1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
|
/* My tiny gzip decompressor without using zlib. - Joel Yliluoma
* http://iki.fi/bisqwit/ , http://youtube.com/user/Bisqwit
* Inspired and influenced by a 13th IOCCC winner program by Ron McFarland */
/* Further optimized based on ideas from tinf library by Joergen Ibsen */
/** @file gunzip.hh @brief TinyDeflate */
/* Fun fact: Contains zero new/delete, and no STL data structures */
/* Distributed under the terms of the Zlib license:
Copyright (C) 2018 Joel Yliluoma
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include <assert.h>
#include <utility> // std::forward
#include <cstdint> // integer sizes
#include <type_traits>
#include <iterator>
#if !1 //Documentation purposes only; the actual prototypes are littered with std::enable_ifs.
/// Deflate(): This is the public method declared (later) in this file.
/// Decompresses (inflates) deflate-compressed data, with a gzip or deflate header.
/// User-supplied functors:
/// @param input() returns the next byte from the (compressed) input.
/// @param output(byte) outputs one uncompressed byte.
/// @param outputcopy(length, offset) copies length uncompressed bytes from offset,
/// Offset is always >= 1.
/// offset 1 means previous byte,
/// offset 2 means previous before that and so on.
/// Note that (offset < length) is not an error and in fact happens frequently.
/// If length=0, offset indicates the largest look-behind window length that
/// you need to be prepared for. The length is a power-of-two in range 256..32768.
//
/// If you want to implement range checking in input, return a negative value
/// from input() when there is no more input.
//
/// If you want to implement range checking in output, add a return value
/// in output(): false=ok, true=abort; and a return value in outputcopy():
/// 0=ok, nonzero=one or more bytes were not writable.
//
/// @returns:
/// 0 = decompression complete
/// -1 = data error
/// -2 = input functor returned a value outside 0x00..0xFF range
/// -3 = output functor returned nonzero / bool true value
/// -4 = outputcopy functor returned nonzero remaining length value
//
template<typename InputFunctor, typename OutputFunctor, typename WindowFunctor>
int Deflate(InputFunctor&& input, OutputFunctor&& output, WindowFunctor&& outputcopy);
/// Check README.md for the full list of versions of Deflate() available.
#endif
struct DeflateTrackTagBase{};
struct DeflateTrackNoSize: public DeflateTrackTagBase{};
struct DeflateTrackInSize: public DeflateTrackTagBase{};
struct DeflateTrackOutSize: public DeflateTrackTagBase{};
struct DeflateTrackBothSize: public DeflateTrackTagBase{};
/// The rest of the file is just for the curious about implementation.
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace gunzip_ns
{
//#define DO_DEFDB_DUMPING
// If you want more performance at the expense of RAM use,
// Turn one or more of these settings to false:
static constexpr bool USE_BITARRAY_TEMPORARY_IN_HUFFMAN_CREATION = false; /* 8 bytes save */
static constexpr bool USE_BITARRAY_FOR_LENGTHS = false; /* 160 bytes save */
static constexpr bool USE_BITARRAY_FOR_HUFFNODES = false; /* 392 bytes save */
static constexpr unsigned MAX_WINDOW_SIZE = 32768u;
static_assert(MAX_WINDOW_SIZE >= 1, "Max window size should be >= 1");
static_assert(MAX_WINDOW_SIZE <= 32768u, "Window sizes larger than 32768 are not supported by deflate standard. Edit the source code to remove this assert if you need it.");
//
#define DEFLATE_USE_DATA_TABLES
#if !defined(DEFLATE_ALLOCATION_AUTOMATIC) && !defined(DEFLATE_ALLOCATION_STATIC) && !defined(DEFLATE_ALLOCATION_DYNAMIC)
// Choose one:
#define DEFLATE_ALLOCATION_AUTOMATIC
//#define DEFLATE_ALLOCATION_STATIC
//#define DEFLATE_ALLOCATION_DYNAMIC
#endif
constexpr unsigned Flag_InputAbortable = 0x01;
constexpr unsigned Flag_OutputAbortable = 0x02;
constexpr unsigned Flag_TrackIn = 0x40;
constexpr unsigned Flag_TrackOut = 0x80;
constexpr unsigned Flag_NoTrackFlagMask = 0x03;
}
#ifdef DEFLATE_ALLOCATION_DYNAMIC
# include <memory>
#endif
// RandomAccessBitArray: An engine for arrays of data items that are not byte-aligned
template<typename U = std::uint_least64_t>
struct RandomAccessBitArrayBase
{
private:
static constexpr unsigned Ubytes = sizeof(U), Ubits = Ubytes*8;
static std::uint_fast64_t Get_Unclean(unsigned Size, const U* data, unsigned index) throw()
{
unsigned bitpos = index*Size, unitpos = bitpos / Ubits, shift = bitpos % Ubits;
std::uint_fast64_t result = data[unitpos] >> shift;
//assert(Size <= sizeof(result)*8);
unsigned acquired = Ubits - shift;
for(; acquired < Size; acquired += Ubits)
{
result += (std::uint_fast64_t)data[++unitpos] << acquired;
}
return result;
}
public:
template<unsigned Size>
static std::uint_fast64_t Get(const U* data, unsigned index) throw()
{
std::uint_fast64_t result = Get_Unclean(Size,data,index);
return (Size >= sizeof(result)*8) ? result : (result & ((std::uint64_t(1) << Size)-1));
}
template<unsigned Size, bool update = false>
static void Set(U* data, unsigned index, std::uint_fast64_t value) throw()
{
unsigned bitpos = index*Size, unitpos = bitpos / Ubits, eat = 0;
// Make sure our storage unit is at least as bit as value
//assert(Ubits >= sizeof(value)*8);
//assert(Size >= sizeof(value)*8 || value < (std::uint64_t(1) << Size));
if(Size % Ubits != 0)
{
unsigned shift = bitpos % Ubits;
eat = Ubits - shift; if(eat > Size) eat = Size;
//assert(eat < sizeof(std::uint_fast64_t)*8);
//assert(shift + eat <= Ubits);
std::uint_fast64_t vmask = (std::uint64_t(1) << eat)-1;
if(update)
data[unitpos] = (data[unitpos] & ~(vmask << shift)) | (value << shift);
else
data[unitpos] |= value << shift;
//assert(eat < sizeof(value)*8);
value >>= eat;
++unitpos;
}
if(eat < Size)
for(unsigned remain = Size-eat; ; ++unitpos)
{
eat = Ubits;
if(eat > remain)
{
eat = remain;
if(update)
{
std::uint_fast64_t vmask = ((std::uint64_t(1) << eat)-1);
data[unitpos] = (data[unitpos] & ~vmask) | value;
}
else
{
data[unitpos] |= value;
}
break;
}
else
{
data[unitpos] = value;
value >>= Ubits/2; value >>= Ubits/2;
remain -= Ubits;
if(!remain) break;
}
}
}
};
template<unsigned Nbits, typename U = std::uint_least64_t>
