File: ionic_crypto_ops.c

package info (click to toggle)
dpdk 25.11-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 127,892 kB
  • sloc: ansic: 2,358,479; python: 16,426; sh: 4,474; makefile: 1,713; awk: 70
file content (606 lines) | stat: -rw-r--r-- 15,442 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2021-2024 Advanced Micro Devices, Inc.
 */

#include <rte_cryptodev.h>
#include <cryptodev_pmd.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_mempool.h>

#include "ionic_crypto.h"

static int
iocpt_op_config(struct rte_cryptodev *cdev,
		struct rte_cryptodev_config *config __rte_unused)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	iocpt_configure(dev);

	return 0;
}

static int
iocpt_op_start(struct rte_cryptodev *cdev)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	return iocpt_start(dev);
}

static void
iocpt_op_stop(struct rte_cryptodev *cdev)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	return iocpt_stop(dev);
}

static int
iocpt_op_close(struct rte_cryptodev *cdev)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	iocpt_deinit(dev);

	return 0;
}

static void
iocpt_op_info_get(struct rte_cryptodev *cdev, struct rte_cryptodev_info *info)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	if (info == NULL)
		return;

	info->max_nb_queue_pairs = dev->max_qps;
	info->feature_flags = dev->features;
	info->capabilities = iocpt_get_caps(info->feature_flags);
	/* Reserve one session for watchdog */
	info->sym.max_nb_sessions = dev->max_sessions - 1;
	info->driver_id = dev->driver_id;
	info->min_mbuf_headroom_req = 0;
	info->min_mbuf_tailroom_req = 0;
}

static void
iocpt_op_stats_get(struct rte_cryptodev *cdev,
		struct rte_cryptodev_stats *stats)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	iocpt_get_stats(dev, stats);
}

static void
iocpt_op_stats_reset(struct rte_cryptodev *cdev)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	iocpt_reset_stats(dev);
}

static int
iocpt_op_queue_release(struct rte_cryptodev *cdev, uint16_t queue_id)
{
	struct iocpt_crypto_q *cptq = cdev->data->queue_pairs[queue_id];

	IOCPT_PRINT(DEBUG, "queue_id %u", queue_id);

	assert(!(cptq->flags & IOCPT_Q_F_INITED));

	iocpt_cryptoq_free(cptq);

	cdev->data->queue_pairs[queue_id] = NULL;

	return 0;
}

static int
iocpt_op_queue_setup(struct rte_cryptodev *cdev, uint16_t queue_id,
		const struct rte_cryptodev_qp_conf *qp_conf,
		int socket_id)
{
	struct iocpt_dev *dev = cdev->data->dev_private;
	int err;

	if (cdev->data->queue_pairs[queue_id] != NULL)
		iocpt_op_queue_release(cdev, queue_id);

	if (qp_conf->nb_descriptors < (1 << IOCPT_QSIZE_MIN_LG2) ||
	    qp_conf->nb_descriptors > (1 << IOCPT_QSIZE_MAX_LG2)) {
		IOCPT_PRINT(ERR, "invalid nb_descriptors %u, use range %u..%u",
			qp_conf->nb_descriptors,
			1 << IOCPT_QSIZE_MIN_LG2, 1 << IOCPT_QSIZE_MAX_LG2);
		return -ERANGE;
	}

	IOCPT_PRINT(DEBUG, "queue_id %u", queue_id);

	err = iocpt_cryptoq_alloc(dev, socket_id, queue_id,
				qp_conf->nb_descriptors);
	if (err != 0)
		return err;

	cdev->data->queue_pairs[queue_id] = dev->cryptoqs[queue_id];

	return 0;
}

static unsigned int
iocpt_op_get_session_size(struct rte_cryptodev *cdev __rte_unused)
{
	return iocpt_session_size();
}

static inline int
iocpt_is_algo_supported(struct rte_crypto_sym_xform *xform)
{
	if (xform->next != NULL) {
		IOCPT_PRINT(ERR, "chaining not supported");
		return -ENOTSUP;
	}

