1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/file.h>
#include <unistd.h>
#include <rte_hexdump.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include "ccp_dev.h"
#include "ccp_pmd_private.h"
static TAILQ_HEAD(, ccp_device) ccp_list = TAILQ_HEAD_INITIALIZER(ccp_list);
static int ccp_dev_id;
int
ccp_dev_start(struct rte_cryptodev *dev)
{
struct ccp_private *priv = dev->data->dev_private;
priv->last_dev = TAILQ_FIRST(&ccp_list);
return 0;
}
struct ccp_queue *
ccp_allot_queue(struct rte_cryptodev *cdev, int slot_req)
{
int i, ret = 0;
struct ccp_device *dev;
struct ccp_private *priv = cdev->data->dev_private;
dev = TAILQ_NEXT(priv->last_dev, next);
if (unlikely(dev == NULL))
dev = TAILQ_FIRST(&ccp_list);
priv->last_dev = dev;
if (dev->qidx >= dev->cmd_q_count)
dev->qidx = 0;
ret = rte_atomic64_read(&dev->cmd_q[dev->qidx].free_slots);
if (ret >= slot_req)
return &dev->cmd_q[dev->qidx];
for (i = 0; i < dev->cmd_q_count; i++) {
dev->qidx++;
if (dev->qidx >= dev->cmd_q_count)
dev->qidx = 0;
ret = rte_atomic64_read(&dev->cmd_q[dev->qidx].free_slots);
if (ret >= slot_req)
return &dev->cmd_q[dev->qidx];
}
return NULL;
}
int
ccp_read_hwrng(uint32_t *value)
{
struct ccp_device *dev;
TAILQ_FOREACH(dev, &ccp_list, next) {
void *vaddr = (void *)(dev->pci->mem_resource[2].addr);
while (dev->hwrng_retries++ < CCP_MAX_TRNG_RETRIES) {
*value = CCP_READ_REG(vaddr, TRNG_OUT_REG);
if (*value) {
dev->hwrng_retries = 0;
return 0;
}
}
dev->hwrng_retries = 0;
}
return -1;
}
static const struct rte_memzone *
ccp_queue_dma_zone_reserve(const char *queue_name,
uint32_t queue_size,
int socket_id)
{
const struct rte_memzone *mz;
mz = rte_memzone_lookup(queue_name);
if (mz != 0) {
if (((size_t)queue_size <= mz->len) &&
((socket_id == SOCKET_ID_ANY) ||
(socket_id == mz->socket_id))) {
CCP_LOG_INFO("re-use memzone already "
"allocated for %s", queue_name);
return mz;
}
CCP_LOG_ERR("Incompatible memzone already "
"allocated %s, size %u, socket %d. "
"Requested size %u, socket %u",
queue_name, (uint32_t)mz->len,
mz->socket_id, queue_size, socket_id);
return NULL;
}
CCP_LOG_INFO("Allocate memzone for %s, size %u on socket %u",
queue_name, queue_size, socket_id);
return rte_memzone_reserve_aligned(queue_name, queue_size,
socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
}
/* bitmap support apis */
static inline void
ccp_set_bit(unsigned long *bitmap, int n)
{
rte_atomic_fetch_or_explicit((unsigned long __rte_atomic *)&bitmap[WORD_OFFSET(n)],
(1UL << BIT_OFFSET(n)), rte_memory_order_seq_cst);
}
static inline void
ccp_clear_bit(unsigned long *bitmap, int n)
{
rte_atomic_fetch_and_explicit((unsigned long __rte_atomic *)&bitmap[WORD_OFFSET(n)],
~(1UL << BIT_OFFSET(n)), rte_memory_order_seq_cst);
}
static inline uint32_t
ccp_get_bit(unsigned long *bitmap, int n)
{
return ((bitmap[WORD_OFFSET(n)] & (1 << BIT_OFFSET(n))) != 0);
}
static inline uint32_t
ccp_ffz(unsigned long word)
{
unsigned long first_zero;
first_zero = __builtin_ffsl(~word);
return first_zero ? (first_zero - 1) :
BITS_PER_WORD;
}
static inline uint32_t
ccp_find_first_zero_bit(unsigned long *addr, uint32_t limit)
{
uint32_t i;
uint32_t nwords = 0;
nwords = (limit - 1) / BITS_PER_WORD + 1;
for (i = 0; i < nwords; i++) {
if (addr[i] == 0UL)
return i * BITS_PER_WORD;
if (addr[i] < ~(0UL))
break;
}
return (i == nwords) ? limit : i * BITS_PER_WORD + ccp_ffz(addr[i]);
}
static void
ccp_bitmap_set(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + WORD_OFFSET(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_WORD - (start % BITS_PER_WORD);
unsigned long mask_to_set = CCP_BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_WORD;
mask_to_set = ~0UL;
p++;
}
if (len) {
mask_to_set &= CCP_BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
static void
ccp_bitmap_clear(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + WORD_OFFSET(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_WORD - (start % BITS_PER_WORD);
