File: test_atomic_queue.c

package info (click to toggle)
dpdk 25.11-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 127,892 kB
  • sloc: ansic: 2,358,479; python: 16,426; sh: 4,474; makefile: 1,713; awk: 70
file content (236 lines) | stat: -rw-r--r-- 6,068 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2025 Ericsson AB
 */

#include <stdio.h>
#include <unistd.h>

#include "test_atomic_common.h"

#define NB_QUEUES 2
#define NB_STAGES 2

static rte_spinlock_t *atomic_locks;

static inline void
atomic_queue_process_stage_0(struct test_order *const t,
		struct rte_event *const ev,
		uint32_t nb_flows,
		uint32_t port)
{
	const uint32_t flow = *order_mbuf_flow_id(t, ev->mbuf);

	atomic_lock_verify(atomic_locks, 0, flow, nb_flows, t, port);

	ev->queue_id = 1;
	ev->op = RTE_EVENT_OP_FORWARD;
	ev->sched_type = RTE_SCHED_TYPE_ATOMIC;
	ev->event_type = RTE_EVENT_TYPE_CPU;

	atomic_spinlock_unlock(atomic_locks, 0, flow, nb_flows);
}

static inline void
atomic_queue_process_stage_1(struct test_order *const t,
		struct rte_event *const ev,
		uint32_t nb_flows,
		rte_spinlock_t *atomic_locks,
		uint32_t *const expected_flow_seq,
		RTE_ATOMIC(uint64_t) * const outstand_pkts,
		uint32_t port)
{
	const uint32_t flow = *order_mbuf_flow_id(t, ev->mbuf);
	const uint32_t seq = *order_mbuf_seqn(t, ev->mbuf);

	atomic_lock_verify(atomic_locks, 1, flow, nb_flows, t, port);

	/* compare the seqn against expected value */
	if (seq != expected_flow_seq[flow]) {
		evt_err("flow=%x seqn mismatch got=%x expected=%x", flow, seq,
				expected_flow_seq[flow]);
		t->err = true;
	}

	expected_flow_seq[flow]++;
	rte_pktmbuf_free(ev->mbuf);

	rte_atomic_fetch_sub_explicit(outstand_pkts, 1, rte_memory_order_relaxed);

	ev->op = RTE_EVENT_OP_RELEASE;

	atomic_spinlock_unlock(atomic_locks, 1, flow, nb_flows);
}

static int
atomic_queue_worker_burst(void *arg, bool flow_id_cap, uint32_t max_burst)
{
	ORDER_WORKER_INIT;
	struct rte_event ev[BURST_SIZE];
	uint16_t i;

	while (t->err == false) {

		uint16_t const nb_rx = rte_event_dequeue_burst(dev_id, port, ev, max_burst, 0);

		if (nb_rx == 0) {
			if (rte_atomic_load_explicit(outstand_pkts, rte_memory_order_relaxed) <= 0)
				break;
			rte_pause();
			continue;
		}

		for (i = 0; i < nb_rx; i++) {
			if (!flow_id_cap)
				order_flow_id_copy_from_mbuf(t, &ev[i]);

			switch (ev[i].queue_id) {
			case 0:
				atomic_queue_process_stage_0(t, &ev[i], nb_flows, port);
				break;
			case 1:
				atomic_queue_process_stage_1(t, &ev[i], nb_flows, atomic_locks,
						expected_flow_seq, outstand_pkts, port);
				break;
			default:
				order_process_stage_invalid(t, &ev[i]);
				break;
			}
		}

		uint16_t total_enq = 0;

		do {
			total_enq += rte_event_enqueue_burst(
					dev_id, port, ev + total_enq, nb_rx - total_enq);
		} while (total_enq < nb_rx);
	}

	return 0;
}

static int
worker_wrapper(void *arg)
{
	struct worker_data *w = arg;
	int max_burst = evt_has_burst_mode(w->dev_id) ? BURST_SIZE : 1;
	const bool flow_id_cap = evt_has_flow_id(w->dev_id);

