternal(delta);
  solution := fSolution;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.Execute(DeltaCallback: TDeltaCallback64; out solution: TPaths64);
begin
  fDeltaCallback64 := DeltaCallback;
  Execute(1.0, solution);
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.Execute(delta: Double; polytree: TPolyTree64);
begin
  if not Assigned(polytree) then
    Raise EClipper2LibException(rsClipper_PolyTreeErr);
  fSolutionTree := polytree;
  fSolutionTree.Clear;
  ExecuteInternal(delta);
end;
//------------------------------------------------------------------------------

{$IFDEF USINGZ}
procedure TClipperOffset.ZCB(const bot1, top1, bot2, top2: TPoint64;
  var intersectPt: TPoint64);
begin
  if (bot1.Z <> 0) and
    ((bot1.Z = bot2.Z) or (bot1.Z = top2.Z)) then intersectPt.Z := bot1.Z
  else if (bot2.Z <> 0) and (bot2.Z = top1.Z) then intersectPt.Z := bot2.Z
  else if (top1.Z <> 0) and (top1.Z = top2.Z) then intersectPt.Z := top1.Z
  else if Assigned(ZCallback) then
    ZCallback(bot1, top1, bot2, top2, intersectPt);
end;
{$ENDIF}
//------------------------------------------------------------------------------

{$IFDEF USINGZ}
procedure TClipperOffset.AddPoint(x,y: double; z: ZType);
{$ELSE}
procedure TClipperOffset.AddPoint(x,y: double);
{$ENDIF}
const
  BuffLength = 32;
var
  pt: TPoint64;
begin
{$IFDEF USINGZ}
  pt := Point64(Round(x),Round(y), z);
{$ELSE}
  pt := Point64(Round(x),Round(y));
{$ENDIF}
  if fOutPathLen = length(fOutPath) then
    SetLength(fOutPath, fOutPathLen + BuffLength);
  if (fOutPathLen > 0) and
    PointsEqual(fOutPath[fOutPathLen-1], pt) then Exit;
  fOutPath[fOutPathLen] := pt;
  Inc(fOutPathLen);
end;
//------------------------------------------------------------------------------

{$IFDEF USINGZ}
procedure TClipperOffset.AddPoint(const pt: TPoint64; newZ: ZType);
begin
  AddPoint(pt.X, pt.Y, newZ);
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.AddPoint(const pt: TPoint64);
begin
  AddPoint(pt.X, pt.Y, pt.Z);
end;
//------------------------------------------------------------------------------

{$ELSE}
procedure TClipperOffset.AddPoint(const pt: TPoint64);
begin
  AddPoint(pt.X, pt.Y);
end;
//------------------------------------------------------------------------------
{$ENDIF}

function IntersectPoint(const ln1a, ln1b, ln2a, ln2b: TPointD): TPointD;
var
  m1,b1,m2,b2: double;
begin
  result := NullPointD;
  //see http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d/
  if (ln1B.X = ln1A.X) then
  begin
    if (ln2B.X = ln2A.X) then exit; //parallel lines
    m2 := (ln2B.Y - ln2A.Y)/(ln2B.X - ln2A.X);
    b2 := ln2A.Y - m2 * ln2A.X;
    Result.X := ln1A.X;
    Result.Y := m2*ln1A.X + b2;
  end
  else if (ln2B.X = ln2A.X) then
  begin
    m1 := (ln1B.Y - ln1A.Y)/(ln1B.X - ln1A.X);
    b1 := ln1A.Y - m1 * ln1A.X;
    Result.X := ln2A.X;
    Result.Y := m1*ln2A.X + b1;
  end else
  begin
    m1 := (ln1B.Y - ln1A.Y)/(ln1B.X - ln1A.X);
    b1 := ln1A.Y - m1 * ln1A.X;
    m2 := (ln2B.Y - ln2A.Y)/(ln2B.X - ln2A.X);
    b2 := ln2A.Y - m2 * ln2A.X;
    if m1 = m2 then exit; //parallel lines
    Result.X := (b2 - b1)/(m1 - m2);
    Result.Y := m1 * Result.X + b1;
  end;
end;
//------------------------------------------------------------------------------

