1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
# Drawing or tuning tics and labels on a existing graph is relatively
# easy but it requires thought to write routines that produce reasonable
# markup automatically over a wide range of inputs. Linear axis scales
# are the simplest but others, such as logarithmic scales, are much less
# straightforward. The following routines are based on and translated from
# the original Fortran and are intended for plots up to about one page
# in size. One can produce graphs quickly using them but customization
# might be needed.
# In all cases, font sizes are to be set externally and the dpic textht
# parameter should be set accordingly.
# grlinlin {[#( grwid,grht,Data,npts,job )
# Graph plotter, linear scales, data in subscripted pic array
# grwid,grht graph box size; labels are exterior to the box
# Data identifier of subscripted data array; that is,
# (Data[1].x, Data[1].y) contains the coordinates
# of the first data point, and so on
# npts number of data points
# job = a+10*b+100*c+1000*d: default 0 = 1000*0 + 100*0 + 10*0 + 0
# a=0 do not add data point markers
# 1 filled circle markers at data points
# 2 data point square markers
# 3 data point triangle markers
# b=0 fill data markers black
# 1 fill data markers white
# c=0 join data points with splines
# 1 join data points with straight lines
# 2 do not join data points
# 3 fit a least-squares straight line to the data
# d=0 box with tic marks and numerical labels
# 1 do not draw visible box or tic marks; suitable for overlay
#
define grlinlin {[#( grwid,grht,Data,npts,job )
grwid=$1; grht=$2; npts=$4; job=$5
markers = int(job % 10)
fillv = int(job/10) % 10
join = int(job/100) % 10
decorate = (int(job/1000)==0)
#
Box: box invis wid grwid ht grht with .sw at (0,0)
# min and max values
getminmax( $3, npts, xmin,xmax,ymin,ymax )
scalop( xmin,xmax, xming,xmaxg,ix2graph,ixmin,ixmax,xdig,xpow )
scalop( ymin,ymax, yming,ymaxg,iy2graph,iymin,iymax,ydig,ypow )
define x2graph { ($1-xming)/(xmaxg-xming)*grwid }
define y2graph { ($1-yming)/(ymaxg-yming)*grht }
# scales
lt0 = linethick; linethick /= 2; txht = textht
tic = min(grwid/20,grht/20)
if decorate then {
vaxtics(-1, tic,txht,iymin,iymax,iy2graph,y2graph,ydig,ypow)with .S at Box.sw
vaxtics( 0,-tic,txht,iymin,iymax,iy2graph,y2graph,ydig,ypow)with .S at Box.se
haxtics(-1, tic,txht,ixmin,ixmax,ix2graph,x2graph,xdig,xpow)with .W at Box.sw
haxtics( 0,-tic,txht,ixmin,ixmax,ix2graph,x2graph,xdig,xpow)with .W at Box.nw
linethick = lt0; box wid Box.wid ht Box.ht at Box
}
sqsiz = textht/2
if join==0 then {
for i=1 to npts do { Qplotlib[i-1]: (x2graph($3[i].x),y2graph($3[i].y)) }
dfitcurve(Qplotlib,npts-1)
} \
else { if join==1 then {
P: (x2graph($3[1].x),y2graph($3[1].y))
