1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _VIRTQUEUE_H_
#define _VIRTQUEUE_H_
#include <stdint.h>
#include <rte_atomic.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_net.h>
#include "virtio.h"
#include "virtio_ring.h"
#include "virtio_logs.h"
#include "virtio_rxtx.h"
#include "virtio_cvq.h"
struct rte_mbuf;
#define DEFAULT_TX_FREE_THRESH 32
#define DEFAULT_RX_FREE_THRESH 32
#define VIRTIO_MBUF_BURST_SZ 64
/*
* Per virtio_ring.h in Linux.
* For virtio_pci on SMP, we don't need to order with respect to MMIO
* accesses through relaxed memory I/O windows, so thread_fence is
* sufficient.
*
* For using virtio to talk to real devices (eg. vDPA) we do need real
* barriers.
*/
static inline void
virtio_mb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_atomic_thread_fence(rte_memory_order_seq_cst);
else
rte_mb();
}
static inline void
virtio_rmb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_atomic_thread_fence(rte_memory_order_acquire);
else
rte_io_rmb();
}
static inline void
virtio_wmb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_atomic_thread_fence(rte_memory_order_release);
else
rte_io_wmb();
}
static inline uint16_t
virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
uint8_t weak_barriers)
{
uint16_t flags;
if (weak_barriers) {
/* x86 prefers to using rte_io_rmb over rte_atomic_load_explicit as it reports
* a better perf(~1.5%), which comes from the saved branch by the compiler.
* The if and else branch are identical on the platforms except Arm.
*/
#ifdef RTE_ARCH_ARM
flags = rte_atomic_load_explicit(&dp->flags, rte_memory_order_acquire);
#else
flags = dp->flags;
rte_io_rmb();
#endif
} else {
flags = dp->flags;
rte_io_rmb();
}
return flags;
}
static inline void
virtqueue_store_flags_packed(struct vring_packed_desc *dp,
uint16_t flags, uint8_t weak_barriers)
{
if (weak_barriers) {
/* x86 prefers to using rte_io_wmb over rte_atomic_store_explicit as it reports
* a better perf(~1.5%), which comes from the saved branch by the compiler.
* The if and else branch are identical on the platforms except Arm.
*/
#ifdef RTE_ARCH_ARM
rte_atomic_store_explicit(&dp->flags, flags, rte_memory_order_release);
#else
rte_io_wmb();
dp->flags = flags;
#endif
} else {
rte_io_wmb();
dp->flags = flags;
}
}
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
#define VIRTQUEUE_MAX_NAME_SZ 32
#ifdef RTE_ARCH_32
#define VIRTIO_MBUF_ADDR_MASK(vq) ((vq)->mbuf_addr_mask)
#else
#define VIRTIO_MBUF_ADDR_MASK(vq) UINT64_MAX
#endif
/**
* Return the IOVA (or virtual address in case of virtio-user) of mbuf
* data buffer.
*
* The address is firstly casted to the word size (sizeof(uintptr_t))
* before casting it to uint64_t. It is then masked with the expected
* address length (64 bits for virtio-pci, word size for virtio-user).
*
* This is to make it work with different combination of word size (64
* bit and 32 bit) and virtio device (virtio-pci and virtio-user).
*/
#define VIRTIO_MBUF_ADDR(mb, vq) \
((*(uint64_t *)((uintptr_t)(mb) + (vq)->mbuf_addr_offset)) & \
VIRTIO_MBUF_ADDR_MASK(vq))
/**
* Return the physical address (or virtual address in case of
* virtio-user) of mbuf data buffer, taking care of mbuf data offset
*/
#define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
(VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
#define VTNET_SQ_RQ_QUEUE_IDX 0
#define VTNET_SQ_TQ_QUEUE_IDX 1
enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
/**
* The maximum virtqueue size is 2^15. Use that value as the end of
* descriptor chain terminator since it will never be a valid index
* in the descriptor table. This is used to verify we are correctly
* handling vq_free_cnt.
