1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2023 Intel Corporation
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <rte_time.h>
#include <rte_mbuf.h>
#include <rte_dmadev.h>
#include <rte_malloc.h>
#include <rte_lcore.h>
#include <rte_random.h>
#include "main.h"
#define MAX_DMA_CPL_NB 255
#define TEST_WAIT_U_SECOND 10000
#define CSV_LINE_DMA_FMT "Scenario %u,%u,%s,%u,%u,%u,%u,%.2lf,%" PRIu64 ",%.3lf,%.3lf\n"
#define CSV_LINE_CPU_FMT "Scenario %u,%u,NA,NA,NA,%u,%u,%.2lf,%" PRIu64 ",%.3lf,%.3lf\n"
#define CSV_TOTAL_LINE_FMT "Scenario %u Summary, , , , , ,%u,%.2lf,%.1lf,%.3lf,%.3lf\n"
struct worker_info {
bool ready_flag;
bool start_flag;
bool stop_flag;
uint32_t total_cpl;
uint32_t test_cpl;
};
struct sge_info {
struct rte_dma_sge *srcs;
struct rte_dma_sge *dsts;
uint8_t nb_srcs;
uint8_t nb_dsts;
};
struct lcore_params {
uint8_t scenario_id;
unsigned int lcore_id;
char *dma_name;
uint16_t worker_id;
uint16_t dev_id;
uint32_t nr_buf;
uint16_t kick_batch;
uint32_t buf_size;
uint16_t test_secs;
struct rte_mbuf **srcs;
struct rte_mbuf **dsts;
struct sge_info sge;
struct rte_dma_op **dma_ops;
volatile struct worker_info worker_info;
};
static struct rte_mempool *src_pool;
static struct rte_mempool *dst_pool;
static struct lcore_params *lcores[MAX_WORKER_NB];
#define PRINT_ERR(...) print_err(__func__, __LINE__, __VA_ARGS__)
static inline int
__rte_format_printf(3, 4)
print_err(const char *func, int lineno, const char *format, ...)
{
va_list ap;
int ret;
ret = fprintf(stderr, "In %s:%d - ", func, lineno);
va_start(ap, format);
ret += vfprintf(stderr, format, ap);
va_end(ap);
return ret;
}
static inline void
calc_result(uint32_t buf_size, uint32_t nr_buf, uint16_t nb_workers, uint16_t test_secs,
uint32_t total_cnt, float *memory, uint32_t *ave_cycle,
float *bandwidth, float *mops)
{
float ops;
*memory = (float)(buf_size * (nr_buf / nb_workers) * 2) / (1024 * 1024);
*ave_cycle = test_secs * rte_get_timer_hz() / total_cnt;
ops = (float)total_cnt / test_secs;
*mops = ops / (1000 * 1000);
*bandwidth = (ops * buf_size * 8) / (1000 * 1000 * 1000);
}
static void
output_result(struct test_configure *cfg, struct lcore_params *para,
uint16_t kick_batch, uint64_t ave_cycle, uint32_t buf_size,
uint32_t nr_buf, float memory, float bandwidth, float mops)
{
uint16_t ring_size = cfg->ring_size.cur;
uint8_t scenario_id = cfg->scenario_id;
uint32_t lcore_id = para->lcore_id;
char *dma_name = para->dma_name;
if (cfg->test_type == TEST_TYPE_DMA_MEM_COPY) {
printf("lcore %u, DMA %s, DMA Ring Size: %u, Kick Batch Size: %u", lcore_id,
dma_name, ring_size, kick_batch);
if (cfg->is_sg)
printf(" DMA src sges: %u, dst sges: %u",
para->sge.nb_srcs, para->sge.nb_dsts);
printf(".\n");
} else {
printf("lcore %u\n", lcore_id);
}
printf("Average Cycles/op: %" PRIu64 ", Buffer Size: %u B, Buffer Number: %u, Memory: %.2lf MB, Frequency: %.3lf Ghz.\n",
ave_cycle, buf_size, nr_buf, memory, rte_get_timer_hz()/1000000000.0);
printf("Average Bandwidth: %.3lf Gbps, MOps: %.3lf\n", bandwidth, mops);
if (cfg->test_type == TEST_TYPE_DMA_MEM_COPY)
output_csv(CSV_LINE_DMA_FMT,
scenario_id, lcore_id, dma_name, ring_size, kick_batch, buf_size,
nr_buf, memory, ave_cycle, bandwidth, mops);
else
output_csv(CSV_LINE_CPU_FMT,
scenario_id, lcore_id, buf_size,
nr_buf, memory, ave_cycle, bandwidth, mops);
}
static inline void
cache_flush_buf(__rte_unused struct rte_mbuf **array,
__rte_unused uint32_t buf_size,
__rte_unused uint32_t nr_buf)
{
#ifdef RTE_ARCH_X86_64
char *data;
struct rte_mbuf **srcs = array;
uint32_t i, offset;
for (i = 0; i < nr_buf; i++) {