	if (xform->type != RTE_CRYPTO_SYM_XFORM_AEAD) {
		IOCPT_PRINT(ERR, "xform->type %d not supported", xform->type);
		return -ENOTSUP;
	}

	return 0;
}

static __rte_always_inline int
iocpt_fill_sess_aead(struct rte_crypto_sym_xform *xform,
		struct iocpt_session_priv *priv)
{
	struct rte_crypto_aead_xform *aead_form = &xform->aead;

	if (aead_form->algo != RTE_CRYPTO_AEAD_AES_GCM) {
		IOCPT_PRINT(ERR, "Unknown algo");
		return -EINVAL;
	}
	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
		priv->op = IOCPT_DESC_OPCODE_GCM_AEAD_ENCRYPT;
	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
		priv->op = IOCPT_DESC_OPCODE_GCM_AEAD_DECRYPT;
	} else {
		IOCPT_PRINT(ERR, "Unknown cipher operations");
		return -1;
	}

	if (aead_form->key.length < IOCPT_SESS_KEY_LEN_MIN ||
	    aead_form->key.length > IOCPT_SESS_KEY_LEN_MAX_SYMM) {
		IOCPT_PRINT(ERR, "Invalid cipher keylen %u",
			aead_form->key.length);
		return -1;
	}
	priv->key_len = aead_form->key.length;
	memcpy(priv->key, aead_form->key.data, priv->key_len);

	priv->type = IOCPT_SESS_AEAD_AES_GCM;
	priv->iv_offset = aead_form->iv.offset;
	priv->iv_length = aead_form->iv.length;
	priv->digest_length = aead_form->digest_length;
	priv->aad_length = aead_form->aad_length;

	return 0;
}

static int
iocpt_session_cfg(struct iocpt_dev *dev,
		struct rte_crypto_sym_xform *xform,
		struct rte_cryptodev_sym_session *sess)
{
	struct rte_crypto_sym_xform *chain;
	struct iocpt_session_priv *priv = NULL;

	if (iocpt_is_algo_supported(xform) < 0)
		return -ENOTSUP;

	if (unlikely(sess == NULL)) {
		IOCPT_PRINT(ERR, "invalid session");
		return -EINVAL;
	}

	priv = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
	priv->dev = dev;

	chain = xform;
	while (chain) {
		switch (chain->type) {
		case RTE_CRYPTO_SYM_XFORM_AEAD:
			if (iocpt_fill_sess_aead(chain, priv))
				return -EIO;
			break;
		default:
			IOCPT_PRINT(ERR, "invalid crypto xform type %d",
				chain->type);
			return -ENOTSUP;
		}
		chain = chain->next;
	}

	return iocpt_session_init(priv);
}

static int
iocpt_op_session_cfg(struct rte_cryptodev *cdev,
		struct rte_crypto_sym_xform *xform,
		struct rte_cryptodev_sym_session *sess)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	return iocpt_session_cfg(dev, xform, sess);
}

static void
iocpt_session_clear(struct rte_cryptodev_sym_session *sess)
{
	iocpt_session_deinit(CRYPTODEV_GET_SYM_SESS_PRIV(sess));
}

static void
iocpt_op_session_clear(struct rte_cryptodev *cdev __rte_unused,
		struct rte_cryptodev_sym_session *sess)
{
	iocpt_session_clear(sess);
}

static inline void
iocpt_fill_sge(struct iocpt_crypto_sg_elem *arr, uint8_t idx,
		uint64_t addr, uint16_t len)
{
	arr[idx].addr = rte_cpu_to_le_64(addr);
	arr[idx].len = rte_cpu_to_le_16(len);
}

static __rte_always_inline int
iocpt_enq_one_aead(struct iocpt_crypto_q *cptq,
		struct iocpt_session_priv *priv, struct rte_crypto_op *op)
{
	struct rte_crypto_sym_op *sym_op = op->sym;
	struct iocpt_queue *q = &cptq->q;
	struct iocpt_crypto_desc *desc, *desc_base = q->base;
	struct iocpt_crypto_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
	struct iocpt_crypto_sg_elem *src, *dst;
	rte_iova_t aad_addr, digest_addr, iv_addr, seg_addr;
	uint32_t data_len, data_offset, seg_len;
	uint8_t nsge_src = 0, nsge_dst = 0, flags = 0;
	struct rte_mbuf *m;

	desc = &desc_base[q->head_idx];
	sg_desc = &sg_desc_base[q->head_idx];
	src = sg_desc->src_elems;
	dst = sg_desc->dst_elems;