*/
#define VQ_RING_DESC_CHAIN_END 32768
#define VIRTIO_NET_OK 0
#define VIRTIO_NET_ERR 1
struct vq_desc_extra {
void *cookie;
uint16_t ndescs;
uint16_t next;
};
#define virtnet_rxq_to_vq(rxvq) container_of(rxvq, struct virtqueue, rxq)
#define virtnet_txq_to_vq(txvq) container_of(txvq, struct virtqueue, txq)
#define virtnet_cq_to_vq(cvq) container_of(cvq, struct virtqueue, cq)
struct virtqueue {
struct virtio_hw *hw; /**< virtio_hw structure pointer. */
union {
struct {
/**< vring keeping desc, used and avail */
struct vring ring;
} vq_split;
struct {
/**< vring keeping descs and events */
struct vring_packed ring;
bool used_wrap_counter;
uint16_t cached_flags; /**< cached flags for descs */
uint16_t event_flags_shadow;
} vq_packed;
};
uint16_t vq_used_cons_idx; /**< last consumed descriptor */
uint16_t vq_nentries; /**< vring desc numbers */
uint16_t vq_free_cnt; /**< num of desc available */
uint16_t vq_avail_idx; /**< sync until needed */
uint16_t vq_free_thresh; /**< free threshold */
/**
* Head of the free chain in the descriptor table. If
* there are no free descriptors, this will be set to
* VQ_RING_DESC_CHAIN_END.
*/
uint16_t vq_desc_head_idx;
uint16_t vq_desc_tail_idx;
uint16_t vq_queue_index; /**< PCI queue index */
void *vq_ring_virt_mem; /**< linear address of vring*/
unsigned int vq_ring_size;
uint16_t mbuf_addr_offset;
uint64_t mbuf_addr_mask;
union {
struct virtnet_rx rxq;
struct virtnet_tx txq;
struct virtnet_ctl cq;
};
const struct rte_memzone *mz; /**< mem zone to populate ring. */
rte_iova_t vq_ring_mem; /**< physical address of vring,
* or virtual address for virtio_user. */
uint16_t *notify_addr;
struct vq_desc_extra vq_descx[];
};
/* If multiqueue is provided by host, then we support it. */
#define VIRTIO_NET_CTRL_MQ 4
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0
#define VIRTIO_NET_CTRL_MQ_RSS_CONFIG 1
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000
/**
* This is the first element of the scatter-gather list. If you don't
* specify GSO or CSUM features, you can simply ignore the header.
*/
struct virtio_net_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */
uint16_t gso_size; /**< Bytes to append to hdr_len per frame */
uint16_t csum_start; /**< Position to start checksumming from */
uint16_t csum_offset; /**< Offset after that to place checksum */
};
/**
* This is the version of the header to use when the MRG_RXBUF
* feature has been negotiated.
*/
struct virtio_net_hdr_mrg_rxbuf {
struct virtio_net_hdr hdr;
uint16_t num_buffers; /**< Number of merged rx buffers */
};
/**
* This is the version of the header to use when the HASH_REPORT
* feature has been negotiated.