line from P to P
for i=2 to npts do { continue to (x2graph($3[i].x),y2graph($3[i].y)) }
}}
{if markers==1 then { for i=1 to npts do {
plotlibcircle(sqsiz,fillv) at (x2graph($3[i].x),y2graph($3[i].y)) }
} \
else { if markers==2 then { for i=1 to npts do {
plotlibbox(sqsiz,fillv) at (x2graph($3[i].x),y2graph($3[i].y)) }
} \
else { if markers==3 then { for i=1 to npts do {
plotlibtriangle(sqsiz,fillv) at (x2graph($3[i].x),y2graph($3[i].y)) }
} }}}
]}
# vaxtics {[#( job,ticlen,charht,iymin,iymax,sky,macroname,ydig,ypow)
# Tics and label routine for vertical axis, linear scale.
# Tics from iymin*sky to iymax*sky with labels above or below
#
# job 0: no labels, -ve: labels at the left, +ve: labels at the right.
# ticlen tic mark length; -ve to write left
# charht height of scale numbers
# iymax max x coord integer for i=iymin to iymax { draw tic }
# iymin min x coord integer
# sky scale factor, x coord integer to x value
# macroname input macro to convert x value to drawn value: macroname(x)
# ydig digits after the decimal
# ypow scale factor exponent for the scale labels
#
define vaxtics {[
job=$1; ticlen=$2; iymin=$4; iymax=$5; sky=$6; ydig=$8; ypow=$9
if "$3"== "" then { charht = textht } else { charht=$3 }
#
if dpicopt==optSVG then { charwd = charht*dptextratio } \
else { charwd = charht*0.66 }
N: (0,$7(iymax*sky))
S: (0,$7(iymin*sky))
for iy=iymin to iymax do {
y = iy * sky
line from (0,$7(y)) to (ticlen,$7(y))
if job > 0 then {
move to last line.e
if (y==0) && (ypow==0) then { "0" ljust } \
else { sprintf(sprintf("%%8.%gf",ydig),y*10^ypow) ljust } } \
else { if job < 0 then {
move to last line.w
if (y==0) && (ypow==0) then { "0" rjust } \
else { sprintf(sprintf("%%8.%gf",ydig),y*10^ypow) rjust } } } }
if( ypow!=0 && job!=0 ) then { # write exponent
iy = floor(iymin/4+iymax*3/4)
move to ( (ydig/2+7)*charwd*sign(job), $7((iy+0.4)*sky))
{ "x 10" ht charht wid 4*charwd
sprintf("-%g",ypow) ht charht*2/3 at last "".e above ljust } }
]}
# grloglin {[#( grwid,grht,Data,npts,job )
# Graph plotter, log-linear scales, data in subscripted pic array
# grwid,grht graph box size; labels are exterior to the box
# Data identifier of subscripted data array; that is,
# (Data[1].x, Data[1].y) contains the coordinates
# of the first data point, and so on
# npts number of data points
# job = a+10*b+100*c+1000*d: default 0 = 1000*0 + 100*0 + 10*0 + 0
# a=0 do not add data point markers
# 1 filled circle markers at data points
# 2 data point square markers
# 3 data point triangle markers
# b=0 fill data markers black
# 1 fill data markers white
# c=0 join data points with splines
# 1 join data points with straight lines
# 2 do not join data points
# d=0 box with tic marks and numerical labels
# 1 do not draw visible box or tic marks; suitable for overlay
# or custom markup
#
define grloglin {[#( grwid,grht,Data,npts,job )
grwid=$1; grht=$2; npts=$4; job=$5
markers = int(job % 10)
fillv = int(job/10) % 10
join = int(job/100) % 10
decorate = (int(job/1000)==0)
#
Box: box invis wid grwid ht grht with .sw at (0,0)
# min and max values
xmin = $3[1].x; xmax = xmin; yminl = log($3[1].y); ymaxl = yminl
for j=2 to npts do {
yminl=min(yminl,log($3[j].y)); ymaxl=max(ymaxl,log($3[j].y)) }
getminmax( $3, npts, xmin,xmax,ymin,ymax )
scalop( xmin,xmax, xming,xmaxg,ix2graph,ixmin,ixmax,xdig,xpow )
scalop( yminl,ymaxl, yming,ymaxg,iy2graph,iymin,iymax,ydig,ypow )
define x2graph { ($1-xming)/(xmaxg-xming)*grwid }
define y2graph { ($1-yming)/(ymaxg-yming)*grht }
# scales
tic = min(grwid/20,grht/20)
if decorate then {
lt0 = linethick; linethick /= 2; txht = textht
vlgtics(-1,yminl,ymaxl,0,grwid ) with .Orig at (0,0)
haxtics(-1, tic,txht,ixmin,ixmax,ix2graph,x2graph,xdig,xpow) \
with .W at Box.sw
haxtics( 0,-tic,txht,ixmin,ixmax,ix2graph,x2graph,xdig,xpow) \
with .W at Box.nw
linethick = lt0; box wid Box.wid ht Box.ht at Box
}
sqsiz = textht/2
if join==0 then {
for i=1 to npts do {
Qplotlib[i-1]: (x2graph($3[i].x),y2graph(log($3[i].y))) }
dfitcurve(Qplotlib,npts-1)
} \
else { if join==1 then {
P: (x2graph($3[1].x),y2graph(log($3[1].y)))