unsigned long mask_to_clear = CCP_BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_WORD;
mask_to_clear = ~0UL;
p++;
}
if (len) {
mask_to_clear &= CCP_BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
static unsigned long
_ccp_find_next_bit(const unsigned long *addr,
unsigned long nbits,
unsigned long start,
unsigned long invert)
{
unsigned long tmp;
if (!nbits || start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_WORD] ^ invert;
/* Handle 1st word. */
tmp &= CCP_BITMAP_FIRST_WORD_MASK(start);
start = ccp_round_down(start, BITS_PER_WORD);
while (!tmp) {
start += BITS_PER_WORD;
if (start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_WORD] ^ invert;
}
return RTE_MIN(start + (ffs(tmp) - 1), nbits);
}
static unsigned long
ccp_find_next_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset)
{
return _ccp_find_next_bit(addr, size, offset, 0UL);
}
static unsigned long
ccp_find_next_zero_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset)
{
return _ccp_find_next_bit(addr, size, offset, ~0UL);
}
/**
* bitmap_find_next_zero_area - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
*/
static unsigned long
ccp_bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr)
{
unsigned long index, end, i;
again:
index = ccp_find_next_zero_bit(map, size, start);
end = index + nr;
if (end > size)
return end;
i = ccp_find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
static uint32_t
ccp_lsb_alloc(struct ccp_queue *cmd_q, unsigned int count)
{
struct ccp_device *ccp;
int start;
/* First look at the map for the queue */
if (cmd_q->lsb >= 0) {
start = (uint32_t)ccp_bitmap_find_next_zero_area(cmd_q->lsbmap,
LSB_SIZE, 0,
count);
if (start < LSB_SIZE) {
ccp_bitmap_set(cmd_q->lsbmap, start, count);
return start + cmd_q->lsb * LSB_SIZE;
}
}
/* try to get an entry from the shared blocks */
ccp = cmd_q->dev;
rte_spinlock_lock(&ccp->lsb_lock);
start = (uint32_t)ccp_bitmap_find_next_zero_area(ccp->lsbmap,
MAX_LSB_CNT * LSB_SIZE,
0, count);
if (start <= MAX_LSB_CNT * LSB_SIZE) {
ccp_bitmap_set(ccp->lsbmap, start, count);
rte_spinlock_unlock(&ccp->lsb_lock);
return start * LSB_ITEM_SIZE;
}
CCP_LOG_ERR("NO LSBs available");
rte_spinlock_unlock(&ccp->lsb_lock);
return 0;
}
static void __rte_unused
ccp_lsb_free(struct ccp_queue *cmd_q,
unsigned int start,
unsigned int count)
{
int lsbno = start / LSB_SIZE;
if (!start)
return;
if (cmd_q->lsb == lsbno) {
/* An entry from the private LSB */
ccp_bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
} else {
/* From the shared LSBs */
struct ccp_device *ccp = cmd_q->dev;
rte_spinlock_lock(&ccp->lsb_lock);
ccp_bitmap_clear(ccp->lsbmap, start, count);
rte_spinlock_unlock(&ccp->lsb_lock);
}
}
static int
ccp_find_lsb_regions(struct ccp_queue *cmd_q, uint64_t status)
{
int q_mask = 1 << cmd_q->id;
int weight = 0;
int j;
/* Build a bit mask to know which LSBs
* this queue has access to.
* Don't bother with segment 0
* as it has special
* privileges.
*/
cmd_q->lsbmask = 0;
status >>= LSB_REGION_WIDTH;
for (j = 1; j < MAX_LSB_CNT; j++) {
if (status & q_mask)
ccp_set_bit(&cmd_q->lsbmask, j);
status >>= LSB_REGION_WIDTH;
}
for (j = 0; j < MAX_LSB_CNT; j++)
if (ccp_get_bit(&cmd_q->lsbmask, j))
weight++;
CCP_LOG_DBG("Queue %d can access %d LSB regions of mask %lu",
(int)cmd_q->id, weight, cmd_q->lsbmask);
return weight ? 0 : -EINVAL;
}
static int
ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
int lsb_cnt, int n_lsbs,
unsigned long *lsb_pub)
{
unsigned long qlsb = 0;
int bitno = 0;
int qlsb_wgt = 0;
int i, j;
/* For each queue:
* If the count of potential LSBs available to a queue matches the
* ordinal given to us in lsb_cnt:
* Copy the mask of possible LSBs for this queue into "qlsb";
* For each bit in qlsb, see if the corresponding bit in the
* aggregation mask is set; if so, we have a match.