*/
struct virtio_net_hdr_hash_report {
struct virtio_net_hdr_mrg_rxbuf hdr;
uint32_t hash_value;
#define VIRTIO_NET_HASH_REPORT_NONE 0
#define VIRTIO_NET_HASH_REPORT_IPV4 1
#define VIRTIO_NET_HASH_REPORT_TCPV4 2
#define VIRTIO_NET_HASH_REPORT_UDPV4 3
#define VIRTIO_NET_HASH_REPORT_IPV6 4
#define VIRTIO_NET_HASH_REPORT_TCPV6 5
#define VIRTIO_NET_HASH_REPORT_UDPV6 6
#define VIRTIO_NET_HASH_REPORT_IPV6_EX 7
#define VIRTIO_NET_HASH_REPORT_TCPV6_EX 8
#define VIRTIO_NET_HASH_REPORT_UDPV6_EX 9
uint16_t hash_report;
uint16_t pad_reserved;
};
/* Region reserved to allow for transmit header and indirect ring */
#define VIRTIO_MAX_TX_INDIRECT 8
struct virtio_tx_region {
struct virtio_net_hdr_mrg_rxbuf tx_hdr;
union __rte_aligned(16) {
struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT];
struct vring_packed_desc
tx_packed_indir[VIRTIO_MAX_TX_INDIRECT];
};
};
static inline int
desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
{
uint16_t used, avail, flags;
flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
used = !!(flags & VRING_PACKED_DESC_F_USED);
avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
return avail == used && used == vq->vq_packed.used_wrap_counter;
}
static inline void
vring_desc_init_packed(struct virtqueue *vq, int n)
{
int i;
for (i = 0; i < n - 1; i++) {
vq->vq_packed.ring.desc[i].id = i;
vq->vq_descx[i].next = i + 1;
}
vq->vq_packed.ring.desc[i].id = i;
vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
}
/* Chain all the descriptors in the ring with an END */
static inline void
vring_desc_init_split(struct vring_desc *dp, uint16_t n)
{
uint16_t i;
for (i = 0; i < n - 1; i++)
dp[i].next = (uint16_t)(i + 1);
dp[i].next = VQ_RING_DESC_CHAIN_END;
}
static inline void
vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n)
{
int i;
for (i = 0; i < n; i++) {
dp[i].id = (uint16_t)i;
dp[i].flags = VRING_DESC_F_WRITE;
}
}
/**
* Tell the backend not to interrupt us. Implementation for packed virtqueues.
*/
static inline void
virtqueue_disable_intr_packed(struct virtqueue *vq)
{
if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
vq->vq_packed.ring.driver->desc_event_flags =
vq->vq_packed.event_flags_shadow;
}
}
/**
* Tell the backend not to interrupt us. Implementation for split virtqueues.
*/
static inline void
virtqueue_disable_intr_split(struct virtqueue *vq)
{
vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
}
/**
* Tell the backend not to interrupt us.
*/
static inline void
virtqueue_disable_intr(struct virtqueue *vq)
{
if (virtio_with_packed_queue(vq->hw))
virtqueue_disable_intr_packed(vq);
else
virtqueue_disable_intr_split(vq);
}
/**
* Tell the backend to interrupt. Implementation for packed virtqueues.
*/
static inline void
virtqueue_enable_intr_packed(struct virtqueue *vq)
{
if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
vq->vq_packed.ring.driver->desc_event_flags =
vq->vq_packed.event_flags_shadow;
}
}
/**
* Tell the backend to interrupt. Implementation for split virtqueues.
*/
static inline void
virtqueue_enable_intr_split(struct virtqueue *vq)
{
vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
}
/**
* Tell the backend to interrupt us.
*/
static inline void
virtqueue_enable_intr(struct virtqueue *vq)
{
if (virtio_with_packed_queue(vq->hw))
virtqueue_enable_intr_packed(vq);
else
virtqueue_enable_intr_split(vq);
}
/**
* Get all mbufs to be freed.
*/
struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
/* Flush the elements in the used ring. */
void virtqueue_rxvq_flush(struct virtqueue *vq);
int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
int virtqueue_txvq_reset_packed(struct virtqueue *vq);
void virtqueue_txq_indirect_headers_init(struct virtqueue *vq);
struct virtqueue *virtqueue_alloc(struct virtio_hw *hw, uint16_t index,
uint16_t num, int type, int node, const char *name);
void virtqueue_free(struct virtqueue *vq);
static inline int
virtqueue_full(const struct virtqueue *vq)
{
return vq->vq_free_cnt == 0;
}
static inline int
virtio_get_queue_type(struct virtio_hw *hw, uint16_t vq_idx)
{
if (vq_idx == hw->max_queue_pairs * 2)
return VTNET_CQ;
else if (vq_idx % 2 == 0)
return VTNET_RQ;
else
return VTNET_TQ;
}
/* virtqueue_nused has load-acquire or rte_io_rmb insed */
static inline uint16_t
virtqueue_nused(const struct virtqueue *vq)
{
uint16_t idx;
if (vq->hw->weak_barriers) {
/**
* x86 prefers to using rte_smp_rmb over rte_atomic_load_explicit as it
* reports a slightly better perf, which comes from the saved
* branch by the compiler.