struct RandomAccessBitArray
{
static constexpr unsigned Ubytes = sizeof(U), Ubits = Ubytes*8, Nunits = (Nbits+Ubits-1)/Ubits;
U data[Nunits];
template<unsigned Size>
inline std::uint_fast64_t Get(unsigned index) const throw()
{
return RandomAccessBitArrayBase<U>::template Get<Size>(data, index);
}
template<unsigned Size, bool update = false>
inline void Set(unsigned index, std::uint_fast64_t value) throw()
{
RandomAccessBitArrayBase<U>::template Set<Size,update>(data, index, value);
}
};
namespace gunzip_ns
{
struct dummy{};
/// Utility: ceil(log2(n))
template<unsigned long N> struct CeilLog2_s{ static constexpr unsigned result = 1+CeilLog2_s<(N+1)/2>::result; };
template<> struct CeilLog2_s<0> { static constexpr unsigned result = 0; };
template<> struct CeilLog2_s<1> { static constexpr unsigned result = 0; };
template<unsigned long N> static constexpr unsigned CeilLog2 = CeilLog2_s<N>::result;
/// Utility: floor(log2(n))
template<unsigned long N> struct FloorLog2_s{ static constexpr unsigned result = 1+FloorLog2_s<N/2>::result; };
template<> struct FloorLog2_s<0> { static constexpr unsigned result = 0; };
template<> struct FloorLog2_s<1> { static constexpr unsigned result = 0; };
template<unsigned long N> static constexpr unsigned FloorLog2 = FloorLog2_s<N>::result;
/// Utility: smallest unsigned integer type that can store n-bit value
template<unsigned bits>
using SmallestType = std::conditional_t< (bits<=16),
std::conditional_t< (bits<= 8), std::uint_least8_t, std::uint_least16_t>,
std::conditional_t< (bits<=32), std::uint_least32_t, std::uint_least64_t>>;
/// testcases
static_assert(FloorLog2<1> == 0, "FloorLog2 fail"); static_assert(CeilLog2<1> == 0, "CeilLog2 fail");
static_assert(FloorLog2<2> == 1, "FloorLog2 fail"); static_assert(CeilLog2<2> == 1, "CeilLog2 fail");
static_assert(FloorLog2<3> == 1, "FloorLog2 fail"); static_assert(CeilLog2<3> == 2, "CeilLog2 fail");
static_assert(FloorLog2<4> == 2, "FloorLog2 fail"); static_assert(CeilLog2<4> == 2, "CeilLog2 fail");
static_assert(FloorLog2<5> == 2, "FloorLog2 fail"); static_assert(CeilLog2<5> == 3, "CeilLog2 fail");
static_assert(FloorLog2<6> == 2, "FloorLog2 fail"); static_assert(CeilLog2<6> == 3, "CeilLog2 fail");
static_assert(FloorLog2<7> == 2, "FloorLog2 fail"); static_assert(CeilLog2<7> == 3, "CeilLog2 fail");
static_assert(FloorLog2<8> == 3, "FloorLog2 fail"); static_assert(CeilLog2<8> == 3, "CeilLog2 fail");
static_assert(FloorLog2<9> == 3, "FloorLog2 fail"); static_assert(CeilLog2<9> == 4, "CeilLog2 fail");
template<bool packed, unsigned Dimension, unsigned ElementSize>
struct RandomAccessArray {};
template<unsigned Dim, unsigned Elem>
struct RandomAccessArray<true, Dim, Elem>
{
RandomAccessBitArray<Dim*Elem> impl;
inline std::uint_fast64_t Get(unsigned index) const { return impl.template Get<Elem>(index); }
inline void Set(unsigned index, std::uint_fast32_t value) { impl.template Set<Elem,true>(index, value); }
inline void QSet(unsigned index, std::uint_fast32_t value) { impl.template Set<Elem,false>(index, value); }
template<unsigned Bits>
inline void WSet(unsigned index, std::uint_fast64_t value) { impl.template Set<Bits,true>(index, value); }
};
template<unsigned Dim, unsigned Elem>
struct RandomAccessArray<false, Dim, Elem>
{
typedef SmallestType<Elem> E;
E data[Dim];
inline E Get(unsigned index) const { return data[index]; }
inline void Set(unsigned index, E value) { data[index] = value; }
inline void QSet(unsigned index, E value) { data[index] = value; }
template<unsigned Bits>
inline void WSet(unsigned index, std::uint_fast64_t value)
{
index *= Bits/Elem;
for(unsigned b=0; b<Bits; b+=Elem, value>>=Elem)
QSet(index++, (value % (1u << Elem)));
}
};
}
namespace gunzip_ns
{
//#define DEFL_DO_HUFF_STATS
template<bool Abortable, unsigned A,unsigned B, typename LengthFunctor>
bool CreateHuffmanTree(const char*
#ifdef DEFL_DO_HUFF_STATS
why
#endif
, RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES,A,B>& tree,
unsigned num_values,
LengthFunctor&& ReadLength) throw()
{
/* Lengths[] needs to be scanned exactly twice, in forward order.
* Technically we could use a functor instead of a table,
* but this would require that the dynamic tree generator
* can read sections of the compressed data twice,
* which we currently do not support.
*/
constexpr unsigned ElemBits = CeilLog2<A-15>; // ceil(log2(A-15)) where A-15 is max value of num_values
static_assert((1u << B) >= (A-15), "B is too small");
assert(num_values <= (A-15));
RandomAccessArray<USE_BITARRAY_TEMPORARY_IN_HUFFMAN_CREATION, 15, ElemBits> offs{}; // 24 or 16 bytes.
// Theoretically 15.32 bytes for 288 num_values, 9.375 for 32 num_values, 7.97 for 19 num_values.
// Clear code length count table
tree.template WSet<(15*B + 63) & ~63>(0, 0); // First 15 needed, but round to nice unit
// Scan symbol length, and sum code length counts
#ifdef DEFL_DO_HUFF_STATS
unsigned largest_treetable_value = 0, largest_offs = 0, smallest_treetable_value = ~0u;
unsigned largest_treetrans_index=0, largest_treetrans_value=0;
unsigned longest_length = 0;
#endif
for(unsigned a = 0; a < num_values; ++a)
{
int length = ReadLength(a); // Note: Can be zero.
if(Abortable && length < 0) return true;
if(length)
{
unsigned v = tree.Get(0 + length-1)+1;
#ifdef DEFL_DO_HUFF_STATS
largest_treetable_value = std::max(largest_treetable_value, v);
longest_length = std::max(longest_length, unsigned(length));
#endif
//fprintf(stderr, " [%d]%3d CLL (val: %d)\n", length, v, v);
tree.Set(0 + length-1, v);
}
else
{
//fprintf(stderr, " [_]%3d CLL (val: 0)\n", 0);
}
}
// Compute offset table for distribution sort
for(unsigned sum=0, a = 1; a < 16; ++a)
{
offs.QSet(a-1, sum); // starting offset for values that have length "a"
sum += tree.Get(0 + a-1); // number of values that have length "a"
}
#ifdef DEFL_DO_HUFF_STATS
for(unsigned a=1; a<=longest_length; ++a)
smallest_treetable_value = std::min(smallest_treetable_value, (unsigned)tree.Get(0 + a-1));
#endif
// Create code->symbol translation table (symbols sorted by code)
for(unsigned value = 0; value < num_values; ++value)
{
int length = ReadLength(value); // Note: Can be zero.