line from P to P
for i=2 to npts do { continue to (x2graph($3[i].x),y2graph(log($3[i].y))) }
}}
{if markers==1 then { for i=1 to npts do {
plotlibcircle(sqsiz,fillv) at (x2graph($3[i].x),y2graph(log($3[i].y))) }
} \
else { if markers==2 then { for i=1 to npts do {
plotlibbox(sqsiz,fillv) at (x2graph($3[i].x),y2graph(log($3[i].y))) }
} \
else { if markers==3 then { for i=1 to npts do {
plotlibtriangle(sqsiz,fillv) at (x2graph($3[i].x),y2graph(log($3[i].y))) }
} }}}
]}
# vlgtics {[#( job,fminl,fmaxl,xmin,xmax )
# horizontal logarithmic tics,labels below
# job 0: no labels, -ve: labels at the left, +ve: labels at the right.
# fminl,fmaxl logarithms of the min and max vert values
# xmin,xmax min and max values of the horiz scale.
vlgticsminlabels = 2
vlgticsmintics = 10
#
define vlgtics {[#( job,fminl,fmaxl,xmin,xmax )
job=$1; fminl=$2; fmaxl=$3; xmin=$4; xmax=$5
#
Orig: 0,0
#
ifming = floor( fminl )
ifmaxg = -floor(-fmaxl )
fmint = 10^ifming
fmaxt = 10^ifmaxg
x = (fmaxl-fminl)*1e-6
fmine = 10^(fminl-x) # values just less than min and just greater than max
fmaxe = 10^(fmaxl+x)
# set plevel for at least 2 horiz. labels
if (ifmaxg-ifming) > 1 then { plevel = -2 } else { plevel = -1 }
for brk=0 to 1 do {
labelcount = 0
plevel += 1
ticlev = plevel
vlscan(labelcount,plevel,ticlev,ifming,ifmaxg,fmint,fmaxt,xmin,xmax,0 )
brk = (labelcount >= vlgticsminlabels)
}
# set ticlev for at least 10 minor tics
for brk=0 to 1 do {
ticcount = 0
ticlev += 1
vlscan( ticcount,plevel,ticlev,ifming,ifmaxg,fmint,fmaxt,xmin,xmax,0 )
brk = (ticcount >= vlgticsmintics)
}
# write the lines, tics and labels
if max(abs(fmine),abs(fmaxe))>1e6 then { fl = 2 } else { fl = 1 }
vlscan( labelcount,plevel,ticlev,
ifming,ifmaxg,fmint,fmaxt,xmin,xmax,fl ) with .Orig at Orig
]}
define vlscan {[#( count,plevel,ticlev,
# ifming,ifmaxg,fmine,fmaxe,xmin,xmax,prtflag )
sccount=0; scplev=$2; sctlev=$3;
ifming=$4; ifmaxg=$5; fmine=$6; fmaxe=$7; xmin=$8; xmax=$9; prtflag=$10
#
Orig: (0,0)
#
iy = ifming
for outer = 0 to 1 do {
l = 10^iy
if (iy==ifming || iy==ifmaxg || scplev < 0) then {
vlgmrk( iy,l,xmin,xmax,scplev,scplev,sctlev,sccount,0,prtflag ) \
with .Orig at Orig
}
if iy >= ifmaxg then { outer = 1 } else { outer = 0
stkx := 0
hvlgpush( l,l,0,1 )
for inner = 0 to 1 do {
if stkx <= 0 then { inner = 1 } else { inner = 0
hvlgpop( l,dl,lv,i )
r = l+dl*i
if (r>=fmine) && (r<=fmaxe) then {
vlgmrk( log(r),r,xmin,xmax,lv,scplev,sctlev,sccount,i,prtflag )\
with .Orig at Orig
}