* The if and else branches are identical with the smp and io
* barriers both defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
idx = vq->vq_split.ring.used->idx;
rte_smp_rmb();
#else
idx = rte_atomic_load_explicit(&(vq)->vq_split.ring.used->idx,
rte_memory_order_acquire);
#endif
} else {
idx = vq->vq_split.ring.used->idx;
rte_io_rmb();
}
return idx - vq->vq_used_cons_idx;
}
void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
uint16_t num);
static inline void
vq_update_avail_idx(struct virtqueue *vq)
{
if (vq->hw->weak_barriers) {
/* x86 prefers to using rte_smp_wmb over rte_atomic_store_explicit as
* it reports a slightly better perf, which comes from the
* saved branch by the compiler.
* The if and else branches are identical with the smp and
* io barriers both defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
rte_smp_wmb();
vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
#else
rte_atomic_store_explicit(&vq->vq_split.ring.avail->idx,
vq->vq_avail_idx, rte_memory_order_release);
#endif
} else {
rte_io_wmb();
vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
}
}
static inline void
vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
{
uint16_t avail_idx;
/*
* Place the head of the descriptor chain into the next slot and make
* it usable to the host. The chain is made available now rather than
* deferring to virtqueue_notify() in the hopes that if the host is
* currently running on another CPU, we can keep it processing the new
* descriptor.
*/
avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
vq->vq_avail_idx++;
}
static inline int
virtqueue_kick_prepare(struct virtqueue *vq)
{
/*
* Ensure updated avail->idx is visible to vhost before reading
* the used->flags.
*/
virtio_mb(vq->hw->weak_barriers);
return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
}
static inline int
virtqueue_kick_prepare_packed(struct virtqueue *vq)
{
uint16_t flags;
/*
* Ensure updated data is visible to vhost before reading the flags.
*/
virtio_mb(vq->hw->weak_barriers);
flags = vq->vq_packed.ring.device->desc_event_flags;
return flags != RING_EVENT_FLAGS_DISABLE;
}
/*
* virtqueue_kick_prepare*() or the virtio_wmb() should be called
* before this function to be sure that all the data is visible to vhost.
*/
static inline void
virtqueue_notify(struct virtqueue *vq)
{
VIRTIO_OPS(vq->hw)->notify_queue(vq->hw, vq);
}
#ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
#define VIRTQUEUE_DUMP(vq) do { \
uint16_t used_idx, nused; \
used_idx = rte_atomic_load_explicit(&(vq)->vq_split.ring.used->idx, \
rte_memory_order_relaxed); \
nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
if (virtio_with_packed_queue((vq)->hw)) { \
PMD_INIT_LOG(DEBUG, \
"VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
" cached_flags=0x%x; used_wrap_counter=%d", \
(vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
(vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
(vq)->vq_packed.used_wrap_counter); \
break; \
} \
PMD_INIT_LOG(DEBUG, \
"VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
" avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
" avail.flags=0x%x; used.flags=0x%x", \
(vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \
(vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \
rte_atomic_load_explicit(&(vq)->vq_split.ring.used->idx, rte_memory_order_relaxed), \
(vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
} while (0)
#else
#define VIRTQUEUE_DUMP(vq) do { } while (0)
#endif
/* avoid write operation when necessary, to lessen cache issues */
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
typeof(var) *const var_ = &(var); \
typeof(val) const val_ = (val); \
if (*var_ != val_) \
*var_ = val_; \
} while (0)
#define virtqueue_clear_net_hdr(hdr) do { \
typeof(hdr) hdr_ = (hdr); \
ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \
} while (0)
static inline void
virtqueue_xmit_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *cookie)
{
uint64_t csum_l4 = cookie->ol_flags & RTE_MBUF_F_TX_L4_MASK;
uint16_t o_l23_len = (cookie->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
cookie->outer_l2_len + cookie->outer_l3_len : 0;
if (cookie->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
csum_l4 |= RTE_MBUF_F_TX_TCP_CKSUM;
switch (csum_l4) {
case RTE_MBUF_F_TX_UDP_CKSUM:
hdr->csum_start = o_l23_len + cookie->l2_len + cookie->l3_len;
hdr->csum_offset = offsetof(struct rte_udp_hdr, dgram_cksum);
hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
break;
case RTE_MBUF_F_TX_TCP_CKSUM:
hdr->csum_start = o_l23_len + cookie->l2_len + cookie->l3_len;
hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
break;
default:
ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
break;
}
/* TCP Segmentation Offload */
if (cookie->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
hdr->gso_type = (cookie->ol_flags & RTE_MBUF_F_TX_IPV6) ?