	/* Fill the first SGE with the IV / Nonce */
	iv_addr = rte_crypto_op_ctophys_offset(op, priv->iv_offset);
	iocpt_fill_sge(src, nsge_src++, iv_addr, priv->iv_length);

	/* Fill the second SGE with the AAD, if applicable */
	if (priv->aad_length > 0) {
		aad_addr = sym_op->aead.aad.phys_addr;
		iocpt_fill_sge(src, nsge_src++, aad_addr, priv->aad_length);
		flags |= IOCPT_DESC_F_AAD_VALID;
	}

	m = sym_op->m_src;
	data_len = sym_op->aead.data.length;

	/* Fast-forward through mbuf chain to account for data offset */
	data_offset = sym_op->aead.data.offset;
	while (m != NULL && data_offset >= m->data_len) {
		data_offset -= m->data_len;
		m = m->next;
	}

	/* Fill the next SGEs with the payload segments */
	while (m != NULL && data_len > 0) {
		seg_addr = rte_mbuf_data_iova(m) + data_offset;
		seg_len = RTE_MIN(m->data_len - data_offset, data_len);
		data_offset = 0;
		data_len -= seg_len;

		/* Use -1 to save room for digest */
		if (nsge_src >= IOCPT_CRYPTO_MAX_SG_ELEMS - 1)
			return -ERANGE;

		iocpt_fill_sge(src, nsge_src++, seg_addr, seg_len);

		m = m->next;
	}

	/* AEAD AES-GCM: digest == authentication tag */
	digest_addr = sym_op->aead.digest.phys_addr;
	iocpt_fill_sge(src, nsge_src++, digest_addr, priv->digest_length);

	/* Process Out-Of-Place destination SGL */
	if (sym_op->m_dst != NULL) {
		/* Put the AAD here, too */
		if (priv->aad_length > 0)
			iocpt_fill_sge(dst, nsge_dst++,
				sym_op->aead.aad.phys_addr, priv->aad_length);

		m = sym_op->m_dst;
		data_len = sym_op->aead.data.length;

		/* Fast-forward through chain to account for data offset */
		data_offset = sym_op->aead.data.offset;
		while (m != NULL && data_offset >= m->data_len) {
			data_offset -= m->data_len;
			m = m->next;
		}

		/* Fill in the SGEs with the payload segments */
		while (m != NULL && data_len > 0) {
			seg_addr = rte_mbuf_data_iova(m) + data_offset;
			seg_len = RTE_MIN(m->data_len - data_offset, data_len);
			data_offset = 0;
			data_len -= seg_len;

			if (nsge_dst >= IOCPT_CRYPTO_MAX_SG_ELEMS)
				return -ERANGE;

			iocpt_fill_sge(dst, nsge_dst++, seg_addr, seg_len);

			m = m->next;
		}
	}

	desc->opcode = priv->op;
	desc->flags = flags;
	desc->num_src_dst_sgs = iocpt_encode_nsge_src_dst(nsge_src, nsge_dst);
	desc->session_tag = rte_cpu_to_le_32(priv->index);