if(Abortable && length < 0) return true;
if(length)
{
unsigned q = offs.Get(length-1); offs.Set(length-1, q+1); // q = offset[length]++;
#ifdef DEFL_DO_HUFF_STATS
largest_offs = std::max(q, largest_offs);
largest_treetrans_index = std::max(largest_treetrans_index, q);
largest_treetrans_value = std::max(largest_treetrans_value, value);
#endif
assert(q < num_values /*&& value < num_values*/);
//fprintf(stderr, " [x]%3d CLL %d\n", 15+q, value);
tree.Set(15 + q, value);
}
}
#ifdef DEFL_DO_HUFF_STATS
std::fprintf(stderr, "Largest \"%12s\"(treetable_value=%4u..%4u, offs=%4u, treetrans_index=%4u, treetrans_value=%4u)\n",
why, smallest_treetable_value,largest_treetable_value,
largest_offs, largest_treetrans_index, largest_treetrans_value);
#endif
// Largest values observed in the wild:
// Dyn Lengths: Max treetable_value =255, max offs =285, max treetrans_index =285, max treetrans_value =285
// Stat Lengths:Max treetable_value =152, max offs =287, max treetrans_index =287, max treetrans_value =287
// Len Lengths: Max treetable_value = 13, max offs = 18, max treetrans_index = 18, max treetrans_value = 18
// Dyn Dists: Max treetable_value = 19, max offs = 29, max treetrans_index = 29, max treetrans_value = 29
// Stat Dists: Max treetable_value = 32, max offs = 31, max treetrans_index = 31, max treetrans_value = 31
return false;
}
#ifdef DEFLATE_USE_DATA_TABLES
template<bool=0> // Using a dummy template parameter makes this function and its data weak,
inline const std::uint_least8_t* GetBTable() throw() // removing linker problems in multi-module use
{
static const std::uint_least8_t data[] {
// Length bases (0-31)
0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224,255, 0,0,0,
// Length bits and distance bits (29-60) (overlap 3 bytes)
// 0x00,0x01,0x01,0x02,0x02,0x13,0x13,0x14,0x14,0x25,0x25,0x26,0x26,
//0x37,0x37,0x38,0x38,0x49,0x49,0x4A,0x4A,0x5B,0x5B,0x5C,0x5C,0x0D,0x0D,0x00,0x00
// Reverse-order table
3*3,17*3,15*3,13*3,11*3,9*3,7*3,5*3,4*3,6*3,8*3,10*3,12*3,14*3,16*3,18*3,0*3,1*3,2*3
};
return data;
}
//template<bool=0>
//inline const std::uint_least16_t* GetWTable() throw()
//{
// static const std::uint_least16_t data[32] {
// 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 0,0 };
// return data;
//}
//inline unsigned dbase(unsigned distcode) { return GetWTable<>()[distcode]; }
inline unsigned lbase(unsigned lencode) { return GetBTable<>()[lencode-257+0] + 3; }
//inline unsigned dbits(unsigned distcode) { return GetBTable<>()[distcode+29] & 0xF; }
//inline unsigned lbits(unsigned lencode) { return GetBTable<>()[lencode-257+29] >> 4; }
inline unsigned rshift(unsigned a) { return GetBTable<>()[a + 32]; }
#else
inline unsigned lbase(unsigned lencode) { return (lencode > 285 ? 3 : ((lencode >= 265) ? (((lencode-257)%4+4) << ((lencode-257)/4-1)) + (lencode==285 ? 2 : 3) : (lencode-254))); }
inline unsigned rshift(unsigned a) { if(!a) return 3*3; else if(a>=16) return (a-16)*3; int r = 12 + 7*(a<8) - a*2; return (r<0 ? -r : r)*3; }
#endif
inline unsigned dbase(unsigned distcode) { return (1 + (distcode>=4 ? ((2+distcode%2) << (distcode/2-1)) : distcode)); }
inline unsigned dbits(unsigned distcode) { return distcode>=4 ? distcode/2-1 : 0; }
inline unsigned lbits(unsigned lencode) { return ((lencode>=265 && lencode<285) ? ((lencode-265)/4+1) : 0); }
//inline unsigned order(unsigned index) { return index<3 ? (index+16) : ((index%2) ? (1-index/2)&7 : (6+index/2)); }
// Cortex-M0+ Cortex-M4 x86_64
// dbase with table 12+64 = 76 12+64 = 76 14+64 = 78
// dbase with func 24 22 26
// lbase with table 12+32 = 48 12+32 = 48 21+64 = 76
// lbase with func 54 56 64
// dbits+lbits with table 12+16+29 = 57 12+16+29 = 57 17+21+29 = 67
// dbits+lbits with func 14+18 = 32 14+18 = 32 13+20 = 33
// Support for pre-c++20
template<typename T>
using remove_cvref_t = std::remove_reference_t<std::remove_cv_t<T>>;
// Support for pre-c++20 (result_of is removed in c++20, invoke_result is added in c++17, so neither can be used exclusively)
template <class T>
struct result_of { // explain usage
static_assert((T)false, "result_of<CallableType> is invalid; use "
"result_of<CallableType(zero or more argument types)> instead.");
};
#if __cplusplus > 202000UL
template <typename F, typename... Args>
struct result_of<F(Args...)> : std::invoke_result<F, Args...> {};
#else
template <typename F, typename... Args>
struct result_of<F(Args...)> : std::result_of<F(Args...)> {};
#endif
template <class T>
using result_of_t = typename result_of<T>::type;
#define BEGIN_COND(name) \
template<typename T, typename=void> struct name : public std::false_type {}; \
template<typename T> struct name<T, std::enable_if_t<
#define END_COND(name) \
, void>> : public std::true_type {}; \
template<typename T> \
inline constexpr bool name ## _v = name<T>::value; \
// Input parameter condition testers:
BEGIN_COND(is_input_functor)
std::is_convertible_v<result_of_t<remove_cvref_t<T>()>,int>
END_COND(is_input_functor)
BEGIN_COND(is_input_iterator)
std::is_convertible_v<typename std::iterator_traits<remove_cvref_t<T>>::value_type, unsigned char>
&& std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::input_iterator_tag>
END_COND(is_input_iterator)
BEGIN_COND(is_bidir_input)
std::is_convertible_v<typename std::iterator_traits<remove_cvref_t<T>>::value_type, unsigned char>
&& (std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::forward_iterator_tag>
|| std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::bidirectional_iterator_tag>
|| std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::random_access_iterator_tag>)
END_COND(is_bidir_input)
BEGIN_COND(is_size_type)
std::is_convertible_v<remove_cvref_t<T>, std::size_t> && !std::is_pointer_v<remove_cvref_t<T>>
END_COND(is_size_type)
// Output parameter condition testers:
BEGIN_COND(is_random_iterator)
std::is_convertible_v<typename std::iterator_traits<remove_cvref_t<T>>::value_type, unsigned char>
&& !std::is_const_v<typename std::iterator_traits<remove_cvref_t<T>>::reference>
&& std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::random_access_iterator_tag>
END_COND(is_random_iterator)
BEGIN_COND(is_output_iterator)
std::is_convertible_v<typename std::iterator_traits<remove_cvref_t<T>>::value_type, unsigned char>
&& !std::is_const_v<typename std::iterator_traits<remove_cvref_t<T>>::reference>
&& !std::is_pointer_v<remove_cvref_t<T>>
&& (std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::output_iterator_tag>
|| std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::forward_iterator_tag>
|| std::is_same_v<typename std::iterator_traits<remove_cvref_t<T>>::iterator_category, std::bidirectional_iterator_tag>)
END_COND(is_output_iterator)
// Output functor & window functor: Returns void or something that can be converted to bool
BEGIN_COND(is_output_functor)
std::is_same_v<result_of_t<remove_cvref_t<T>(int)>,void> || std::is_convertible_v<result_of_t<remove_cvref_t<T>(int)>,bool>
END_COND(is_output_functor)
BEGIN_COND(is_window_functor)
std::is_same_v<result_of_t<remove_cvref_t<T>(int,int)>,void> || std::is_convertible_v<result_of_t<remove_cvref_t<T>(int,int)>,int>
END_COND(is_window_functor)
BEGIN_COND(is_abortable_input_type)
!(std::is_same_v<T, unsigned char> || std::is_same_v<T, signed char> || std::is_same_v<T, char>)
END_COND(is_abortable_input_type)
#undef END_COND
#undef BEGIN_COND
template<typename T>
constexpr bool DeflAbortable_InFun = is_abortable_input_type_v<remove_cvref_t<result_of_t<T()>>>;
template<typename T>
constexpr bool DeflAbortable_OutFun = std::is_same_v<result_of_t<T(int)>, bool>;
template<typename T>
constexpr bool DeflAbortable_WinFun = std::is_convertible_v<remove_cvref_t<result_of_t<T(int,int)>>, int>;
template<bool Abortable>
struct OutputHelper
{
template<typename OutputFunctor>
static inline bool output(OutputFunctor&& output, unsigned char byte)
{
output(byte);
return false;
}
template<typename WindowFunctor>
static inline bool outputcopy(WindowFunctor&& outputcopy, std::uint_least16_t length, std::uint_fast32_t offset)
{
outputcopy(length, offset);
return false;
}
};
template<>
struct OutputHelper<true>
{
template<typename OutputFunctor>
static inline bool output(OutputFunctor&& output, unsigned char byte)
{
return output(byte);
}
template<typename WindowFunctor>
static inline bool outputcopy(WindowFunctor&& outputcopy, std::uint_least16_t& length, std::uint_fast32_t offset)
{
length = outputcopy(length, offset);
return length != 0;
}
};
struct SizeTracker_NoOutput
{
inline void OutByte() { }
inline void OutBytes(std::uint_fast64_t) { }
// Dummy forwarders. Do the same as std::forward.