VIRTIO_NET_HDR_GSO_TCPV6 :
VIRTIO_NET_HDR_GSO_TCPV4;
hdr->gso_size = cookie->tso_segsz;
hdr->hdr_len = o_l23_len + cookie->l2_len + cookie->l3_len +
cookie->l4_len;
} else {
ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
}
}
static inline void
virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
uint16_t needed, int use_indirect, int can_push,
int in_order)
{
struct virtio_tx_region *txr = txvq->hdr_mz->addr;
struct vq_desc_extra *dxp;
struct virtqueue *vq = virtnet_txq_to_vq(txvq);
struct vring_packed_desc *start_dp, *head_dp;
uint16_t idx, id, head_idx, head_flags;
int16_t head_size = vq->hw->vtnet_hdr_size;
struct virtio_net_hdr *hdr;
uint16_t prev;
bool prepend_header = false;
uint16_t seg_num = cookie->nb_segs;
id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
dxp = &vq->vq_descx[id];
dxp->ndescs = needed;
dxp->cookie = cookie;
head_idx = vq->vq_avail_idx;
idx = head_idx;
prev = head_idx;
start_dp = vq->vq_packed.ring.desc;
head_dp = &vq->vq_packed.ring.desc[idx];
head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
head_flags |= vq->vq_packed.cached_flags;
if (can_push) {
/* prepend cannot fail, checked by caller */
hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
-head_size);
prepend_header = true;
/* if offload disabled, it is not zeroed below, do it now */
if (!vq->hw->has_tx_offload)
virtqueue_clear_net_hdr(hdr);
} else if (use_indirect) {
/* setup tx ring slot to point to indirect
* descriptor list stored in reserved region.
*
* the first slot in indirect ring is already preset
* to point to the header in reserved region
*/
start_dp[idx].addr = txvq->hdr_mem + RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr);
start_dp[idx].len = (seg_num + 1) * sizeof(struct vring_packed_desc);
/* Packed descriptor id needs to be restored when inorder. */
if (in_order)
start_dp[idx].id = idx;
/* reset flags for indirect desc */
head_flags = VRING_DESC_F_INDIRECT;
head_flags |= vq->vq_packed.cached_flags;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
/* loop below will fill in rest of the indirect elements */
start_dp = txr[idx].tx_packed_indir;
idx = 1;
} else {
/* setup first tx ring slot to point to header
* stored in reserved region.