	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
	q->info[q->head_idx] = op;
	q->head_idx = Q_NEXT_TO_POST(q, 1);

	return 0;
}

static uint16_t
iocpt_enqueue_sym(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct iocpt_crypto_q *cptq = qp;
	struct rte_crypto_op *op;
	struct iocpt_session_priv *priv;
	struct rte_cryptodev_stats *stats = &cptq->stats;
	uint16_t avail, count;
	int err;

	avail = iocpt_q_space_avail(&cptq->q);
	if (unlikely(nb_ops > avail))
		nb_ops = avail;

	count = 0;
	while (likely(count < nb_ops)) {
		op = ops[count];

		if (unlikely(op->sess_type != RTE_CRYPTO_OP_WITH_SESSION)) {
			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
			break;
		}

		priv = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
		if (unlikely(priv == NULL)) {
			op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
			break;
		}

		err = iocpt_enq_one_aead(cptq, priv, op);
		if (unlikely(err != 0)) {
			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
			stats->enqueue_err_count++;
			break;
		}

		count++;
	}

	if (likely(count > 0)) {
		iocpt_q_flush(&cptq->q);

		/* Restart timer if ops are being enqueued */
		cptq->last_wdog_cycles = rte_get_timer_cycles();

		stats->enqueued_count += count;
	}

	return count;
}

static void
iocpt_enqueue_wdog(struct iocpt_crypto_q *cptq)
{
	struct iocpt_queue *q = &cptq->q;
	struct iocpt_crypto_desc *desc, *desc_base = q->base;
	struct iocpt_crypto_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
	struct iocpt_crypto_sg_elem *src;
	struct rte_crypto_op *wdog_op;
	rte_iova_t iv_addr, pld_addr, tag_addr;
	uint8_t nsge_src = 0;
	uint16_t avail;

	avail = iocpt_q_space_avail(&cptq->q);
	if (avail < 1)
		goto out_flush;

	wdog_op = rte_zmalloc_socket("iocpt", sizeof(*wdog_op),
				RTE_CACHE_LINE_SIZE, rte_socket_id());
	if (wdog_op == NULL)
		goto out_flush;

	wdog_op->type = IOCPT_Q_WDOG_OP_TYPE;
	wdog_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;

	desc = &desc_base[q->head_idx];
	sg_desc = &sg_desc_base[q->head_idx];
	src = sg_desc->src_elems;

	/* Fill the first SGE with the IV / Nonce */
	iv_addr = rte_mem_virt2iova(cptq->wdog_iv);
	iocpt_fill_sge(src, nsge_src++, iv_addr, IOCPT_Q_WDOG_IV_LEN);

	/* Fill the second SGE with the payload segment */
	pld_addr = rte_mem_virt2iova(cptq->wdog_pld);
	iocpt_fill_sge(src, nsge_src++, pld_addr, IOCPT_Q_WDOG_PLD_LEN);

	/* AEAD AES-GCM: digest == authentication tag */
	tag_addr = rte_mem_virt2iova(cptq->wdog_tag);
	iocpt_fill_sge(src, nsge_src++, tag_addr, IOCPT_Q_WDOG_TAG_LEN);

	desc->opcode = IOCPT_DESC_OPCODE_GCM_AEAD_ENCRYPT;
	desc->flags = 0;
	desc->num_src_dst_sgs = iocpt_encode_nsge_src_dst(nsge_src, 0);
	desc->session_tag = rte_cpu_to_le_32(IOCPT_Q_WDOG_SESS_IDX);

	q->info[q->head_idx] = wdog_op;
	q->head_idx = Q_NEXT_TO_POST(q, 1);

	IOCPT_PRINT(DEBUG, "Queue %u wdog enq %p ops %"PRIu64,
		q->index, wdog_op, cptq->stats.enqueued_count);
	cptq->enqueued_wdogs++;

out_flush:
	iocpt_q_flush(q);
}

static uint16_t
iocpt_dequeue_sym(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct iocpt_crypto_q *cptq = qp;
	struct iocpt_queue *q = &cptq->q;
	struct iocpt_cq *cq = &cptq->cq;
	struct rte_crypto_op *op;
	struct iocpt_crypto_comp *cq_desc_base = cq->base;
	volatile struct iocpt_crypto_comp *cq_desc;
	struct rte_cryptodev_stats *stats = &cptq->stats;
	uint64_t then, now, hz, delta;
	uint16_t count = 0;

	cq_desc = &cq_desc_base[cq->tail_idx];