data = rte_pktmbuf_mtod(srcs[i], char *);
for (offset = 0; offset < buf_size; offset += 64)
__builtin_ia32_clflush(data + offset);
}
#endif
}
static int
vchan_data_populate(uint32_t dev_id, struct rte_dma_vchan_conf *qconf,
struct test_configure *cfg, uint16_t dev_num)
{
struct vchan_dev_config *vchan_dconfig;
struct rte_dma_info info;
vchan_dconfig = &cfg->dma_config[dev_num].vchan_dev;
qconf->direction = vchan_dconfig->tdir;
rte_dma_info_get(dev_id, &info);
if (!(RTE_BIT64(qconf->direction) & info.dev_capa))
return -1;
qconf->nb_desc = cfg->ring_size.cur;
switch (qconf->direction) {
case RTE_DMA_DIR_MEM_TO_DEV:
qconf->dst_port.pcie.vfen = 1;
qconf->dst_port.port_type = RTE_DMA_PORT_PCIE;
qconf->dst_port.pcie.coreid = vchan_dconfig->port.pcie.coreid;
qconf->dst_port.pcie.vfid = vchan_dconfig->port.pcie.vfid;
qconf->dst_port.pcie.pfid = vchan_dconfig->port.pcie.pfid;
break;
case RTE_DMA_DIR_DEV_TO_MEM:
qconf->src_port.pcie.vfen = 1;
qconf->src_port.port_type = RTE_DMA_PORT_PCIE;
qconf->src_port.pcie.coreid = vchan_dconfig->port.pcie.coreid;
qconf->src_port.pcie.vfid = vchan_dconfig->port.pcie.vfid;
qconf->src_port.pcie.pfid = vchan_dconfig->port.pcie.pfid;
break;
case RTE_DMA_DIR_MEM_TO_MEM:
case RTE_DMA_DIR_DEV_TO_DEV:
break;
}
return 0;
}
/* Configuration of device. */
static void
configure_dmadev_queue(uint32_t dev_id, struct test_configure *cfg, uint8_t sges_max,
uint16_t dev_num)
{
uint16_t vchan = 0;
struct rte_dma_info info;
struct rte_dma_conf dev_config = { .nb_vchans = 1 };
struct rte_dma_vchan_conf qconf = { 0 };
if (vchan_data_populate(dev_id, &qconf, cfg, dev_num) != 0)
rte_exit(EXIT_FAILURE, "Error with vchan data populate.\n");
if (rte_dma_info_get(dev_id, &info) != 0)
rte_exit(EXIT_FAILURE, "Error with getting device info.\n");
if (cfg->use_ops && !(info.dev_capa & RTE_DMA_CAPA_OPS_ENQ_DEQ))
rte_exit(EXIT_FAILURE, "Error with device %s not support enq_deq ops.\n",
info.dev_name);
if (cfg->use_ops)
dev_config.flags = RTE_DMA_CFG_FLAG_ENQ_DEQ;
if (rte_dma_configure(dev_id, &dev_config) != 0)
rte_exit(EXIT_FAILURE, "Error with dma configure.\n");
if (rte_dma_vchan_setup(dev_id, vchan, &qconf) != 0)
rte_exit(EXIT_FAILURE, "Error with queue configuration.\n");
if (rte_dma_info_get(dev_id, &info) != 0)
rte_exit(EXIT_FAILURE, "Error with getting device info.\n");
if (info.nb_vchans != 1)
rte_exit(EXIT_FAILURE, "Error, no configured queues reported on device id. %u\n",
dev_id);
if (info.max_sges < sges_max)
rte_exit(EXIT_FAILURE, "Error with unsupported max_sges on device id %u.\n",
dev_id);
if (rte_dma_start(dev_id) != 0)
rte_exit(EXIT_FAILURE, "Error with dma start.\n");
}
static int
config_dmadevs(struct test_configure *cfg)
{
uint32_t nb_workers = cfg->num_worker;
struct lcore_dma_map_t *ldm;
uint32_t i;
int dev_id;
uint16_t nb_dmadevs = 0;
uint8_t nb_sges = 0;
char *dma_name;
if (cfg->test_type != TEST_TYPE_DMA_MEM_COPY)
return 0;
if (cfg->is_sg)
nb_sges = RTE_MAX(cfg->nb_src_sges, cfg->nb_dst_sges);
for (i = 0; i < nb_workers; i++) {
ldm = &cfg->dma_config[i].lcore_dma_map;
dma_name = ldm->dma_names;
dev_id = rte_dma_get_dev_id_by_name(dma_name);
if (dev_id < 0) {
fprintf(stderr, "Error: Fail to find DMA %s.\n", dma_name);
goto end;
}
ldm->dma_id = dev_id;
configure_dmadev_queue(dev_id, cfg, nb_sges, nb_dmadevs);
++nb_dmadevs;
}
end:
if (nb_dmadevs < nb_workers) {
printf("Not enough dmadevs (%u) for all workers (%u).\n", nb_dmadevs, nb_workers);
return -1;
}
printf("Number of used dmadevs: %u.\n", nb_dmadevs);
return 0;
}
static void
stop_dmadev(struct test_configure *cfg, bool *stopped)
{