template<typename T>
static inline constexpr T&& ForwardOutput(std::remove_reference_t<T>& fun) { return static_cast<T&&>(fun); }
template<typename T>
static inline constexpr T&& ForwardOutput(std::remove_reference_t<T>&& fun) { return static_cast<T&&>(fun); }
template<typename T>
static inline constexpr T&& ForwardWindow(std::remove_reference_t<T>& fun) { return static_cast<T&&>(fun); }
template<typename T>
static inline constexpr T&& ForwardWindow(std::remove_reference_t<T>&& fun) { return static_cast<T&&>(fun); }
};
struct SizeTracker_NoInput
{
inline void InByte() { }
inline void InBytes(std::uint_fast64_t) { }
template<typename T>
static inline constexpr T&& ForwardInput(std::remove_reference_t<T>& fun) { return static_cast<T&&>(fun); }
template<typename T>
static inline constexpr T&& ForwardInput(std::remove_reference_t<T>&& fun) { return static_cast<T&&>(fun); }
};
struct SizeTracker_DoInput
{
std::uint_fast64_t insize=0;
inline void InByte() { ++insize; }
inline void InBytes(std::uint_fast64_t n) { insize += n; }
template<typename InputFunctor, std::enable_if_t<!DeflAbortable_InFun<InputFunctor>,gunzip_ns::dummy>...>
auto ForwardInput(const InputFunctor& input)
{
return [&]() { InByte(); return input(); };
}
template<typename InputFunctor, std::enable_if_t<DeflAbortable_InFun<InputFunctor>,gunzip_ns::dummy>...>
auto ForwardInput(const InputFunctor& input)
{
return [&]() { auto r = input(); if(!(r & ~0xFF)) { InByte(); } return r; };
}
};
struct SizeTracker_DoOutput
{
std::uint_fast64_t outsize=0;
inline void OutByte() { ++outsize; }
inline void OutBytes(std::uint_fast64_t n) { outsize += n; }
template<typename OutputFunctor, std::enable_if_t<!DeflAbortable_OutFun<OutputFunctor>,gunzip_ns::dummy>...>
auto ForwardOutput(const OutputFunctor& output)
{
return [&](unsigned char byte) { OutByte(); return output(byte); };
}
template<typename OutputFunctor, std::enable_if_t<DeflAbortable_OutFun<OutputFunctor>,gunzip_ns::dummy>...>
auto ForwardOutput(const OutputFunctor& output)
{
return [&](unsigned char byte) { auto r = output(byte); if(!r) { OutByte(); } return r; };
}
template<typename WindowFunctor, std::enable_if_t<!DeflAbortable_WinFun<WindowFunctor>,gunzip_ns::dummy>...>
auto ForwardWindow(const WindowFunctor& outputcopy)
{
return [&](std::uint_least16_t length, std::uint_fast32_t offset)
{
OutBytes(length);
return outputcopy(length, offset);
};
}
template<typename WindowFunctor, std::enable_if_t<DeflAbortable_WinFun<WindowFunctor>,gunzip_ns::dummy>...>
auto ForwardWindow(const WindowFunctor& outputcopy)
{
return [&](std::uint_least16_t length, std::uint_fast32_t offset)
{
auto remain = outputcopy(length, offset);
OutBytes(length - remain);
return remain;
};
}
};
template<typename TrackType>
struct SizeTracker: public SizeTracker_NoOutput, public SizeTracker_NoInput
{
inline int operator() (int returncode) const { return returncode; }
};
template<>
struct SizeTracker<DeflateTrackOutSize>: public SizeTracker_NoInput, public SizeTracker_DoOutput
{
typedef std::pair<int,std::uint_fast64_t> result;
inline result operator() (int returncode) const { return result{returncode,outsize}; }
};
template<>
struct SizeTracker<DeflateTrackInSize>: public SizeTracker_NoOutput, public SizeTracker_DoInput
{
typedef std::pair<int,std::uint_fast64_t> result;
inline result operator() (int returncode) const { return result{returncode,insize}; }
};
template<>
struct SizeTracker<DeflateTrackBothSize>: public SizeTracker_DoInput, public SizeTracker_DoOutput
{
typedef std::pair<int, std::pair<std::uint_fast64_t,std::uint_fast64_t>> result;
inline result operator() (int returncode) const { return result{returncode,std::make_pair(insize,outsize)}; }
};
#ifdef DO_DEFDB_DUMPING
unsigned bitcounter=0;
#endif
struct DeflateBitCache
{
std::uint_least8_t BitCache = 0, BitCount = 0;
template<bool Abortable, typename InputFunctor>
std::uint_least64_t GetBits(InputFunctor&& input, unsigned numbits)
{
#ifdef DO_DEFDB_DUMPING
bitcounter += numbits;
#endif
std::uint_fast64_t result = BitCache;
if(numbits <= BitCount)
{
BitCount -= numbits;
BitCache >>= numbits;
result &= ((1u << numbits)-1); // 0-8
return result;
}
for(unsigned acquired = BitCount; ; acquired += 8)
{
unsigned byte = input();
if(Abortable && (byte & ~0xFFu))
{
// Note: Throws away bits already eaten from BitCache
return ~std::uint_least64_t(0); // error
}
unsigned eat = numbits-acquired;
byte &= 0xFF;
if(eat <= 8)
{
result |= ((std::uint_fast64_t)(byte & ((1u << eat)-1))) << acquired;
BitCount = 8-eat;
BitCache = byte >> eat;
return result;
}
result |= ((std::uint_fast64_t)(byte)) << acquired;
}
}
template<bool Abortable, typename InputFunctor, unsigned A,unsigned B>
std::uint_least32_t HuffRead(InputFunctor&& input,
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES,A,B>& tree)
{
int sum=0, cur=0, len=0;
#ifdef DEFL_DO_HUFF_STATS
static int maxlen = 0;
#endif
// Get more bits while code value is above sum
do {
auto p = GetBits<Abortable>(std::forward<InputFunctor>(input), 1);
if(Abortable && !~p)
{
// Note: Throws away progress already made traversing the tree
return ~std::uint_least32_t(0); // error flag
}
cur = (unsigned(cur) << 1) | unsigned(bool(p));
#ifdef DEFL_DO_HUFF_STATS
if(len > maxlen)
{
maxlen = len;
std::fprintf(stderr, "maxlen access: %d (%d)\n", maxlen, (int)tree.Get(0 + len));
}
#endif
auto v = tree.Get(0 + len++);
sum += v;
cur -= v;
} while(cur >= 0);
return tree.Get(15 + sum + cur);
}
};
template<bool Backtrackable>
struct DeflateState: public DeflateBitCache
{
std::uint_least8_t lencode = 0, num = 0; // used in DynTreeFunc
// Lengths are in 0..15 range.