function ReflectPoint(const pt, pivot: TPointD): TPointD;
begin
  Result.X := pivot.X + (pivot.X - pt.X);
  Result.Y := pivot.Y + (pivot.Y - pt.Y);
{$IFDEF USINGZ}
  Result.Z := pt.Z;
{$ENDIF}
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.DoBevel(j, k: Integer);
var
  absDelta: double;
begin
  if k = j then
  begin
		absDelta :=  abs(fGroupDelta);
{$IFDEF USINGZ}
		AddPoint(
      fInPath[j].x - absDelta * fNorms[j].x,
      fInPath[j].y - absDelta * fNorms[j].y, fInPath[j].z);
		AddPoint(
      fInPath[j].x + absDelta * fNorms[j].x,
      fInPath[j].y + absDelta * fNorms[j].y, fInPath[j].z);
{$ELSE}
		AddPoint(
      fInPath[j].x - absDelta * fNorms[j].x,
      fInPath[j].y - absDelta * fNorms[j].y);
		AddPoint(
      fInPath[j].x + absDelta * fNorms[j].x,
      fInPath[j].y + absDelta * fNorms[j].y);
{$ENDIF}
  end else
  begin
{$IFDEF USINGZ}
		AddPoint(
      fInPath[j].x + fGroupDelta * fNorms[k].x,
      fInPath[j].y + fGroupDelta * fNorms[k].y, fInPath[j].z);
		AddPoint(
      fInPath[j].x + fGroupDelta * fNorms[j].x,
      fInPath[j].y + fGroupDelta * fNorms[j].y, fInPath[j].z);
{$ELSE}
		AddPoint(
      fInPath[j].x + fGroupDelta * fNorms[k].x,
      fInPath[j].y + fGroupDelta * fNorms[k].y);
		AddPoint(
      fInPath[j].x + fGroupDelta * fNorms[j].x,
      fInPath[j].y + fGroupDelta * fNorms[j].y);
{$ENDIF}
  end;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.DoSquare(j, k: Integer);
var
  vec, pt1,pt2,pt3,pt4, pt,ptQ : TPointD;
  absDelta: double;
begin
  if k = j then
  begin
    vec.X := fNorms[j].Y;     //squaring a line end
    vec.Y := -fNorms[j].X;
  end else
  begin
    // using the reciprocal of unit normals (as unit vectors)
    // get the average unit vector ...
    vec := GetAvgUnitVector(
      PointD(-fNorms[k].Y, fNorms[k].X),
      PointD(fNorms[j].Y, -fNorms[j].X));
  end;

  absDelta := Abs(fGroupDelta);
  // now offset the original vertex delta units along unit vector
  ptQ := PointD(fInPath[j]);
  ptQ := TranslatePoint(ptQ, absDelta * vec.X, absDelta * vec.Y);

  // get perpendicular vertices
  pt1 := TranslatePoint(ptQ, fGroupDelta * vec.Y, fGroupDelta * -vec.X);
  pt2 := TranslatePoint(ptQ, fGroupDelta * -vec.Y, fGroupDelta * vec.X);

  // get 2 vertices along one edge offset
  pt3 := GetPerpendicD(fInPath[k], fNorms[k], fGroupDelta);

  if (j = k) then
  begin
    pt4.X := pt3.X + vec.X * fGroupDelta;
    pt4.Y := pt3.Y + vec.Y * fGroupDelta;
    // get the intersection point
    pt := IntersectPoint(pt1, pt2, pt3, pt4);
{$IFDEF USINGZ}
    with ReflectPoint(pt, ptQ) do AddPoint(X, Y, Z);
    AddPoint(pt.X, pt.Y, pt.Z);
{$ELSE}
    with ReflectPoint(pt, ptQ) do AddPoint(X, Y);
    AddPoint(pt.X, pt.Y);
{$ENDIF}
  end else
  begin
    pt4 := GetPerpendicD(fInPath[j], fNorms[k], fGroupDelta);
    // get the intersection point
    pt := IntersectPoint(pt1, pt2, pt3, pt4);
{$IFDEF USINGZ}
    AddPoint(pt.X, pt.Y, ptQ.Z);
    //get the second intersect point through reflecion
    with ReflectPoint(pt, ptQ) do AddPoint(X, Y, ptQ.Z);
{$ELSE}
    AddPoint(pt.X, pt.Y);
    //get the second intersect point through reflecion
    with ReflectPoint(pt, ptQ) do AddPoint(X, Y);
{$ENDIF}
  end;
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.DoMiter(j, k: Integer; cosA: Double);
var
  q: Double;
begin
  // see offset_triginometry4.svg
  q := fGroupDelta / (cosA +1);
{$IFDEF USINGZ}
  AddPoint(fInPath[j].X + (fNorms[k].X + fNorms[j].X)*q,
    fInPath[j].Y + (fNorms[k].Y + fNorms[j].Y)*q,
    fInPath[j].Z);
{$ELSE}
  AddPoint(fInPath[j].X + (fNorms[k].X + fNorms[j].X)*q,
    fInPath[j].Y + (fNorms[k].Y + fNorms[j].Y)*q);
{$ENDIF}
end;
//------------------------------------------------------------------------------

procedure TClipperOffset.DoRound(j, k: Integer; angle: double);
var
  i, steps: Integer;
  absDelta, arcTol, stepsPer360: double;
  pt: TPoint64;
  offDist: TPointD;
begin