# stack next interval this level
if (r < fmaxe) && (i <= 8 || ((lv > 0) && (i <= 9))) then {
hvlgpush( l,dl,lv,i+1 ) }
# stack first interval next level
if (lv < max(scplev,sctlev)) && (l < fmaxe) && (r > fmine) then {
hvlgpush( l+dl*(i-1),dl/10,lv+1,1 ) }
}
}
iy += 1
}}
$1 := sccount; $2 := scplev; $3 := sctlev
]}
#
define vlgmrk {[#( yl,y,xmin,xmax,lv,plevel,ticlev,count,i,prtflag )
yl=$1; y=$2; xmin=$3; xmax=$4; lv=$5; plevel=$6; ticlev=$7;
mrcount = $8; i=$9; prtflag=$10
#
Orig: (0,0)
#
herey = y2graph(yl)
icvsiz = textht
ichsiz = icvsiz*0.66
# horizontal line and label
if ((plevel<0) && (i==0)) || (lv==plevel) then {{
iy = floor( yl+0.00001 ) - max(lv,0)
if iy < -6 || iy > 6 then { iy = -7 }
if iy > 0 && iy < 7 then { iy = 0 }
digits = abs(-iy); if digits==-0 then { digits = 0 }
field = floor(log(abs(y)))+digits+1
if prtflag!=0 then {{
move to (xmin,herey)
{ line right xmax-xmin }
if prtflag==1 then { sprintf(sprintf("%%%g.%gg",field,digits),y) rjust }\
else { if prtflag==2 then {
"10" wid 2*ichsiz at Here-(3*ichsiz+textoffset,0)
sprintf("%g",yl) ht icvsiz*3/4 at last "".ne ljust } \
else { # f format
sprintf(sprintf("%%%g.%gf",field,digits),x) rjust }}
}}
mrcount += 1
}} \
else { if lv==ticlev then {# draw tics left and right
if prtflag!=0 then {
line from (xmin,herey) right icvsiz
line from (xmax,herey) left icvsiz }
mrcount += 1 }
}
$8 := mrcount
]}
define plotlibbox { box wid $1 ht $1 fill $2 }
define plotlibcircle { circle diam $1 fill $2 }
define plotlibtriangle { [line right $1 then up $1*sqrt(3) left $1 \
then down $1*sqrt(3) left $1 then to Here fill $2] }
define getminmax {#( Array, npts, xmin,xmax,ymin,ymax )
$3 = $1[1].x; $4 = $3; $5 = $1[1].y; $6 = $5
for j=2 to npts do { $3=min($3,$1[j].x); $4=max($4,$1[j].x)
$5=min($5,$1[j].y); $6=max($6,$1[j].y) }
}
# graphb {[#( grwid,grht,xvals,yvals,ncurvs,npts,mode )
# Multiple graph plotter, linear scales.
# grwid,grht graph box size; labels are exterior to the box
# xvals array containing x coordinates xvals[i]...xvals[npts]
# yvals matrix containing ncurvs rows of y coordinates
# with each curve corresponding to a row
# If ncurvs = 1 this is just a 1-subscript array.
# ncurvs Number of curves in rows 1, ... ncurves
# npts number of points per curve; i.e. number of columns of yvals.
# mode = a*10+b b=0: no curve label numbers; b=1: curve label numbers;
# a=0: draw curves, box, tics, and tic values
# a=1: draw curves only (for overlay)
define graphb {[#( grwid,grht,xvals,yvals,ncurvs,npts,mode )