struct lcore_dma_map_t *lcore_dma_map;
uint32_t i;
if (*stopped)
return;
if (cfg->test_type == TEST_TYPE_DMA_MEM_COPY) {
for (i = 0; i < cfg->num_worker; i++) {
lcore_dma_map = &cfg->dma_config[i].lcore_dma_map;
printf("Stopping dmadev %d\n", lcore_dma_map->dma_id);
rte_dma_stop(lcore_dma_map->dma_id);
}
}
*stopped = true;
}
static void
error_exit(int dev_id)
{
rte_dma_stop(dev_id);
rte_dma_close(dev_id);
rte_exit(EXIT_FAILURE, "DMA error\n");
}
static inline void
do_dma_submit_and_poll(uint16_t dev_id, uint64_t *async_cnt,
volatile struct worker_info *worker_info)
{
int ret;
uint16_t nr_cpl;
ret = rte_dma_submit(dev_id, 0);
if (ret < 0)
error_exit(dev_id);
nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB, NULL, NULL);
*async_cnt -= nr_cpl;
worker_info->total_cpl += nr_cpl;
}
static int
do_dma_submit_and_wait_cpl(uint16_t dev_id, uint64_t async_cnt, bool use_ops)
{
#define MAX_WAIT_MSEC 1000
#define MAX_POLL 1000
#define DEQ_SZ 64
struct rte_dma_op *op[DEQ_SZ];
enum rte_dma_vchan_status st;
uint32_t poll_cnt = 0;
uint32_t wait_ms = 0;
uint16_t nr_cpl;
if (!use_ops)
rte_dma_submit(dev_id, 0);
if (rte_dma_vchan_status(dev_id, 0, &st) < 0) {
rte_delay_ms(MAX_WAIT_MSEC);
goto wait_cpl;
}
while (st == RTE_DMA_VCHAN_ACTIVE && wait_ms++ < MAX_WAIT_MSEC) {
rte_delay_ms(1);
rte_dma_vchan_status(dev_id, 0, &st);
}
wait_cpl:
while ((async_cnt > 0) && (poll_cnt++ < MAX_POLL)) {
if (use_ops)
nr_cpl = rte_dma_dequeue_ops(dev_id, 0, op, DEQ_SZ);
else
nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB, NULL, NULL);
async_cnt -= nr_cpl;
}
if (async_cnt > 0)
PRINT_ERR("Error: wait DMA %u failed!\n", dev_id);
return async_cnt == 0 ? 0 : -1;
}
static inline int
do_dma_plain_mem_copy(void *p)
{
struct lcore_params *para = (struct lcore_params *)p;
volatile struct worker_info *worker_info = &(para->worker_info);
const uint16_t dev_id = para->dev_id;
const uint32_t nr_buf = para->nr_buf;
const uint16_t kick_batch = para->kick_batch;
const uint32_t buf_size = para->buf_size;
struct rte_mbuf **srcs = para->srcs;
struct rte_mbuf **dsts = para->dsts;
uint64_t async_cnt = 0;
uint32_t i;
int ret;
worker_info->stop_flag = false;
worker_info->ready_flag = true;
while (!worker_info->start_flag)
;
while (1) {
for (i = 0; i < nr_buf; i++) {
dma_copy:
ret = rte_dma_copy(dev_id, 0, rte_mbuf_data_iova(srcs[i]),
rte_mbuf_data_iova(dsts[i]), buf_size, 0);
if (unlikely(ret < 0)) {
if (ret == -ENOSPC) {
do_dma_submit_and_poll(dev_id, &async_cnt, worker_info);
goto dma_copy;
} else
error_exit(dev_id);
}
async_cnt++;
if ((async_cnt % kick_batch) == 0)
do_dma_submit_and_poll(dev_id, &async_cnt, worker_info);
}
if (worker_info->stop_flag)
break;
}
return do_dma_submit_and_wait_cpl(dev_id, async_cnt, false);
}
static inline int
do_dma_sg_mem_copy(void *p)
{
struct lcore_params *para = (struct lcore_params *)p;
volatile struct worker_info *worker_info = &(para->worker_info);
struct rte_dma_sge *src_sges = para->sge.srcs;
struct rte_dma_sge *dst_sges = para->sge.dsts;
const uint8_t nb_src_sges = para->sge.nb_srcs;
const uint8_t nb_dst_sges = para->sge.nb_dsts;
const uint16_t kick_batch = para->kick_batch;
const uint16_t dev_id = para->dev_id;
uint32_t nr_buf = para->nr_buf;
uint64_t async_cnt = 0;
uint32_t i, j;
int ret;
nr_buf /= RTE_MAX(nb_src_sges, nb_dst_sges);
worker_info->stop_flag = false;
worker_info->ready_flag = true;
while (!worker_info->start_flag)
;
while (1) {
j = 0;
for (i = 0; i < nr_buf; i++) {
dma_copy:
ret = rte_dma_copy_sg(dev_id, 0,
&src_sges[i * nb_src_sges], &dst_sges[j * nb_dst_sges],
nb_src_sges, nb_dst_sges, 0);