  if Assigned(fDeltaCallback64) then
  begin
    // when fDeltaCallback64 is assigned, fGroupDelta won't be constant,
    // so we'll need to do the following calculations for *every* vertex.
    absDelta := Abs(fGroupDelta);
    arcTol := Iif(fArcTolerance > 0.01,
      Min(absDelta, fArcTolerance),
      Log10(2 + absDelta) * 0.25); // empirically derived
    //http://www.angusj.com/clipper2/Docs/Trigonometry.htm
    stepsPer360 := Pi / ArcCos(1 - arcTol / absDelta);
		if (stepsPer360 > absDelta * Pi) then
			stepsPer360 := absDelta * Pi;  // avoid excessive precision
    fStepSin := sin(TwoPi/stepsPer360);
    fStepCos := cos(TwoPi/stepsPer360);
		if (fGroupDelta < 0.0) then fStepSin := -fStepSin;
    fStepsPerRad := stepsPer360 / TwoPi;
  end;

	// nb: angles may be negative but this will always be a convex join
  pt := fInPath[j];
  offDist := ScalePoint(fNorms[k], fGroupDelta);
  if j = k then  offDist := Negate(offDist);
{$IFDEF USINGZ}
  AddPoint(pt.X + offDist.X, pt.Y + offDist.Y, pt.Z);
{$ELSE}
  AddPoint(pt.X + offDist.X, pt.Y + offDist.Y);
{$ENDIF}
  steps := Ceil(fStepsPerRad * abs(angle)); // #448, #456
  for i := 2 to steps do
  begin
    offDist := PointD(offDist.X * fStepCos - fStepSin * offDist.Y,
      offDist.X * fStepSin + offDist.Y * fStepCos);
{$IFDEF USINGZ}
    AddPoint(pt.X + offDist.X, pt.Y + offDist.Y, pt.Z);
{$ELSE}
    AddPoint(pt.X + offDist.X, pt.Y + offDist.Y);
{$ENDIF}
  end;
  AddPoint(GetPerpendic(pt, fNorms[j], fGroupDelta));
end;
//------------------------------------------------------------------------------

  procedure TClipperOffset.OffsetPoint(j: Integer; var k: integer);
var
  sinA, cosA: Double;
begin
  if PointsEqual(fInPath[j], fInPath[k]) then
  begin
    k := j;
    Exit;
  end;

  // Let A = change in angle where edges join
  // A == 0: ie no change in angle (flat join)
  // A == PI: edges 'spike'
  // sin(A) < 0: right turning
  // cos(A) < 0: change in angle is more than 90 degree
  sinA := CrossProduct(fNorms[k], fNorms[j]);
  cosA := DotProduct(fNorms[j], fNorms[k]);
  if (sinA > 1.0) then sinA := 1.0
  else if (sinA < -1.0) then sinA := -1.0;

  if Assigned(fDeltaCallback64) then
  begin
    fGroupDelta := fDeltaCallback64(fInPath, fNorms, j, k);
    if TGroup(fGroupList[0]).reversed then fGroupDelta := -fGroupDelta;
  end;

  if Abs(fGroupDelta) <= Tolerance then
  begin
    AddPoint(fInPath[j]);
    Exit;
  end;

  //test for concavity first (#593)
  if (cosA > -0.999) and (sinA * fGroupDelta < 0) then
  begin
    // is concave
    // by far the simplest way to construct concave joins, especially those
    // joining very short segments, is to insert 3 points that produce negative
    // regions. These regions will be removed later by the finishing union
    // operation. This is also the best way to ensure that path reversals
    // (ie over-shrunk paths) are removed.
{$IFDEF USINGZ}
    AddPoint(GetPerpendic(fInPath[j], fNorms[k], fGroupDelta), fInPath[j].Z);
    AddPoint(fInPath[j]); // (#405, #873)
    AddPoint(GetPerpendic(fInPath[j], fNorms[j], fGroupDelta), fInPath[j].Z);
{$ELSE}
    AddPoint(GetPerpendic(fInPath[j], fNorms[k], fGroupDelta));
    AddPoint(fInPath[j]); // (#405, #873)
    AddPoint(GetPerpendic(fInPath[j], fNorms[j], fGroupDelta));
{$ENDIF}
  end
  else if (cosA > 0.999) and (fJoinType <> jtRound) then
  begin
    // almost straight - less than 2.5 degree (#424, #482, #526 & #724)
    DoMiter(j, k, cosA);
  end
  else if (fJoinType = jtMiter) then
  begin
		// miter unless the angle is sufficiently acute to exceed ML
    if (cosA > fTmpLimit -1) then DoMiter(j, k, cosA)
    else DoSquare(j, k);
  end
  else if (fJoinType = jtRound) then
    DoRound(j, k, ArcTan2(sinA, cosA))
  else if (fJoinType = jtBevel) then
    DoBevel(j, k)
  else
    DoSquare(j, k);

  k := j;
end;
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------

end.