grwid=$1; grht=$2; ncurvs=$5; npts=$6; mode=$7
# min and max values
xmin = $3[1]; xmax = xmin
for j=2 to npts do { xmin=min(xmin,$3[j]); xmax=max(xmax,$3[j]); }
ymin = 1e100; ymax = -ymin
for i=1 to ncurvs do {
if ncurvs==1 then {
for j = 1 to npts do { ymin=min(ymin,$4[j]); ymax=max(ymax,$4[j]) } } \
else {
for j = 1 to npts do { ymin=min(ymin,$4[i,j]); ymax=max(ymax,$4[i,j]) }}}
# scale factors, formats and tic intervals.
scalop( xmin,xmax,xming,xmaxg,skx,ixmin,ixmax,xdig,xpow )
scalop( ymin,ymax,yming,ymaxg,sky,iymin,iymax,ydig,ypow )
#
# invis outer box
Box: box invis wid grwid ht grht with .sw at (0,0)
define x2graph { ($1-xming)/(xmaxg-xming)*grwid }
define y2graph { ($1-yming)/(ymaxg-yming)*grht }
# plot curves
if ncurvs==1 then {
P0: ( x2graph($3[1]), y2graph($4[1]) )
spline 0.55 from P0 to P0
for j = 2 to npts do { continue to (x2graph($3[j]),y2graph($4[j])) } } \
else {
for i = 1 to ncurvs do {
P0: ( x2graph($3[1]), y2graph($4[i,1]) )
spline 0.55 from P0 to P0
for j = 2 to npts do { continue to (x2graph($3[j]),y2graph($4[i,j])) } }
}
# scale at left & bottom
if int(mode/10+0.5)==0 then {
lt0 = linethick; linethick /= 2; txht = textht
tic = min(grwid/20,grht/20)
vaxtics(-1, tic,txht,iymin,iymax,sky,y2graph,ydig,ypow) with .S at Box.sw
vaxtics( 0,-tic,txht,iymin,iymax,sky,y2graph,ydig,ypow) with .S at Box.se
haxtics(-1, tic,txht,ixmin,ixmax,skx,x2graph,xdig,xpow) with .W at Box.sw
haxtics( 0,-tic,txht,ixmin,ixmax,skx,x2graph,xdig,xpow) with .W at Box.nw
}
# write symbols on curves
if pmod(mode,10) == 1 then {
kmver = textht; kmhor = kmver/2
dpiflatex( command "{\scriptsize";, tx0=textht; textht *= 2/3; )
markincr = int(1.5+npts/min(ixmax-ixmin,iymax-iymin))
ulim = Box.n.y-textoffset-textht/2
blim = Box.s.y+textoffset+textht/2
rlim = Box.e.x-textoffset-textht/2
flim = Box.w.x+textoffset+textht/2
for i = 1 to ncurvs do {
j = markincr+i-1
for lp=1 to 2 do {
x = max(min(x2graph($3[j]),rlim),flim)
if ncurvs==1 then { y = max(min(y2graph($4[j]),ulim),blim) } \
else { y = max(min(y2graph($4[i,j]),ulim),blim) }
sprintf("%g",i) at (x,y)
j += markincr
if j < npts then {lp=1}}
}
dpiflatex( command "}";, textht = tx0; )