if (unlikely(ret < 0)) {
if (ret == -ENOSPC) {
do_dma_submit_and_poll(dev_id, &async_cnt, worker_info);
goto dma_copy;
} else
error_exit(dev_id);
}
async_cnt++;
j++;
if ((async_cnt % kick_batch) == 0)
do_dma_submit_and_poll(dev_id, &async_cnt, worker_info);
}
if (worker_info->stop_flag)
break;
}
return do_dma_submit_and_wait_cpl(dev_id, async_cnt, false);
}
static inline int
do_dma_enq_deq_mem_copy(void *p)
{
#define DEQ_SZ 64
struct lcore_params *para = (struct lcore_params *)p;
volatile struct worker_info *worker_info = &(para->worker_info);
struct rte_dma_op **dma_ops = para->dma_ops;
uint16_t kick_batch = para->kick_batch, sz;
const uint16_t dev_id = para->dev_id;
uint32_t nr_buf = para->nr_buf;
struct rte_dma_op *op[DEQ_SZ];
uint64_t tenq, tdeq;
uint16_t enq, deq;
uint32_t i;
worker_info->stop_flag = false;
worker_info->ready_flag = true;
while (!worker_info->start_flag)
;
if (kick_batch > nr_buf)
kick_batch = nr_buf;
tenq = 0;
tdeq = 0;
while (1) {
for (i = 0; i < nr_buf; i += kick_batch) {
sz = RTE_MIN(nr_buf - i, kick_batch);
enq = rte_dma_enqueue_ops(dev_id, 0, &dma_ops[i], sz);
while (enq < sz) {
do {
deq = rte_dma_dequeue_ops(dev_id, 0, op, DEQ_SZ);
tdeq += deq;
} while (deq);
enq += rte_dma_enqueue_ops(dev_id, 0, &dma_ops[i + enq], sz - enq);
if (worker_info->stop_flag)
break;
}
tenq += enq;
worker_info->total_cpl += enq;
}
if (worker_info->stop_flag)
break;
}
return do_dma_submit_and_wait_cpl(dev_id, tenq - tdeq, true);
}
static inline int
do_cpu_mem_copy(void *p)
{
struct lcore_params *para = (struct lcore_params *)p;
volatile struct worker_info *worker_info = &(para->worker_info);
const uint32_t nr_buf = para->nr_buf;
const uint32_t buf_size = para->buf_size;
struct rte_mbuf **srcs = para->srcs;
struct rte_mbuf **dsts = para->dsts;
uint32_t i;
worker_info->stop_flag = false;
worker_info->ready_flag = true;
while (!worker_info->start_flag)
;
while (1) {
for (i = 0; i < nr_buf; i++) {
const void *src = rte_pktmbuf_mtod(dsts[i], void *);
void *dst = rte_pktmbuf_mtod(srcs[i], void *);
/* copy buffer form src to dst */
rte_memcpy(dst, src, (size_t)buf_size);
worker_info->total_cpl++;
}
if (worker_info->stop_flag)
break;
}
return 0;
}
static void
dummy_free_ext_buf(void *addr, void *opaque)
{
RTE_SET_USED(addr);
RTE_SET_USED(opaque);
}
static int
setup_memory_env(struct test_configure *cfg, uint32_t nr_buf,
struct rte_mbuf ***srcs, struct rte_mbuf ***dsts,
struct rte_dma_sge **src_sges, struct rte_dma_sge **dst_sges,
struct rte_dma_op ***dma_ops)
{
unsigned int cur_buf_size = cfg->buf_size.cur;
unsigned int buf_size = cur_buf_size + RTE_PKTMBUF_HEADROOM;
bool is_src_numa_incorrect, is_dst_numa_incorrect;
unsigned int nr_sockets;
uintptr_t ops;
uint32_t i;
nr_sockets = rte_socket_count();
is_src_numa_incorrect = (cfg->src_numa_node >= nr_sockets);
is_dst_numa_incorrect = (cfg->dst_numa_node >= nr_sockets);
if (is_src_numa_incorrect || is_dst_numa_incorrect) {
PRINT_ERR("Error: Incorrect NUMA config for %s.\n",
(is_src_numa_incorrect && is_dst_numa_incorrect) ? "source & destination" :
(is_src_numa_incorrect) ? "source" : "destination");
return -1;
}
if (buf_size > UINT16_MAX) {
PRINT_ERR("Error: Invalid buf size: %u\n", cur_buf_size);
return -1;
}
src_pool = rte_pktmbuf_pool_create("Benchmark_DMA_SRC",
nr_buf,
0,
0,
buf_size,
cfg->src_numa_node);
if (src_pool == NULL) {
PRINT_ERR("Error with source mempool creation.\n");
return -1;
}
dst_pool = rte_pktmbuf_pool_create("Benchmark_DMA_DST",
nr_buf,
0,
0,
buf_size,
cfg->dst_numa_node);
if (dst_pool == NULL) {
PRINT_ERR("Error with destination mempool creation.\n");