	return atomic_queue_worker_burst(arg, flow_id_cap, max_burst);
}

static int
atomic_queue_launch_lcores(struct evt_test *test, struct evt_options *opt)
{
	int ret = atomic_launch_lcores(test, opt, worker_wrapper);
	rte_free(atomic_locks);
	return ret;
}

static int
atomic_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt)
{
	int ret;

	const uint8_t nb_workers = evt_nr_active_lcores(opt->wlcores);
	/* number of active worker cores + 1 producer */
	const uint8_t nb_ports = nb_workers + 1;

	ret = evt_configure_eventdev(opt, NB_QUEUES, nb_ports);
	if (ret) {
		evt_err("failed to configure eventdev %d", opt->dev_id);
		return ret;
	}

	/* q0 configuration */
	struct rte_event_queue_conf q0_atomic_conf = {
			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
			.schedule_type = RTE_SCHED_TYPE_ATOMIC,
			.nb_atomic_flows = opt->nb_flows,
			.nb_atomic_order_sequences = opt->nb_flows,
	};
	ret = rte_event_queue_setup(opt->dev_id, 0, &q0_atomic_conf);
	if (ret) {
		evt_err("failed to setup queue0 eventdev %d err %d", opt->dev_id, ret);
		return ret;
	}

	/* q1 configuration */
	struct rte_event_queue_conf q1_atomic_conf = {
			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
			.schedule_type = RTE_SCHED_TYPE_ATOMIC,
			.nb_atomic_flows = opt->nb_flows,
			.nb_atomic_order_sequences = opt->nb_flows,
	};
	ret = rte_event_queue_setup(opt->dev_id, 1, &q1_atomic_conf);
	if (ret) {
		evt_err("failed to setup queue0 eventdev %d err %d", opt->dev_id, ret);
		return ret;
	}

	/* setup one port per worker, linking to all queues */
	ret = order_event_dev_port_setup(test, opt, nb_workers, NB_QUEUES);
	if (ret)
		return ret;

	if (!evt_has_distributed_sched(opt->dev_id)) {
		uint32_t service_id;
		rte_event_dev_service_id_get(opt->dev_id, &service_id);
		ret = evt_service_setup(service_id);
		if (ret) {
			evt_err("No service lcore found to run event dev.");
			return ret;
		}
	}

	ret = rte_event_dev_start(opt->dev_id);
	if (ret) {
		evt_err("failed to start eventdev %d", opt->dev_id);
		return ret;
	}

	atomic_locks = atomic_init_locks(NB_STAGES, opt->nb_flows);
	if (atomic_locks == NULL)
		return -1;

	return 0;
}

static void
atomic_queue_opt_dump(struct evt_options *opt)
{
	order_opt_dump(opt);
	evt_dump("nb_evdev_queues", "%d", NB_QUEUES);
}

static bool
atomic_queue_capability_check(struct evt_options *opt)
{
	struct rte_event_dev_info dev_info;

	rte_event_dev_info_get(opt->dev_id, &dev_info);
	if (dev_info.max_event_queues < NB_QUEUES ||
			dev_info.max_event_ports < order_nb_event_ports(opt)) {
		evt_err("not enough eventdev queues=%d/%d or ports=%d/%d", NB_QUEUES,
				dev_info.max_event_queues, order_nb_event_ports(opt),
				dev_info.max_event_ports);
		return false;
	}

	return true;
}

static const struct evt_test_ops atomic_queue = {
	.cap_check        = atomic_queue_capability_check,
	.opt_check        = order_opt_check,
	.opt_dump         = atomic_queue_opt_dump,
	.test_setup       = order_test_setup,
	.mempool_setup    = order_mempool_setup,
	.eventdev_setup   = atomic_queue_eventdev_setup,
	.launch_lcores    = atomic_queue_launch_lcores,
	.eventdev_destroy = order_eventdev_destroy,
	.mempool_destroy  = order_mempool_destroy,
	.test_result      = order_test_result,
	.test_destroy     = order_test_destroy,
};

EVT_TEST_REGISTER(atomic_queue);