* If we have a match, clear the bit in the aggregation to
* mark it as no longer available.
* If there is no match, clear the bit in qlsb and keep looking.
*/
for (i = 0; i < ccp->cmd_q_count; i++) {
struct ccp_queue *cmd_q = &ccp->cmd_q[i];
qlsb_wgt = 0;
for (j = 0; j < MAX_LSB_CNT; j++)
if (ccp_get_bit(&cmd_q->lsbmask, j))
qlsb_wgt++;
if (qlsb_wgt == lsb_cnt) {
qlsb = cmd_q->lsbmask;
bitno = ffs(qlsb) - 1;
while (bitno < MAX_LSB_CNT) {
if (ccp_get_bit(lsb_pub, bitno)) {
/* We found an available LSB
* that this queue can access
*/
cmd_q->lsb = bitno;
ccp_clear_bit(lsb_pub, bitno);
break;
}
ccp_clear_bit(&qlsb, bitno);
bitno = ffs(qlsb) - 1;
}
if (bitno >= MAX_LSB_CNT)
return -EINVAL;
n_lsbs--;
}
}
return n_lsbs;
}
/* For each queue, from the most- to least-constrained:
* find an LSB that can be assigned to the queue. If there are N queues that
* can only use M LSBs, where N > M, fail; otherwise, every queue will get a
* dedicated LSB. Remaining LSB regions become a shared resource.
* If we have fewer LSBs than queues, all LSB regions become shared
* resources.
*/
static int
ccp_assign_lsbs(struct ccp_device *ccp)
{
unsigned long lsb_pub = 0, qlsb = 0;
int n_lsbs = 0;
int bitno;
int i, lsb_cnt;
int rc = 0;
rte_spinlock_init(&ccp->lsb_lock);
/* Create an aggregate bitmap to get a total count of available LSBs */
for (i = 0; i < ccp->cmd_q_count; i++)
lsb_pub |= ccp->cmd_q[i].lsbmask;
for (i = 0; i < MAX_LSB_CNT; i++)
if (ccp_get_bit(&lsb_pub, i))
n_lsbs++;
if (n_lsbs >= ccp->cmd_q_count) {
/* We have enough LSBS to give every queue a private LSB.
* Brute force search to start with the queues that are more
* constrained in LSB choice. When an LSB is privately
* assigned, it is removed from the public mask.
* This is an ugly N squared algorithm with some optimization.
*/
for (lsb_cnt = 1; n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
lsb_cnt++) {
rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
&lsb_pub);
if (rc < 0)
return -EINVAL;
n_lsbs = rc;
}
}
rc = 0;
/* What's left of the LSBs, according to the public mask, now become
* shared. Any zero bits in the lsb_pub mask represent an LSB region
* that can't be used as a shared resource, so mark the LSB slots for
* them as "in use".
*/
qlsb = lsb_pub;
bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
while (bitno < MAX_LSB_CNT) {
ccp_bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
ccp_set_bit(&qlsb, bitno);
bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
}
return rc;
}
static int
ccp_add_device(struct ccp_device *dev)
{
int i;
uint32_t qmr, status_lo, status_hi, dma_addr_lo, dma_addr_hi;
uint64_t status;
struct ccp_queue *cmd_q;
const struct rte_memzone *q_mz;
void *vaddr;
if (dev == NULL)
return -1;
dev->id = ccp_dev_id++;
dev->qidx = 0;
vaddr = (void *)(dev->pci->mem_resource[2].addr);
if (dev->pci->id.device_id == AMD_PCI_CCP_5B) {
CCP_WRITE_REG(vaddr, CMD_TRNG_CTL_OFFSET, 0x00012D57);
CCP_WRITE_REG(vaddr, CMD_CONFIG_0_OFFSET, 0x00000003);
for (i = 0; i < 12; i++) {
CCP_WRITE_REG(vaddr, CMD_AES_MASK_OFFSET,
CCP_READ_REG(vaddr, TRNG_OUT_REG));
}
CCP_WRITE_REG(vaddr, CMD_QUEUE_MASK_OFFSET, 0x0000001F);
CCP_WRITE_REG(vaddr, CMD_QUEUE_PRIO_OFFSET, 0x00005B6D);
CCP_WRITE_REG(vaddr, CMD_CMD_TIMEOUT_OFFSET, 0x00000000);
CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET, 0x3FFFFFFF);
CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET, 0x000003FF);
CCP_WRITE_REG(vaddr, CMD_CLK_GATE_CTL_OFFSET, 0x00108823);