return -1;
}
*srcs = rte_malloc(NULL, nr_buf * sizeof(struct rte_mbuf *), 0);
if (*srcs == NULL) {
printf("Error: srcs malloc failed.\n");
return -1;
}
*dsts = rte_malloc(NULL, nr_buf * sizeof(struct rte_mbuf *), 0);
if (*dsts == NULL) {
printf("Error: dsts malloc failed.\n");
return -1;
}
if (rte_pktmbuf_alloc_bulk(src_pool, *srcs, nr_buf) != 0) {
printf("alloc src mbufs failed.\n");
return -1;
}
if (rte_pktmbuf_alloc_bulk(dst_pool, *dsts, nr_buf) != 0) {
printf("alloc dst mbufs failed.\n");
return -1;
}
for (i = 0; i < nr_buf; i++) {
memset(rte_pktmbuf_mtod((*srcs)[i], void *), rte_rand(), cur_buf_size);
memset(rte_pktmbuf_mtod((*dsts)[i], void *), 0, cur_buf_size);
}
if (cfg->is_sg) {
uint8_t nb_src_sges = cfg->nb_src_sges;
uint8_t nb_dst_sges = cfg->nb_dst_sges;
uint32_t sglen_src, sglen_dst;
*src_sges = rte_zmalloc(NULL, nr_buf * sizeof(struct rte_dma_sge),
RTE_CACHE_LINE_SIZE);
if (*src_sges == NULL) {
printf("Error: src_sges array malloc failed.\n");
return -1;
}
*dst_sges = rte_zmalloc(NULL, nr_buf * sizeof(struct rte_dma_sge),
RTE_CACHE_LINE_SIZE);
if (*dst_sges == NULL) {
printf("Error: dst_sges array malloc failed.\n");
return -1;
}
sglen_src = cur_buf_size / nb_src_sges;
sglen_dst = cur_buf_size / nb_dst_sges;
for (i = 0; i < nr_buf; i++) {
(*src_sges)[i].addr = rte_pktmbuf_iova((*srcs)[i]);
(*src_sges)[i].length = sglen_src;
if (!((i+1) % nb_src_sges))
(*src_sges)[i].length += (cur_buf_size % nb_src_sges);
(*dst_sges)[i].addr = rte_pktmbuf_iova((*dsts)[i]);
(*dst_sges)[i].length = sglen_dst;
if (!((i+1) % nb_dst_sges))
(*dst_sges)[i].length += (cur_buf_size % nb_dst_sges);
}
if (cfg->use_ops) {
nr_buf /= RTE_MAX(nb_src_sges, nb_dst_sges);
*dma_ops = rte_zmalloc(NULL, nr_buf * (sizeof(struct rte_dma_op *)),
RTE_CACHE_LINE_SIZE);
if (*dma_ops == NULL) {
printf("Error: dma_ops container malloc failed.\n");
return -1;
}
ops = (uintptr_t)rte_zmalloc(
NULL,
nr_buf * (sizeof(struct rte_dma_op) + ((nb_src_sges + nb_dst_sges) *
sizeof(struct rte_dma_sge))),
RTE_CACHE_LINE_SIZE);
if (ops == 0) {
printf("Error: dma_ops malloc failed.\n");
return -1;
}
for (i = 0; i < nr_buf; i++)
(*dma_ops)[i] =
(struct rte_dma_op *)(ops +
(i * (sizeof(struct rte_dma_op) +
((nb_src_sges + nb_dst_sges) *
sizeof(struct rte_dma_sge)))));
}
}
return 0;
}
static void
teardown_memory_env(uint32_t nr_buf, struct rte_mbuf **srcs, struct rte_mbuf **dsts,
struct rte_dma_sge *src_sges, struct rte_dma_sge *dst_sges,
struct rte_dma_op **dma_ops)
{
/* free mbufs used in the test */
if (srcs != NULL)
rte_pktmbuf_free_bulk(srcs, nr_buf);
if (dsts != NULL)
rte_pktmbuf_free_bulk(dsts, nr_buf);
/* free the points for the mbufs */
rte_free(srcs);
srcs = NULL;
rte_free(dsts);
dsts = NULL;
rte_mempool_free(src_pool);
src_pool = NULL;
rte_mempool_free(dst_pool);
dst_pool = NULL;
/* free sges for mbufs */
rte_free(src_sges);
src_sges = NULL;
rte_free(dst_sges);
dst_sges = NULL;
rte_free(dma_ops);
}
static uint32_t
align_buffer_count(struct test_configure *cfg, uint32_t *nr_sgsrc, uint32_t *nr_sgdst)
{
uint16_t nb_workers = cfg->num_worker;
uint32_t nr_buf;
nr_buf = (cfg->mem_size.cur * 1024 * 1024) / (cfg->buf_size.cur * 2);
nr_buf -= (nr_buf % nb_workers);
if (nr_sgsrc == NULL || nr_sgdst == NULL)
return nr_buf;
if (cfg->is_sg) {
nr_buf /= nb_workers;
nr_buf -= nr_buf % (cfg->nb_src_sges * cfg->nb_dst_sges);
nr_buf *= nb_workers;
if (cfg->nb_dst_sges > cfg->nb_src_sges) {
*nr_sgsrc = (nr_buf / cfg->nb_dst_sges * cfg->nb_src_sges);
*nr_sgdst = nr_buf;
} else {
*nr_sgsrc = nr_buf;
*nr_sgdst = (nr_buf / cfg->nb_src_sges * cfg->nb_dst_sges);
}