RandomAccessArray<USE_BITARRAY_FOR_LENGTHS, 288, CeilLog2<16>> Lengths; // 144 bytes
// Length tree
// Values up to 288 in indexes 0-14. (Table) (255 is max observed in wild)
// Values up to 287 in indexes 15-302. (Trans)
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES, 15+288, CeilLog2<289>> ltree; // 341->344 bytes
// Distance tree
// Values up to 32 in indexes 0-14. (Table)
// Values up to 31 in indexes 15-46. (Trans)
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES, 15+32, CeilLog2<33>> dtree; // 36->40 bytes
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES, 15+32, CeilLog2<33>>& lltree = dtree;
// Theoretical minimum memory use:
// (15*log2(289) + 288*log2(288))/8 = 309.45 bytes for ltree
// (15*log2(33) + 32 *log2(32))/8 = 29.46 bytes for dtree
// 144.00 bytes for lengths
// total 482.91 bytes
template<bool Abortable, typename InputFunctor, typename BacktrackFunctor>
auto DynTreeFunc(InputFunctor&& input, std::uint_fast16_t length, BacktrackFunctor&& /*backtrack*/,
bool
#ifdef DO_DEFDB_DUMPING
dists
#endif
)
{
Lengths = {}; // clear at least length nibbles; easiest to clear it all
bool error = false;
for(std::uint_fast16_t code = 0; ; )
{
#ifdef DO_DEFDB_DUMPING
unsigned bits_before=bitcounter;
#endif
if(!num)
{
auto p = HuffRead<Abortable>(std::forward<InputFunctor>(input), lltree);
if(Abortable && !~p) { error = true; goto done; }
std::uint_least8_t what = p; // 0-18
if(!(what & 16)) { lencode = what * 0x11u; what = 0x01; } // 1 times (what < 16) (use what, set prev)
else if(what < 17) { lencode = (lencode >> 4) * 0x11u; what = 0x23; } // 3..6 (use prev)
else if(what == 17) { lencode = 0; what = 0x33; } // 3..10 (use 0, set prev)
else { lencode = 0; what = 0x7B; } // 11..138 (use 0, set prev)
p = GetBits<Abortable>(std::forward<InputFunctor>(input), what >> 4); // 0, 2, 3 or 7 bits
#ifdef DO_DEFDB_DUMPING
if(what>>4)
{
char tmp[64]="[_]"; sprintf(tmp, "[%d]", int(bitcounter-bits_before));
fprintf(stderr, "%4s %cREP (%d times)\n", tmp, (lencode&0xF)?'L':'Z', p+(what&0xF));
}
#endif
if(Abortable && !~p) { error = true; goto done; }
num = p + (what & 0xF); // 1..138
}
#ifdef DO_DEFDB_DUMPING
bool rep=num>1;
#endif
do {
#ifdef DO_DEFDB_DUMPING
char tmp[64]="[_]"; if(!rep) sprintf(tmp, "[%d]", int(bitcounter-bits_before));
if(code == 0x100)
fprintf(stderr, "%4s EofB CL (val:%2d)\n", tmp, int(lencode&0xF));
else if(dists)
fprintf(stderr, "%4s d_%02d CL (val:%2d)\n", tmp, int(code), int(lencode&0xF));
else if(code > 0x100)
fprintf(stderr, "%4s l_%02d CL (val:%2d)\n", tmp, int(code- 0x101), int(lencode&0xF));
else
fprintf(stderr, "%4s 0x%02X CL (val:%2d)\n", tmp, (int)code, int(lencode&0xF));
#endif
--num;
Lengths.QSet(code++, lencode & 0xF);
if(code == length) { goto done; }
} while(num > 0);
}
done:;
return [this,error](unsigned index) -> std::conditional_t<Abortable, int, unsigned char>
{
if(Abortable && error) return -1;
return Lengths.Get(index);
};
}
};
template<>
struct DeflateState<true>: public DeflateBitCache
{
// Length tree
// Values up to 288 in indexes 0-14. (Table) (255 is max observed in wild)
// Values up to 287 in indexes 15-302. (Trans)
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES, 15+288, CeilLog2<289>> ltree; // 341->344 bytes
// Distance tree
// Values up to 32 in indexes 0-14. (Table)
// Values up to 31 in indexes 15-46. (Trans)
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES, 15+32, CeilLog2<33>> dtree; // 36->40 bytes
// Length-lengths tree
// Values up to 19 in indexes 0-14. (Table) (13 is max observed in wild)
// Values up to 18 in indexes 15-33. (Trans)
RandomAccessArray<USE_BITARRAY_FOR_HUFFNODES, 15+19, CeilLog2<20>> lltree; // 22->24 bytes
// Theoretical minimum memory use:
// (15*log2(289) + 288*log2(288))/8 = 309.45 bytes for ltree
// (15*log2(33) + 32 *log2(32))/8 = 29.46 bytes for dtree
// (15*log2(20) + 19 *log2(19))/8 = 18.19 bytes for lltree
// total 357.10 bytes
std::uint_least8_t lencode, num; // used in DynTreeFunc
std::uint_least8_t checkpoint_lencode, checkpoint_num;
std::uint_least8_t checkpoint_BitCache, checkpoint_BitCount;
template<bool Abortable, typename InputFunctor, typename BacktrackFunctor>
auto DynTreeFunc(InputFunctor&& input, std::uint_fast16_t /*length*/, BacktrackFunctor&& backtrack,
bool
#ifdef DO_DEFDB_DUMPING
dists
#endif
)
{
// Create checkpoint
checkpoint_lencode = 0;
checkpoint_num = 0;
checkpoint_BitCache = BitCache;
checkpoint_BitCount = BitCount;
backtrack(false);
return [this,&input,&backtrack](unsigned index) -> std::conditional_t<Abortable, int, unsigned char>
{
if(index == 0)
{
// Restore checkpoint
lencode = checkpoint_lencode;
num = checkpoint_num;
BitCache = checkpoint_BitCache;
BitCount = checkpoint_BitCount;
backtrack(true);
}
if(Abortable && (num==0xFF)) return -1;
if(!num)
{
auto p = HuffRead<Abortable>(std::forward<InputFunctor>(input), lltree);
if(Abortable && !~p) { num = 0xFF; return -1; } // If p== ~uint64_t()
std::uint_least8_t what = p; // 0-18
if(!(what & 16)) { lencode = what * 0x11u; what = 0x01; } // 1 times (what < 16) (use what, set prev)
else if(what < 17) { lencode = (lencode >> 4) * 0x11u; what = 0x23; } // 3..6 (use prev)
else if(what == 17) { lencode = 0; what = 0x33; } // 3..10 (use 0, set prev)
else { lencode = 0; what = 0x7B; } // 11..138 (use 0, set prev)
p = GetBits<Abortable>(std::forward<InputFunctor>(input), what >> 4); // 0, 2, 3 or 7 bits
if(Abortable && !~p) { num = 0xFF; return -1; } // If p== ~uint64_t()
num = p + (what & 0xF); // 1..138
}
--num;
return (lencode & 0xF);
};
}
};
struct DeflateWindow
{
unsigned char Data[gunzip_ns::MAX_WINDOW_SIZE];
SmallestType<CeilLog2<gunzip_ns::MAX_WINDOW_SIZE>> Head = 0;
};
#ifdef DEFLATE_ALLOCATION_STATIC
template<typename ObjectType>
ObjectType& GetStaticObj()
{
static thread_local ObjectType obj;
obj.~ObjectType();
new(&obj) ObjectType();
return obj;
}
#endif
/* Values of Abortable:
* Input abortable = &1
* Output abortable = &2
* Resumable = &4
*
* Input abortable Output abortable Resumable Value
* no no no 0
* yes no no 1
* no yes no 2
* yes yes no 3
* 4 = invalid
* yes no yes 5
* no yes yes 6
* yes yes yes 7
*/
template<unsigned char Abortable,
typename InputFunctor, typename OutputFunctor, typename WindowFunctor,
typename BacktrackFunctor>
int Gunzip(InputFunctor&& input,
OutputFunctor&& output,
WindowFunctor&& outputcopy,
BacktrackFunctor&& backtrack)
{
using namespace gunzip_ns;
typedef DeflateState<!std::is_same_v<remove_cvref_t<BacktrackFunctor>,dummy>> StateType;
#ifdef DEFLATE_ALLOCATION_AUTOMATIC
StateType state;
#elif defined(DEFLATE_ALLOCATION_STATIC)
auto& state = gunzip_ns::GetStaticObj<StateType>();
#elif defined(DEFLATE_ALLOCATION_DYNAMIC)
std::unique_ptr<StateType> stateptr(new StateType);
auto& state = *stateptr;
#endif
// The following routines are macros rather than e.g. lambda functions,
// in order to make them inlined in the function structure, and breakable/resumable.