}
CCP_WRITE_REG(vaddr, CMD_REQID_CONFIG_OFFSET, 0x0);
/* Copy the private LSB mask to the public registers */
status_lo = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET);
status_hi = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET);
CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_LO_OFFSET, status_lo);
CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_HI_OFFSET, status_hi);
status = ((uint64_t)status_hi<<30) | ((uint64_t)status_lo);
dev->cmd_q_count = 0;
/* Find available queues */
qmr = CCP_READ_REG(vaddr, Q_MASK_REG);
for (i = 0; i < MAX_HW_QUEUES; i++) {
if (!(qmr & (1 << i)))
continue;
cmd_q = &dev->cmd_q[dev->cmd_q_count++];
cmd_q->dev = dev;
cmd_q->id = i;
cmd_q->qidx = 0;
cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
cmd_q->reg_base = (uint8_t *)vaddr +
CMD_Q_STATUS_INCR * (i + 1);
/* CCP queue memory */
snprintf(cmd_q->memz_name, sizeof(cmd_q->memz_name),
"%s_%d_%s_%d_%s",
"ccp_dev",
(int)dev->id, "queue",
(int)cmd_q->id, "mem");
q_mz = ccp_queue_dma_zone_reserve(cmd_q->memz_name,
cmd_q->qsize, SOCKET_ID_ANY);
cmd_q->qbase_addr = (void *)q_mz->addr;
cmd_q->qbase_desc = (void *)q_mz->addr;
cmd_q->qbase_phys_addr = q_mz->iova;
cmd_q->qcontrol = 0;
/* init control reg to zero */
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
cmd_q->qcontrol);
/* Disable the interrupts */
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INT_ENABLE_BASE, 0x00);
CCP_READ_REG(cmd_q->reg_base, CMD_Q_INT_STATUS_BASE);
CCP_READ_REG(cmd_q->reg_base, CMD_Q_STATUS_BASE);
/* Clear the interrupts */
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INTERRUPT_STATUS_BASE,
ALL_INTERRUPTS);
/* Configure size of each virtual queue accessible to host */
cmd_q->qcontrol &= ~(CMD_Q_SIZE << CMD_Q_SHIFT);
cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD_Q_SHIFT;
dma_addr_lo = low32_value(cmd_q->qbase_phys_addr);
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_TAIL_LO_BASE,
(uint32_t)dma_addr_lo);
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_HEAD_LO_BASE,
(uint32_t)dma_addr_lo);
dma_addr_hi = high32_value(cmd_q->qbase_phys_addr);
cmd_q->qcontrol |= (dma_addr_hi << 16);
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
cmd_q->qcontrol);
/* create LSB Mask map */
if (ccp_find_lsb_regions(cmd_q, status))
CCP_LOG_ERR("queue doesn't have lsb regions");
cmd_q->lsb = -1;
rte_atomic64_init(&cmd_q->free_slots);
rte_atomic64_set(&cmd_q->free_slots, (COMMANDS_PER_QUEUE - 1));
/* unused slot barrier b/w H&T */
}
if (ccp_assign_lsbs(dev))
CCP_LOG_ERR("Unable to assign lsb region");
/* pre-allocate LSB slots */
for (i = 0; i < dev->cmd_q_count; i++) {
dev->cmd_q[i].sb_key =
ccp_lsb_alloc(&dev->cmd_q[i], 1);
dev->cmd_q[i].sb_iv =
ccp_lsb_alloc(&dev->cmd_q[i], 1);
dev->cmd_q[i].sb_sha =
ccp_lsb_alloc(&dev->cmd_q[i], 2);
dev->cmd_q[i].sb_hmac =
ccp_lsb_alloc(&dev->cmd_q[i], 2);
}
TAILQ_INSERT_TAIL(&ccp_list, dev, next);
return 0;
}
static void
ccp_remove_device(struct ccp_device *dev)
{
if (dev == NULL)
return;
TAILQ_REMOVE(&ccp_list, dev, next);
}
int
ccp_probe_device(struct rte_pci_device *pci_dev)
{
struct ccp_device *ccp_dev;
ccp_dev = rte_zmalloc("ccp_device", sizeof(*ccp_dev),
RTE_CACHE_LINE_SIZE);
if (ccp_dev == NULL)
goto fail;
ccp_dev->pci = pci_dev;
/* device is valid, add in list */
if (ccp_add_device(ccp_dev)) {
ccp_remove_device(ccp_dev);
goto fail;
}
return 0;
fail:
CCP_LOG_ERR("CCP Device probe failed");
rte_free(ccp_dev);
return -1;
}
|