}
return nr_buf;
}
static lcore_function_t *
get_work_function(struct test_configure *cfg)
{
lcore_function_t *fn;
if (cfg->test_type == TEST_TYPE_DMA_MEM_COPY) {
if (!cfg->is_sg)
fn = do_dma_plain_mem_copy;
else {
if (cfg->use_ops)
fn = do_dma_enq_deq_mem_copy;
else
fn = do_dma_sg_mem_copy;
}
} else {
fn = do_cpu_mem_copy;
}
return fn;
}
static int
attach_ext_buffer(struct vchan_dev_config *vchan_dev, struct lcore_params *lcore, bool is_sg,
uint32_t nr_sgsrc, uint32_t nr_sgdst)
{
static struct rte_mbuf_ext_shared_info *ext_buf_info;
struct rte_dma_sge **src_sges, **dst_sges;
struct rte_mbuf **srcs, **dsts;
unsigned int cur_buf_size;
unsigned int buf_size;
uint32_t nr_buf;
uint32_t i;
cur_buf_size = lcore->buf_size;
buf_size = cur_buf_size + RTE_PKTMBUF_HEADROOM;
nr_buf = lcore->nr_buf;
srcs = lcore->srcs;
dsts = lcore->dsts;
ext_buf_info = rte_malloc(NULL, sizeof(struct rte_mbuf_ext_shared_info), 0);
if (ext_buf_info == NULL) {
printf("Error: ext_buf_info malloc failed.\n");
return -1;
}
ext_buf_info->free_cb = dummy_free_ext_buf;
ext_buf_info->fcb_opaque = NULL;
if (vchan_dev->tdir == RTE_DMA_DIR_DEV_TO_MEM) {
for (i = 0; i < nr_buf; i++) {
/* Using mbuf structure to hold remote iova address. */
rte_pktmbuf_attach_extbuf(srcs[i],
(void *)(vchan_dev->raddr + (i * buf_size)),
(rte_iova_t)(vchan_dev->raddr + (i * buf_size)), 0, ext_buf_info);
rte_mbuf_ext_refcnt_update(ext_buf_info, 1);
}
}
if (vchan_dev->tdir == RTE_DMA_DIR_MEM_TO_DEV) {
for (i = 0; i < nr_buf; i++) {
/* Using mbuf structure to hold remote iova address. */
rte_pktmbuf_attach_extbuf(dsts[i],
(void *)(vchan_dev->raddr + (i * buf_size)),
(rte_iova_t)(vchan_dev->raddr + (i * buf_size)), 0, ext_buf_info);
rte_mbuf_ext_refcnt_update(ext_buf_info, 1);
}
}
if (is_sg) {
uint8_t nb_src_sges = lcore->sge.nb_srcs;
uint8_t nb_dst_sges = lcore->sge.nb_dsts;
uint32_t sglen_src, sglen_dst;
src_sges = &lcore->sge.srcs;
dst_sges = &lcore->sge.dsts;
sglen_src = cur_buf_size / nb_src_sges;
sglen_dst = cur_buf_size / nb_dst_sges;
if (vchan_dev->tdir == RTE_DMA_DIR_DEV_TO_MEM) {
for (i = 0; i < nr_sgsrc; i++) {
(*src_sges)[i].addr = rte_pktmbuf_iova(srcs[i]);
(*src_sges)[i].length = sglen_src;
if (!((i+1) % nb_src_sges))
(*src_sges)[i].length += (cur_buf_size % nb_src_sges);
}
}
if (vchan_dev->tdir == RTE_DMA_DIR_MEM_TO_DEV) {
for (i = 0; i < nr_sgdst; i++) {
(*dst_sges)[i].addr = rte_pktmbuf_iova(dsts[i]);
(*dst_sges)[i].length = sglen_dst;
if (!((i+1) % nb_dst_sges))
(*dst_sges)[i].length += (cur_buf_size % nb_dst_sges);
}
}
}
return 0;
}
static int
verify_data(struct test_configure *cfg, struct rte_mbuf **srcs, struct rte_mbuf **dsts,
uint32_t nr_buf)
{
struct rte_mbuf **src_buf = NULL, **dst_buf = NULL;
uint32_t nr_buf_pt = nr_buf / cfg->num_worker;
struct vchan_dev_config *vchan_dev = NULL;
unsigned int buf_size = cfg->buf_size.cur;
uint32_t offset, work_idx, i, j;
for (work_idx = 0; work_idx < cfg->num_worker; work_idx++) {
vchan_dev = &cfg->dma_config[work_idx].vchan_dev;
offset = nr_buf / cfg->num_worker * work_idx;
src_buf = srcs + offset;
dst_buf = dsts + offset;
if (vchan_dev->tdir == RTE_DMA_DIR_MEM_TO_MEM && !cfg->is_sg) {
for (i = 0; i < nr_buf_pt; i++) {
if (memcmp(rte_pktmbuf_mtod(src_buf[i], void *),
rte_pktmbuf_mtod(dst_buf[i], void *),
cfg->buf_size.cur) != 0) {
printf("Copy validation fails for buffer number %d\n", i);
return -1;
}
}
continue;
}
if (vchan_dev->tdir == RTE_DMA_DIR_MEM_TO_MEM && cfg->is_sg) {
size_t src_remsz = buf_size % cfg->nb_src_sges;
size_t dst_remsz = buf_size % cfg->nb_dst_sges;
size_t src_sz = buf_size / cfg->nb_src_sges;