*/
start_dp[idx].addr = txvq->hdr_mem + RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
start_dp[idx].len = vq->hw->vtnet_hdr_size;
head_flags |= VRING_DESC_F_NEXT;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
idx++;
if (idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
}
if (vq->hw->has_tx_offload)
virtqueue_xmit_offload(hdr, cookie);
do {
uint16_t flags;
start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
start_dp[idx].len = cookie->data_len;
if (prepend_header) {
start_dp[idx].addr -= head_size;
start_dp[idx].len += head_size;
prepend_header = false;
}
if (likely(idx != head_idx)) {
flags = cookie->next ? VRING_DESC_F_NEXT : 0;
flags |= vq->vq_packed.cached_flags;
start_dp[idx].flags = flags;
}
prev = idx;
idx++;
if (idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
} while ((cookie = cookie->next) != NULL);
start_dp[prev].id = id;
if (use_indirect) {
idx = head_idx;
if (++idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
}
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
vq->vq_avail_idx = idx;
if (!in_order) {
vq->vq_desc_head_idx = dxp->next;
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
}
virtqueue_store_flags_packed(head_dp, head_flags,
vq->hw->weak_barriers);
}
static void
vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
{
struct vq_desc_extra *dxp;
dxp = &vq->vq_descx[id];
vq->vq_free_cnt += dxp->ndescs;
if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_head_idx = id;
else
vq->vq_descx[vq->vq_desc_tail_idx].next = id;
vq->vq_desc_tail_idx = id;
dxp->next = VQ_RING_DESC_CHAIN_END;
}
static void
virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, uint16_t num)
{
uint16_t used_idx, id, curr_id, free_cnt = 0;
uint16_t size = vq->vq_nentries;
struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
struct vq_desc_extra *dxp;
int nb = num;
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_io_rmb inside
* and wait for used desc in virtqueue.
*/
while (nb > 0 && desc_is_used(&desc[used_idx], vq)) {
id = desc[used_idx].id;
do {
curr_id = used_idx;
dxp = &vq->vq_descx[used_idx];
used_idx += dxp->ndescs;
free_cnt += dxp->ndescs;
nb -= dxp->ndescs;
if (used_idx >= size) {
used_idx -= size;
vq->vq_packed.used_wrap_counter ^= 1;
}
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
} while (curr_id != id);
}
vq->vq_used_cons_idx = used_idx;
vq->vq_free_cnt += free_cnt;
}
static void
virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, uint16_t num)
{
uint16_t used_idx, id;
uint16_t size = vq->vq_nentries;
struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
struct vq_desc_extra *dxp;
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_io_rmb inside
* and wait for used desc in virtqueue.
*/
while (num-- && desc_is_used(&desc[used_idx], vq)) {
id = desc[used_idx].id;
dxp = &vq->vq_descx[id];
vq->vq_used_cons_idx += dxp->ndescs;
if (vq->vq_used_cons_idx >= size) {
vq->vq_used_cons_idx -= size;
vq->vq_packed.used_wrap_counter ^= 1;
}
vq_ring_free_id_packed(vq, id);
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
used_idx = vq->vq_used_cons_idx;
}
}
/* Cleanup from completed transmits. */
static inline void
virtio_xmit_cleanup_packed(struct virtqueue *vq, uint16_t num, int in_order)
{
if (in_order)
virtio_xmit_cleanup_inorder_packed(vq, num);
else
virtio_xmit_cleanup_normal_packed(vq, num);
}
static inline void
virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
{
uint16_t i, used_idx, desc_idx;
for (i = 0; i < num; i++) {
struct vring_used_elem *uep;
struct vq_desc_extra *dxp;
used_idx = (uint16_t)(vq->vq_used_cons_idx &
(vq->vq_nentries - 1));
uep = &vq->vq_split.ring.used->ring[used_idx];
desc_idx = (uint16_t)uep->id;
dxp = &vq->vq_descx[desc_idx];
vq->vq_used_cons_idx++;
vq_ring_free_chain(vq, desc_idx);
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
}
}
/* Cleanup from completed inorder transmits. */
static __rte_always_inline void
virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
{
uint16_t i, idx = vq->vq_used_cons_idx;
int16_t free_cnt = 0;
struct vq_desc_extra *dxp = NULL;
if (unlikely(num == 0))
return;
for (i = 0; i < num; i++) {
dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
free_cnt += dxp->ndescs;
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
}
vq->vq_free_cnt += free_cnt;
vq->vq_used_cons_idx = idx;
}
#endif /* _VIRTQUEUE_H_ */
|