	/* First walk the CQ to update any completed op's status
	 * NB: These can arrive out of order!
	 */
	while ((cq_desc->color & 0x1) == cq->done_color) {
		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
		if (unlikely(cq->tail_idx == 0))
			cq->done_color = !cq->done_color;

		op = q->info[rte_le_to_cpu_16(cq_desc->comp_index)];

		/* Process returned CQ descriptor status */
		if (unlikely(cq_desc->status)) {
			switch (cq_desc->status) {
			case IOCPT_COMP_SYMM_AUTH_VERIFY_ERROR:
				op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
				break;
			case IOCPT_COMP_INVAL_OPCODE_ERROR:
			case IOCPT_COMP_UNSUPP_OPCODE_ERROR:
			case IOCPT_COMP_SYMM_SRC_SG_ERROR:
			case IOCPT_COMP_SYMM_DST_SG_ERROR:
			case IOCPT_COMP_SYMM_SRC_DST_LEN_MISMATCH:
			case IOCPT_COMP_SYMM_KEY_IDX_ERROR:
				op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
				break;
			default:
				op->status = RTE_CRYPTO_OP_STATUS_ERROR;
				break;
			}
		} else
			op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;

		cq_desc = &cq_desc_base[cq->tail_idx];
	}

	/* Next walk the SQ to pop off completed ops in-order */
	while (count < nb_ops) {
		op = q->info[q->tail_idx];

		/* No more completions */
		if (op == NULL ||
		    op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
			break;

		/* Handle watchdog operations */
		if (unlikely(op->type == IOCPT_Q_WDOG_OP_TYPE)) {
			IOCPT_PRINT(DEBUG, "Queue %u wdog deq %p st %d",
				q->index, op, op->status);
			q->info[q->tail_idx] = NULL;
			q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
			cptq->dequeued_wdogs++;
			rte_free(op);
			continue;
		}

		if (unlikely(op->status != RTE_CRYPTO_OP_STATUS_SUCCESS))
			stats->dequeue_err_count++;

		ops[count] = op;
		q->info[q->tail_idx] = NULL;

		q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
		count++;
	}

	if (!count) {
		/*
		 * Ring the doorbell again if no work was dequeued and work
		 * is still pending after the deadline.
		 */
		if (q->head_idx != q->tail_idx) {
			then = cptq->last_wdog_cycles;
			now = rte_get_timer_cycles();
			hz = rte_get_timer_hz();
			delta = (now - then) * 1000;

			if (delta >= hz * IONIC_Q_WDOG_MS) {
				iocpt_enqueue_wdog(cptq);
				cptq->last_wdog_cycles = now;
			}
		}
	} else
		/* Restart timer if the queue is making progress */
		cptq->last_wdog_cycles = rte_get_timer_cycles();

	stats->dequeued_count += count;

	return count;
}

static struct rte_cryptodev_ops iocpt_ops = {
	.dev_configure = iocpt_op_config,
	.dev_start = iocpt_op_start,
	.dev_stop = iocpt_op_stop,
	.dev_close = iocpt_op_close,
	.dev_infos_get = iocpt_op_info_get,

	.stats_get = iocpt_op_stats_get,
	.stats_reset = iocpt_op_stats_reset,
	.queue_pair_setup = iocpt_op_queue_setup,
	.queue_pair_release = iocpt_op_queue_release,

	.sym_session_get_size = iocpt_op_get_session_size,
	.sym_session_configure = iocpt_op_session_cfg,
	.sym_session_clear = iocpt_op_session_clear,
};

int
iocpt_assign_ops(struct rte_cryptodev *cdev)
{
	struct iocpt_dev *dev = cdev->data->dev_private;

	cdev->dev_ops = &iocpt_ops;
	cdev->feature_flags = dev->features;

	if (dev->features & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
		cdev->enqueue_burst = iocpt_enqueue_sym;
		cdev->dequeue_burst = iocpt_dequeue_sym;
	}

	return 0;
}