size_t dst_sz = buf_size / cfg->nb_dst_sges;
uint8_t src[buf_size], dst[buf_size];
uint8_t *sbuf, *dbuf, *ptr;
for (i = 0; i < (nr_buf_pt / RTE_MAX(cfg->nb_src_sges, cfg->nb_dst_sges));
i++) {
sbuf = src;
dbuf = dst;
ptr = NULL;
for (j = 0; j < cfg->nb_src_sges; j++) {
ptr = rte_pktmbuf_mtod(src_buf[i * cfg->nb_src_sges + j],
uint8_t *);
memcpy(sbuf, ptr, src_sz);
sbuf += src_sz;
}
if (src_remsz)
memcpy(sbuf, ptr + src_sz, src_remsz);
for (j = 0; j < cfg->nb_dst_sges; j++) {
ptr = rte_pktmbuf_mtod(dst_buf[i * cfg->nb_dst_sges + j],
uint8_t *);
memcpy(dbuf, ptr, dst_sz);
dbuf += dst_sz;
}
if (dst_remsz)
memcpy(dbuf, ptr + dst_sz, dst_remsz);
if (memcmp(src, dst, buf_size) != 0) {
printf("SG Copy validation fails for buffer number %d\n",
i * cfg->nb_src_sges);
return -1;
}
}
continue;
}
}
return 0;
}
static int
setup_worker(struct test_configure *cfg, uint32_t nr_buf,
struct rte_mbuf **srcs, struct rte_mbuf **dsts,
struct rte_dma_sge *src_sges, struct rte_dma_sge *dst_sges,
struct rte_dma_op **dma_ops,
uint32_t nr_sgsrc, uint32_t nr_sgdst)
{
struct lcore_dma_map_t *lcore_dma_map = NULL;
struct vchan_dev_config *vchan_dev = NULL;
unsigned int buf_size = cfg->buf_size.cur;
uint16_t kick_batch = cfg->kick_batch.cur;
uint16_t test_secs = global_cfg.test_secs;
uint16_t nb_workers = cfg->num_worker;
unsigned int lcore_id = 0;
uint32_t i, j, k;
uint32_t nr_ops;
uint32_t offset;
for (i = 0; i < nb_workers; i++) {
lcore_dma_map = &cfg->dma_config[i].lcore_dma_map;
vchan_dev = &cfg->dma_config[i].vchan_dev;
lcore_id = lcore_dma_map->lcore;
offset = nr_buf / nb_workers * i;
lcores[i] = rte_malloc(NULL, sizeof(struct lcore_params), 0);
if (lcores[i] == NULL) {
printf("lcore parameters malloc failure for lcore %d\n", lcore_id);
return -1;
}
if (cfg->test_type == TEST_TYPE_DMA_MEM_COPY) {
lcores[i]->dma_name = lcore_dma_map->dma_names;
lcores[i]->dev_id = lcore_dma_map->dma_id;
lcores[i]->kick_batch = kick_batch;
}
lcores[i]->worker_id = i;
lcores[i]->nr_buf = (uint32_t)(nr_buf / nb_workers);
lcores[i]->buf_size = buf_size;
lcores[i]->test_secs = test_secs;
lcores[i]->srcs = srcs + offset;
lcores[i]->dsts = dsts + offset;
lcores[i]->scenario_id = cfg->scenario_id;
lcores[i]->lcore_id = lcore_id;
if (cfg->is_sg) {
lcores[i]->sge.nb_srcs = cfg->nb_src_sges;
lcores[i]->sge.nb_dsts = cfg->nb_dst_sges;
lcores[i]->sge.srcs = src_sges + (nr_sgsrc / nb_workers * i);
lcores[i]->sge.dsts = dst_sges + (nr_sgdst / nb_workers * i);
}
if (vchan_dev->tdir == RTE_DMA_DIR_DEV_TO_MEM ||
vchan_dev->tdir == RTE_DMA_DIR_MEM_TO_DEV) {
if (attach_ext_buffer(vchan_dev, lcores[i], cfg->is_sg,
(nr_sgsrc/nb_workers), (nr_sgdst/nb_workers)) < 0)
return -1;
}
if (cfg->is_sg && cfg->use_ops) {
nr_ops = nr_buf / RTE_MAX(cfg->nb_src_sges, cfg->nb_dst_sges);
lcores[i]->nr_buf = nr_ops / nb_workers;
lcores[i]->dma_ops = dma_ops + (nr_ops / nb_workers * i);
for (j = 0; j < (nr_ops / nb_workers); j++) {
for (k = 0; k < cfg->nb_src_sges; k++)
lcores[i]->dma_ops[j]->src_dst_seg[k] =
lcores[i]->sge.srcs[(j * cfg->nb_src_sges) + k];
for (k = 0; k < cfg->nb_dst_sges; k++)
lcores[i]->dma_ops[j]->src_dst_seg[k + cfg->nb_src_sges] =
lcores[i]->sge.dsts[(j * cfg->nb_dst_sges) + k];
lcores[i]->dma_ops[j]->nb_src = cfg->nb_src_sges;
lcores[i]->dma_ops[j]->nb_dst = cfg->nb_dst_sges;
lcores[i]->dma_ops[j]->vchan = 0;
}
}
rte_eal_remote_launch(get_work_function(cfg), (void *)(lcores[i]), lcore_id);
}
return 0;
}
static void
teardown_worker_res(struct test_configure *cfg, uint32_t nr_buf,
struct rte_mbuf **srcs, struct rte_mbuf **dsts)
{
uint16_t nb_workers = cfg->num_worker;