#define CONCAT(a, b) a##b
// Bit-by-bit input routine
#define DummyGetBits_(line,numbits) do { \
auto CONCAT(pd,line) = state.template GetBits<bool(Abortable&Flag_InputAbortable)>(std::forward<InputFunctor>(input), numbits); \
if((Abortable & Flag_InputAbortable) && !~CONCAT(pd,line)) return -2; \
} while(0)
#define DummyGetBits(numbits) DummyGetBits_(__LINE__, numbits)
#define GetBits_(line,numbits, target) \
auto CONCAT(pb,line) = state.template GetBits<bool(Abortable&Flag_InputAbortable)>(std::forward<InputFunctor>(input), numbits); \
if((Abortable & Flag_InputAbortable) && !~CONCAT(pb,line)) return -2; \
target = CONCAT(pb,line)
#define GetBits(numbits, target) GetBits_(__LINE__, numbits, target)
// Huffman tree read routine.
#define HuffRead_(line, tree, target) \
auto CONCAT(ph,line) = state.template HuffRead<bool(Abortable&Flag_InputAbortable)>(std::forward<InputFunctor>(input), tree); \
if((Abortable & Flag_InputAbortable) && !~CONCAT(ph,line)) return -2; \
target = CONCAT(ph,line)
#define HuffRead(tree, target) HuffRead_(__LINE__, tree, target)
#define Fail_If(condition) do { \
/*assert(!(condition));*/ \
if(condition) return -1; \
} while(0)
// Read stream header
GetBits(16, std::uint_least16_t header);
// ^ Read deflate header: method[4] ; winsize[4] ; checksum[8]
if(header == 0x8B1F) // Is it actually a gzip header?
{
// Get format identifier, flags, MTIME, XFL and OS
GetBits(64, header); Fail_If((header & 0xFF) != 8); // Format identifier should be 8
if(header&0x0400) // Skip extra fields as indicated by FEXTRA
{ GetBits(16, std::uint_fast16_t q); DummyGetBits(8*q); }
if(header&0x0800) for(;;) { GetBits(8, bool q); if(!q) break; } // NAME: Skip filename if FNAME was present
if(header&0x1000) for(;;) { GetBits(8, bool q); if(!q) break; } // COMMENT: Skip comment if FCOMMENT was present
if(header&0x0200) { DummyGetBits(16); } // HCRC: Skip FCRC if was present
outputcopy(0, 32768u); // GZIP always uses 32k window
}
else // No. Deflate header?
{
Fail_If((header & 0x208F) != 0x0008 || ((((header<<8)+(header>>8))&0xFFFF)%31) != 0);
outputcopy(0, 256 << ((header >> 4) & 0xF)); // Preset dictionary (0x2000) is not supported
}
// Read compressed blocks
for(;;)
{
GetBits(3, header);
//fprintf(stderr, "header=%d\n", header);
if(header & 4) // Dynamic block
{
Fail_If(header & 2);
std::uint_least16_t nlen_ndist_ncode;
GetBits(14, nlen_ndist_ncode);
#define nlen (((nlen_ndist_ncode >> 0u) & 0x1Fu) + 257u) // 257..288
#define ndist (((nlen_ndist_ncode >> 5u) & 0x1Fu) + 1u) // 1..32
std::uint_least8_t ncode = ((nlen_ndist_ncode >> 10u) + 4u); // 4..19
{std::uint_fast64_t lenlens; GetBits(ncode*3, lenlens); // Max: 19*3 = 57 bits
#ifdef DO_DEFDB_DUMPING
fprintf(stderr, " [5] HLIT%5d (val:%d)\n [5] HDIST%4d (val:%d)\n [4] HCLEN%4d (val:%d)\n",
nlen,nlen-257, ndist,ndist-1, ncode,ncode-4);
for(unsigned a=0; a<19; ++a)
for(unsigned b=0; b<19; ++b)
if(rshift(b) == 3*a)
{
if(a < ncode)
fprintf(stderr, " [3]%3d CLL (val: %d)\n", b, int((lenlens >> rshift(b)) & 7));
else
fprintf(stderr, " [_]%3d CLL (val: %d)\n", b, int((lenlens >> rshift(b)) & 7));
}
#endif
auto lltree_fun = [=](unsigned a) -> unsigned char { return (lenlens >> rshift(a)) & 7; };
while(CreateHuffmanTree<bool(Abortable&Flag_InputAbortable)>("Len Lengths", state.lltree, 19, lltree_fun)) { return -2; }}
{auto ltree_fun = state.template DynTreeFunc<bool(Abortable&Flag_InputAbortable)>(std::forward<InputFunctor>(input), nlen, std::forward<BacktrackFunctor>(backtrack), false);
while(CreateHuffmanTree<bool(Abortable&Flag_InputAbortable)>("Dyn Lengths", state.ltree, nlen, ltree_fun)) { return -2; }}
{auto dtree_fun = state.template DynTreeFunc<bool(Abortable&Flag_InputAbortable)>(std::forward<InputFunctor>(input), ndist, std::forward<BacktrackFunctor>(backtrack), true);
while(CreateHuffmanTree<bool(Abortable&Flag_InputAbortable)>("Dyn Dists", state.dtree, ndist, dtree_fun)) { return -2; }}
#undef nlen
#undef ndist
}
else // Fixed block
{
if(header < 2) // Copy stored block data
{
DummyGetBits(state.BitCount%8); // Go to byte boundary (discard a few bits)
GetBits(32, std::uint_least32_t a);
Fail_If(((a ^ (a >> 16)) & 0xFFFF) != 0xFFFF);
#ifdef DO_DEFDB_DUMPING
fprintf(stderr, "raw block of %d bytes (0x%X)\n", (unsigned short)a, a);
#endif
// Note: It is valid for (lower 16 bits of) "a" to be 0 here.
// It is sometimes used for aligning the stream to byte boundary.
while(a-- & 0xFFFF)
{
GetBits(8, unsigned char octet);
while(OutputHelper<bool(Abortable&Flag_OutputAbortable)>::output(output, octet)) { return -3; }
}
goto skipdef;
}
unsigned char (*ltree_fun)(unsigned) = [](unsigned n)->unsigned char{return (n<0x90 || n>=0x118) ? 8u : (n<0x100 ? 9u : 7u); };
unsigned char (*dtree_fun)(unsigned) = [](unsigned )->unsigned char{return 5u;};
while(CreateHuffmanTree<false>("Stat Lengths", state.ltree, 288, ltree_fun)) { return -2; }
while(CreateHuffmanTree<false>("Stat Dists", state.dtree, 32, dtree_fun)) { return -2; }
}
// Do actual deflating.
for(;;)
{
#ifdef DO_DEFDB_DUMPING
unsigned a=bitcounter;
#endif
HuffRead(state.ltree, std::uint_least16_t lencode); // 0..287
if(!(lencode & -256)) // 0..255: literal byte
{
#ifdef DO_DEFDB_DUMPING
{char tmp[64];sprintf(tmp,"[%d]",bitcounter-a); fprintf(stderr, "%4s %02X\n", tmp, lencode);}
#endif
while(OutputHelper<bool(Abortable&Flag_OutputAbortable)>::output(output, lencode)) { return -3; }
}
else if(!(lencode & 0xFF)) break; // 256=end
else // 257..287: length code for backwards reference
{
GetBits(lbits(lencode), std::uint_least16_t length); length += lbase(lencode);
{HuffRead(state.dtree, std::uint_least8_t distcode); // Read distance code (0..31)
{GetBits(dbits(distcode), std::uint_least32_t offset); offset += dbase(distcode);
#ifdef DO_DEFDB_DUMPING
{char tmp[64];sprintf(tmp,"[%d]",bitcounter-a); fprintf(stderr, "%4s (%d,%d)\n", tmp,length,offset);}
#endif
while(OutputHelper<bool(Abortable&Flag_OutputAbortable)>::outputcopy(outputcopy,length,offset)) { return -4; }}}
}
}
skipdef:if(header & 1) break; // last block flag
}
// Note: after this, may come a checksum, and a trailer. Ignoring them.
