File: test_seqlock.c

package info (click to toggle)
dpdk 25.11-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 127,892 kB
  • sloc: ansic: 2,358,479; python: 16,426; sh: 4,474; makefile: 1,713; awk: 70
file content (190 lines) | stat: -rw-r--r-- 3,911 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2022 Ericsson AB
 */

#include <rte_seqlock.h>

#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_random.h>

#include <inttypes.h>

#include "test.h"

struct __rte_cache_aligned data {
	rte_seqlock_t lock;

	uint64_t a;
	alignas(RTE_CACHE_LINE_SIZE) uint64_t b;
	alignas(RTE_CACHE_LINE_SIZE) uint64_t c;
};

struct reader {
	struct data *data;
	RTE_ATOMIC(uint8_t) stop;
};

#define WRITER_RUNTIME 2.0 /* s */

#define WRITER_MAX_DELAY 100 /* us */

#define INTERRUPTED_WRITER_FREQUENCY 1000
#define WRITER_INTERRUPT_TIME 1 /* us */

static int
writer_run(void *arg)
{
	struct data *data = arg;
	uint64_t deadline;

	deadline = rte_get_timer_cycles() +
		WRITER_RUNTIME * rte_get_timer_hz();

	while (rte_get_timer_cycles() < deadline) {
		bool interrupted;
		uint64_t new_value;
		unsigned int delay;

		new_value = rte_rand();

		interrupted = rte_rand_max(INTERRUPTED_WRITER_FREQUENCY) == 0;

		rte_seqlock_write_lock(&data->lock);

		data->c = new_value;
		data->b = new_value;

		if (interrupted)
			rte_delay_us_block(WRITER_INTERRUPT_TIME);

		data->a = new_value;

		rte_seqlock_write_unlock(&data->lock);

		delay = rte_rand_max(WRITER_MAX_DELAY);

		rte_delay_us_block(delay);
	}

	return TEST_SUCCESS;
}

#define INTERRUPTED_READER_FREQUENCY 1000
#define READER_INTERRUPT_TIME 1000 /* us */

static int
reader_run(void *arg)
{
	struct reader *r = arg;
	int rc = TEST_SUCCESS;

	while (rte_atomic_load_explicit(&r->stop, rte_memory_order_relaxed) == 0 &&
			rc == TEST_SUCCESS) {
		struct data *data = r->data;
		bool interrupted;
		uint32_t sn;
		uint64_t a;
		uint64_t b;
		uint64_t c;

		interrupted = rte_rand_max(INTERRUPTED_READER_FREQUENCY) == 0;

		do {
			sn = rte_seqlock_read_begin(&data->lock);

			a = data->a;
			if (interrupted)
				rte_delay_us_block(READER_INTERRUPT_TIME);
			c = data->c;
			b = data->b;

		} while (rte_seqlock_read_retry(&data->lock, sn));

		if (a != b || b != c) {
			printf("Reader observed inconsistent data values "
				"%" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
				a, b, c);
			rc = TEST_FAILED;
		}
	}

	return rc;
}

static void
reader_stop(struct reader *reader)
{
	rte_atomic_store_explicit(&reader->stop, 1, rte_memory_order_relaxed);
}

#define NUM_WRITERS 2 /* main lcore + one worker */
#define MIN_NUM_READERS 2
#define MIN_LCORE_COUNT (NUM_WRITERS + MIN_NUM_READERS)

/* Only a compile-time test */
static rte_seqlock_t __rte_unused static_init_lock = RTE_SEQLOCK_INITIALIZER;

static int
test_seqlock(void)
{
	struct reader readers[RTE_MAX_LCORE];
	unsigned int num_lcores;
	unsigned int num_readers;
	struct data *data;
	unsigned int i;
	unsigned int lcore_id;
	unsigned int reader_lcore_ids[RTE_MAX_LCORE];
	unsigned int worker_writer_lcore_id = 0;
	int rc = TEST_SUCCESS;

	num_lcores = rte_lcore_count();

	if (num_lcores < MIN_LCORE_COUNT) {
		printf("Too few cores to run test. Skipping.\n");
		return TEST_SKIPPED;
	}

	num_readers = num_lcores - NUM_WRITERS;

	data = rte_zmalloc(NULL, sizeof(struct data), 0);

	if (data == NULL) {
		printf("Failed to allocate memory for seqlock data\n");
		return TEST_FAILED;
	}

	i = 0;
	RTE_LCORE_FOREACH_WORKER(lcore_id) {
		if (i == 0) {
			rte_eal_remote_launch(writer_run, data, lcore_id);
			worker_writer_lcore_id = lcore_id;
		} else {
			unsigned int reader_idx = i - 1;
			struct reader *reader = &readers[reader_idx];

			reader->data = data;
			reader->stop = 0;

			rte_eal_remote_launch(reader_run, reader, lcore_id);
			reader_lcore_ids[reader_idx] = lcore_id;
		}
		i++;
	}

	if (writer_run(data) != 0 ||
			rte_eal_wait_lcore(worker_writer_lcore_id) != 0)
		rc = TEST_FAILED;

	for (i = 0; i < num_readers; i++) {
		reader_stop(&readers[i]);
		if (rte_eal_wait_lcore(reader_lcore_ids[i]) != 0)
			rc = TEST_FAILED;
	}

	rte_free(data);

	return rc;
}

REGISTER_FAST_TEST(seqlock_autotest, true, true, test_seqlock);