struct vchan_dev_config *vchan_dev;
struct rte_mbuf **m;
uint32_t offset;
uint32_t i, j;
for (i = 0; i < nb_workers; i++) {
struct rte_mbuf **sbuf = NULL, **dbuf = NULL;
vchan_dev = &cfg->dma_config[i].vchan_dev;
offset = nr_buf / nb_workers * i;
m = NULL;
if (vchan_dev->tdir == RTE_DMA_DIR_DEV_TO_MEM) {
sbuf = srcs + offset;
m = sbuf;
} else if (vchan_dev->tdir == RTE_DMA_DIR_MEM_TO_DEV) {
dbuf = dsts + offset;
m = dbuf;
}
if (m) {
for (j = 0; j < (nr_buf / nb_workers); j++)
rte_pktmbuf_detach_extbuf(m[j]);
if (m[0]->shinfo && rte_mbuf_ext_refcnt_read(m[0]->shinfo) == 0)
rte_free(m[0]->shinfo);
}
rte_free(lcores[i]);
lcores[i] = NULL;
}
}
int
mem_copy_benchmark(struct test_configure *cfg)
{
struct rte_mbuf **srcs = NULL, **dsts = NULL;
struct rte_dma_sge *src_sges = NULL, *dst_sges = NULL;
struct vchan_dev_config *vchan_dev = NULL;
unsigned int buf_size = cfg->buf_size.cur;
uint16_t kick_batch = cfg->kick_batch.cur;
uint16_t test_secs = global_cfg.test_secs;
uint16_t nb_workers = cfg->num_worker;
uint32_t nr_sgsrc = 0, nr_sgdst = 0;
struct rte_dma_op **dma_ops = NULL;
float bandwidth, bandwidth_total;
uint32_t avg_cycles_total;
bool dev_stopped = false;
uint32_t avg_cycles = 0;
float mops, mops_total;
float memory = 0;
uint32_t nr_buf;
int ret = -1;
uint32_t i;
nr_buf = align_buffer_count(cfg, &nr_sgsrc, &nr_sgdst);
if (setup_memory_env(cfg, nr_buf, &srcs, &dsts, &src_sges, &dst_sges, &dma_ops) < 0)
goto out;
if (config_dmadevs(cfg) < 0)
goto out;
if (global_cfg.cache_flush > 0) {
cache_flush_buf(srcs, buf_size, nr_buf);
cache_flush_buf(dsts, buf_size, nr_buf);
rte_mb();
}
printf("Start testing....\n");
ret = setup_worker(cfg, nr_buf, srcs, dsts, src_sges, dst_sges, dma_ops,
nr_sgsrc, nr_sgdst);
if (ret != 0)
goto stop_dmadev;
while (1) {
bool ready = true;
for (i = 0; i < nb_workers; i++) {
if (lcores[i]->worker_info.ready_flag == false) {
ready = 0;
break;
}
}
if (ready)
break;
}
for (i = 0; i < nb_workers; i++)
lcores[i]->worker_info.start_flag = true;
usleep(TEST_WAIT_U_SECOND);
for (i = 0; i < nb_workers; i++)
lcores[i]->worker_info.test_cpl = lcores[i]->worker_info.total_cpl;
usleep(test_secs * 1000 * 1000);
for (i = 0; i < nb_workers; i++)
lcores[i]->worker_info.test_cpl = lcores[i]->worker_info.total_cpl -
lcores[i]->worker_info.test_cpl;
for (i = 0; i < nb_workers; i++)
lcores[i]->worker_info.stop_flag = true;
rte_eal_mp_wait_lcore();
stop_dmadev(cfg, &dev_stopped);
ret = verify_data(cfg, srcs, dsts, nr_buf);
if (ret != 0)
goto out;
mops_total = 0;
bandwidth_total = 0;
avg_cycles_total = 0;
for (i = 0; i < nb_workers; i++) {
vchan_dev = &cfg->dma_config[i].vchan_dev;
calc_result(buf_size, nr_buf, nb_workers, test_secs,
lcores[i]->worker_info.test_cpl,
&memory, &avg_cycles, &bandwidth, &mops);
printf("Direction: %s\n", vchan_dev->tdir == 0 ? "mem2mem" :
vchan_dev->tdir == 1 ? "mem2dev" : "dev2mem");
output_result(cfg, lcores[i], kick_batch, avg_cycles, buf_size,
nr_buf / nb_workers, memory, bandwidth, mops);
mops_total += mops;
bandwidth_total += bandwidth;
avg_cycles_total += avg_cycles;
}
printf("\nAverage Cycles/op per worker: %.1lf, Total Bandwidth: %.3lf Gbps, Total MOps: %.3lf\n",
(avg_cycles_total * (float) 1.0) / nb_workers, bandwidth_total, mops_total);
output_csv(CSV_TOTAL_LINE_FMT, cfg->scenario_id, nr_buf, memory * nb_workers,
(avg_cycles_total * (float) 1.0) / nb_workers, bandwidth_total, mops_total);
stop_dmadev:
stop_dmadev(cfg, &dev_stopped);
out:
teardown_worker_res(cfg, nr_buf, srcs, dsts);
teardown_memory_env(nr_buf, srcs, dsts, src_sges, dst_sges, dma_ops);
return ret;
}
|