#undef GetBits
#undef DummyGetBits
#undef Fail_If
#undef HuffRead
return 0;
}
}//ns
/*
`InputParams` may be one of the following sets of parameters:
* InputFunctor input `(5)` `(14)`
* InputIterator begin `(7)` `(14)`
* InputIterator begin, InputIterator end `(6)` `(14)`
* InputIterator begin, SizeType length `(8)` `(14)`
* BidirectionalIterator begin, SizeType length `(8)` `(15)`
* ForwardIterator begin `(7)` `(14)`
* BidirectionalIterator begin `(7)` `(15)`
* RandomAccessIterator begin `(7)` `(15)`
* ForwardIterator begin, ForwardIterator end `(6)` `(15)`
* BidirectionalIterator begin, BidirectionalIterator end `(6)` `(15)`
* RandomAccessIterator begin, RandomAccessIterator end `(6)` `(15)`
`OutputParams` may be one of the following sets of parameters:
* OutputFunctor output `(1)` `(9)`
* OutputFunctor output, WindowFunctor window `(2)`
* OutputIterator target `(9)`
* RandomAccessIterator target `(10)`
* RandomAccessIterator target, SizeType target_limit `(3)` `(10)`
* RandomAccessIterator target, RandomAccessIterator target_end `(4)` `(10)`
*/
namespace gunzip_ns
{
#ifdef DEFLATE_ALLOCATION_AUTOMATIC
#define DeflDeclWindow gunzip_ns::DeflateWindow window;
#elif defined(DEFLATE_ALLOCATION_STATIC)
#define DeflDeclWindow auto& window = gunzip_ns::GetStaticObj<gunzip_ns::DeflateWindow>();
#elif defined(DEFLATE_ALLOCATION_DYNAMIC)
#define DeflDeclWindow std::unique_ptr<gunzip_ns::DeflateWindow> winptr(new gunzip_ns::DeflateWindow); \
auto& window = *winptr;
#endif
template<unsigned char code, typename I,typename O,typename C,typename B>
auto DeflateDispatchFinal(I&& i, O&& o, C&& c, B&& b)
{
if constexpr(code & (Flag_TrackIn | Flag_TrackOut))
{
//fprintf(stderr, "both track flag\n");
SizeTracker<DeflateTrackBothSize> tracker;
return tracker(Gunzip<code & Flag_NoTrackFlagMask>
(tracker.template ForwardInput(i), tracker.template ForwardOutput(o), tracker.template ForwardWindow(c), std::forward<B>(b)));
}
else if constexpr(code & Flag_TrackIn)
{
//fprintf(stderr, "in track flag\n");
SizeTracker<DeflateTrackInSize> tracker;
return tracker(Gunzip<code & Flag_NoTrackFlagMask>
(tracker.template ForwardInput(i),std::forward<O>(o),std::forward<C>(c),std::forward<B>(b)));
}
else if constexpr(code & Flag_TrackOut)
{
//fprintf(stderr, "out track flag\n");
SizeTracker<DeflateTrackOutSize> tracker;
return tracker(Gunzip<code & Flag_NoTrackFlagMask>
(std::forward<I>(i), tracker.template ForwardOutput(o), tracker.template ForwardWindow(c), std::forward<B>(b)));
}
else
{
//fprintf(stderr, "no track flag\n");
return Gunzip<code & Flag_NoTrackFlagMask>(std::forward<I>(i),std::forward<O>(o),std::forward<C>(c),std::forward<B>(b));
}
}
// One-parameter output dispatch:
template<unsigned char code, typename BtFun, typename InFun, typename T1>
auto DeflateOutputDispatch(BtFun&& bt, InFun&& infun, T1&& param1)
{
// Is param1 a random access iterator?
if constexpr(is_random_iterator_v<T1>)
{
//fprintf(stderr, "random iterator\n");
auto output = [&](unsigned char l) { *param1 = l; ++param1; };
auto outputcopy = [&](std::uint_least16_t length, std::uint_fast32_t offs)
{
/* length=0 means that offs is the size of the window. */
for(; length--; ++param1) { *param1 = *(param1-offs); }
};
return DeflateDispatchFinal<code>(std::forward<InFun>(infun), output, outputcopy, std::forward<BtFun>(bt));
}
// Is param1 an output iterator?
else if constexpr(is_output_iterator_v<T1>)
{
//fprintf(stderr, "output iterator\n");
DeflDeclWindow
auto output = [&](unsigned char l)
{
window.Data[window.Head++ % MAX_WINDOW_SIZE] = l;
*param1 = l; ++param1;
};
auto outputcopy = [&](std::uint_least16_t length, std::uint_fast32_t offs)
{
/* length=0 means that offs is the size of the window. */
for(; length>0; --length)
{
unsigned char byte = window.Data[(window.Head - offs) % MAX_WINDOW_SIZE];
output(byte);
}
return false;
};
return DeflateDispatchFinal<code>(std::forward<InFun>(infun), output, outputcopy, std::forward<BtFun>(bt));
}
// param1 must be an output functor, then.
else if constexpr(is_output_functor_v<T1>)
{
//fprintf(stderr, "output functor\n");
DeflDeclWindow
auto output = [&](unsigned char l)
{
window.Data[window.Head++ % MAX_WINDOW_SIZE] = l;
return param1(l);
};
auto outputcopy = [&](std::uint_least16_t length, std::uint_fast32_t offs)
{
/* length=0 means that offs is the size of the window. */
for(; length>0; --length)
{
unsigned char byte = window.Data[(window.Head - offs) % MAX_WINDOW_SIZE];
if(OutputHelper<DeflAbortable_OutFun<T1>>::output(output, byte))
break;
}
return length;
};
return DeflateDispatchFinal
<code | (DeflAbortable_OutFun<T1> ? Flag_OutputAbortable : 0)>
(std::forward<InFun>(infun), output, outputcopy, std::forward<BtFun>(bt));
}
else
{
//fprintf(stderr, "unreached code 1\n");
static_assert(code==0xFF, "Deflate: Unknown output parameter type");
}
}
// Two-parameter output dispatch:
template<unsigned char code, typename BtFun, typename InFun, typename T1, typename T2>
auto DeflateOutputDispatch(BtFun&& bt, InFun&& infun, T1&& param1, T2&& param2)
{
if constexpr(std::is_same_v<remove_cvref_t<T2>, DeflateTrackNoSize>)
{
//fprintf(stderr, "no track flag...\n");
return DeflateOutputDispatch<code> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(param1));
}
else if constexpr(std::is_same_v<remove_cvref_t<T2>, DeflateTrackInSize>)
{
//fprintf(stderr, "in track flag...\n");
return DeflateOutputDispatch<code | Flag_TrackIn> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(param1));
}
else if constexpr(std::is_same_v<remove_cvref_t<T2>, DeflateTrackOutSize>)
{
//fprintf(stderr, "out track flag...\n");
return DeflateOutputDispatch<code | Flag_TrackOut> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(param1));
}
else if constexpr(std::is_same_v<remove_cvref_t<T2>, DeflateTrackBothSize>)
{
//fprintf(stderr, "both track flag...\n");
return DeflateOutputDispatch<code | Flag_TrackIn | Flag_TrackOut> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(param1));
}
// Are param1 and param2 both random access iterators?
else if constexpr(std::is_same_v<T1,T2> && is_random_iterator_v<T1>)
{
//fprintf(stderr, "random iterator + random iterator\n");
auto output = [&](unsigned char l)
{
if(param1 == param2) return true;
*param1 = l; ++param1;
return false;
};
auto outputcopy = [&](std::uint_least16_t length, std::uint_fast32_t offs)
{
/* length=0 means that offs is the size of the window. */
for(; length > 0 && !(param1 == param2); --length, ++param1)
{
*param1 = *(param1 - offs);
}
return length;
};
return DeflateDispatchFinal<code | Flag_OutputAbortable>(std::forward<InFun>(infun), output, outputcopy, std::forward<BtFun>(bt));
}
// Is param1 a random access iterator and param2 a size?
else if constexpr(is_size_type_v<T2> && is_random_iterator_v<T1>)
{
//fprintf(stderr, "random iterator + size\n");
typename std::iterator_traits<remove_cvref_t<T1>>::difference_type used{}, cap=param2;
auto output = [&](unsigned char l)
{
if(used >= cap) return true;
param1[used] = l; ++used;
return false;
};
auto outputcopy = [&](std::uint_least16_t length, std::uint_fast32_t offs)
{
/* length=0 means that offs is the size of the window. */
for(; length > 0 && used < cap; ++used, --length)
{
param1[used] = param1[used - offs];
}
return length;
};
return DeflateDispatchFinal<code | Flag_OutputAbortable>(std::forward<InFun>(infun), output, outputcopy, std::forward<BtFun>(bt));
}
// Then, param1 must be an output functor and param2 a window functor.
else if constexpr(is_output_functor_v<T1> && is_window_functor_v<T2>)
{
//fprintf(stderr, "output functor + window functor\n");
return DeflateDispatchFinal
<code | ( (DeflAbortable_OutFun<T1> && DeflAbortable_WinFun<T2>) ? Flag_OutputAbortable : 0 ) >
(std::forward<InFun>(infun), std::forward<T1>(param1), std::forward<T2>(param2), std::forward<BtFun>(bt));
}
else
{
//fprintf(stderr, "unreached code 2\n");
static_assert(code==0xFF, "Deflate: Unknown output parameter type");
}
}
// Three-parameter output dispatch:
template<unsigned char code, typename BtFun, typename InFun, typename T1, typename T2, typename T3>
auto DeflateOutputDispatch(BtFun&& bt, InFun&& infun, T1&& p1, T2&& p2, T3)
{
if constexpr(std::is_same_v<remove_cvref_t<T3>, DeflateTrackNoSize>)
{
//fprintf(stderr, "no track flag...\n");
return DeflateOutputDispatch<code> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(p1), std::forward<T2>(p2));
}
else if constexpr(std::is_same_v<remove_cvref_t<T3>, DeflateTrackInSize>)
{
//fprintf(stderr, "in track flag...\n");
return DeflateOutputDispatch<code | Flag_TrackIn> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(p1), std::forward<T2>(p2));
}
else if constexpr(std::is_same_v<remove_cvref_t<T3>, DeflateTrackOutSize>)
{
//fprintf(stderr, "out track flag...\n");
return DeflateOutputDispatch<code | Flag_TrackOut> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(p1), std::forward<T2>(p2));
}
else if constexpr(std::is_same_v<remove_cvref_t<T3>, DeflateTrackBothSize>)
{
//fprintf(stderr, "both track flag...\n");
return DeflateOutputDispatch<code | Flag_TrackIn | Flag_TrackOut> (std::forward<BtFun>(bt), std::forward<InFun>(infun), std::forward<T1>(p1), std::forward<T2>(p2));
}
else
{
//fprintf(stderr, "unreached code 3\n");
static_assert(code==0xFF, "Deflate: Mismatched parameters. Expected last parameter to be a DeflateTrack option.");
}
}
// One or two parameter input dispatch:
template<unsigned char code, typename BtFun, typename T1, typename T2, typename... T>
auto DeflateInputDispatch(BtFun&& bt, T1&& param1, T2&& param2, T&&... args)
{
using namespace gunzip_ns;
// Are param1 and param2 an input iterator pair?
if constexpr(std::is_same_v<T1, T2> && is_input_iterator_v<T1>)
{
//fprintf(stderr, "input iterator + input iterator\n");
auto inputfun = [&]() -> std::common_type_t<int, decltype(*param1)>
{ if(param1 == param2) { return -1; } int r = *param1; ++param1; return r; };
return DeflateOutputDispatch<code|Flag_InputAbortable>(std::forward<BtFun>(bt), inputfun, std::forward<T>(args)...);
}
// Are param1 and param2 a pair of bidirectional input iterators (forward, bidir, random)?
else if constexpr(std::is_same_v<T1, T2> && is_bidir_input_v<T1>)
{
//fprintf(stderr, "bidir input + bidir input\n");
remove_cvref_t<T1> saved{param1};
auto btfun = [&](bool act) { if(act) param1 = saved; else saved = std::move(param1); };
auto inputfun = [&]() -> std::common_type_t<int, decltype(*param1)>
{ if(param1 == param2) { return -1; } int r = *param1; ++param1; return r; };
return DeflateOutputDispatch<code|Flag_InputAbortable>(btfun, inputfun, std::forward<T>(args)...);
}
// Is param1 an input iterator and param2 a size?
else if constexpr(is_size_type_v<T2> && is_input_iterator_v<T1>)
{
//fprintf(stderr, "input iterator + size\n");
typename std::iterator_traits<remove_cvref_t<T1>>::difference_type remain{param2};
auto inputfun = [&]() -> std::common_type_t<int, decltype(*param1)>
{ if(!remain) return -1; --remain; int r = *param1; ++param1; return r; };
return DeflateOutputDispatch<code|Flag_InputAbortable>(std::forward<BtFun>(bt), inputfun, std::forward<T>(args)...);
}
// Is param1 a bidirectional input iterator (forward, bidir, random) and param2 a size?
else if constexpr(is_size_type_v<T2> && is_bidir_input_v<T1>)
{
//fprintf(stderr, "bidir input + size\n");
typename std::iterator_traits<remove_cvref_t<T1>>::difference_type remain{param2}, savestate{};
auto btfun = [&](bool act) { if(act) { param1 -= (savestate-remain); remain = savestate; } else savestate = remain; };
auto inputfun = [&]() -> std::common_type_t<int, decltype(*param1)>
{ if(!remain) return -1; --remain; int r = *param1; ++param1; return r; };
return DeflateOutputDispatch<code|Flag_InputAbortable>(btfun, inputfun, std::forward<T>(args)...);
}
// Is param1 an input iterator?
else if constexpr(is_input_iterator_v<T1>)
{
//fprintf(stderr, "input iterator\n");
auto inputfun = [&]() -> std::remove_cv_t<decltype(*param1)> { auto r = *param1; ++param1; return r; };
return DeflateOutputDispatch
<code | ( is_abortable_input_type_v<remove_cvref_t<decltype(*param1)>> ? Flag_InputAbortable : 0 ) >
(std::forward<BtFun>(bt), inputfun, std::forward<T2>(param2), std::forward<T>(args)...);
}
// Is param1 a bidirectional input iterator (forward, bidir, random)?
else if constexpr(is_bidir_input_v<T1>)
{
//fprintf(stderr, "bidir input\n");
remove_cvref_t<T1> saved{param1};
auto btfun = [&](bool act) { if(act) param1 = saved; else saved = std::move(param1); };
auto inputfun = [&]() -> std::remove_cv_t<decltype(*param1)> { auto r = *param1; ++param1; return r; };
return DeflateOutputDispatch<code>(btfun, inputfun, std::forward<T2>(param2), std::forward<T>(args)...);
}
// param1 must be an input functor, then. Let's move on to param2 testing!
else if constexpr(is_input_functor_v<T1>)
{
//fprintf(stderr, "input functor\n");
return DeflateOutputDispatch
<code | ( DeflAbortable_InFun<T1> ? Flag_InputAbortable : 0 ) >
(std::forward<BtFun>(bt), std::forward<T1>(param1), std::forward<T2>(param2), std::forward<T>(args)...);
}
else
{
//fprintf(stderr, "unreached code 0\n");
static_assert(code==0xFF, "Deflate: Mismatched parameters. Expected something for an input.");
}
}
#undef DeflDeclWindow
}
template<typename... T>
auto Deflate(T&&... args)
{
return gunzip_ns::DeflateInputDispatch<0>(gunzip_ns::dummy{}, std::forward<T>(args)...);
}
#endif /* #ifndef DOXYGEN_SHOULD_SKIP_THIS */
|