}
if int(mode/10+0.5)==0 then { box wid grwid ht grht at Box; linethick = lt0; }
]}
# dpiflatex(latexcommands,rawcommands)
define dpiflatex { if dpicopt == optPGF || dpicopt == optPSTricks \
|| dpicopt == optPSfrag || dpicopt == optTeX then { $1 } else { $2 } }
# scalop {[ #( xmin,xmax, xming,xmaxg,sfact,ixmin,ixmax,digits,power )
# Optimal scale factors and output format for linear graph scaling.
# A maximum of 6 printed significant digits is assumed, and at least
# five but not more than 11 tic-marks on the axis are assumed.
# xmin, xmax input min and max values of the data.
# xming,xmaxg output min and max graph window values,
# where xming <= xmin, and xmaxg >= xmax .
# sfact output integer-to-graph scale factor:
# xming = sfact*ixmin and xmaxg = sfact*ixmax
# ixmin,ixmax output integers for drawing tic marks.
# digits output number n of digits after the decimal in %8.nf for tics
# power data values = scale values * 10^power , so if
# power != 0 then both the tic values and this
# factor should be written on the graph scale.
mntics = 5 # minimum number of tics
#
define scalop {
$3=0; $4=0; $5=0; $6=0; $7=0; $8=0; $9=0;
[
# input values
xmin = $1; xmax = $2
#
xmaxg_ = -1; xming_ = 1
if xmax<xmin then { tmp = xmax; xmax = xmin; xmin = tmp }
# check zero effective graph range.
xfact = max( abs(xmax),abs(xmin) )
xming_ = xfact + (xmax-xmin)
if xming_ != xfact then { xmaxt = xmax; xmint = xmin } \
else { if xmax > 0 then { xmaxt = xmax+xmax; xmint = 0. } \
else { if xmin !=0 then { xmaxt = 0; xmint = xmin+xmin } \
else { xmaxt = 1; xmint = -1 }}}
# integer part of log(range)
kx = floor(log(xmaxt-xmint))
# scale factor to make 1 < range < 10
xfact = exp(-kx)
# scaled max and min for 1 < range < 10
xmaxg_ = xmaxt*xfact
xming_ = xmint*xfact
sk[0] = 2; sk[1] = 1; sk[2] = 0.5; sk[3] = 0.2
# sfact_ = factor to ensure at least 5 tics
# ixmax_ >= scaled maximum plotted value,
# ixmin_ <= scaled minimum plotted value.
for i=1 to 3 do {
sfact_ = sk[i]
ixmax_ = -floor(-xmaxg_/sfact_)
ixmin_ = floor( xming_/sfact_)
if ixmax_-ixmin_ >= mntics then {i=3}
}
# digits_ = sig figs after the decimal.
digits_ = -kx
if sfact_!=1 then {digits_ = digits_+1}
power_ = 0
# final scale factor graph vals to data.
sfact_ = sfact_*exp(kx)
xming_ = ixmin_*sfact_
xmaxg_ = ixmax_*sfact_
# largest written value:
xwm = max(abs(xmaxg_),abs(xming_))
xkl = log(xwm)
# make sure values will fit.
if (digits_ == 6 && xming_ < 0) || (digits_ >= 7) then {
power_ = -floor(xkl)
digits_ = -kx-power_+1 }
force = 1
if digits_ < 0 then {
digits_ = 0
xpmax = 1.0e6
if xwm < xpmax then { force = 0 } \
else { power_ = -floor(xkl); digits_ = -power_-kx+1 }
}
# force fit
if force then {
for i=1 to 2 do { xpmax = exp(6-digits_)
if xwm*exp(power_) >= xpmax then { digits_ = digits_-1
if digits_ > 0 then { i = 1 } else { i = 2 } } }
}
$3 := xming_; $4 := xmaxg_;
$5 := sfact_; $6 := ixmin_; $7 := ixmax_; $8 := abs(digits_); $9 := power_;
]}
# haxtics {[#( job,ticlen,charht,ixmin,ixmax,skx,macroname,xdig,xpow)
# Horizontal tics and label routine, linear scale.
# Vertical tics from ixmin*skx to ixmax*skx with labels above or below
#
# job 0: no labels, +ve: labels above, -ve: labels below.
# ticlen tic mark length; -ve to write down
# charht height of scale numbers
# ixmax max x coord integer for i=ixmax to ixmin { draw tic }
# ixmin min x coord integer
# skx scale factor, x coord integer to x value
# macroname input macro to convert x value to drawn value: macroname(x)
# xdig digits after the decimal
# xpow xpow is the exponent for the scales
#
define haxtics {[
job=$1; ticlen=$2; charht=$3; ixmin=$4; ixmax=$5; skx=$6;
xdig=$8; xpow=$9
#
W: ($7(ixmin*skx),0)
E: ($7(ixmax*skx),0)
Orig: ($7(0),0)
m2 = 0
for ix=ixmin to ixmax do {
x = ix * skx
line from ($7(x),0) to ($7(x),ticlen)
if job < 0 then { move to last line.s } else { move to last line.n }
if( job!=0 ) then {
if x==0 then { field = 1 } \
else {
field = floor(log(abs(x*10^xpow)))+xdig+1
if x<0 then {field+=1} }
vjog = (field > 50/(ixmax-ixmin))
if m2 && vjog then { move to Here + (0,charht*sign(job)) }
move to Here+(0,(charht/2+textoffset)*sign(job))
if (x==0) && (xpow==0) then { "0" } else {
{ sprintf(sprintf("%%%g.%gf",field,xdig),x*exp(xpow)) }
}
m2 = !m2
} }
if( xpow!=0 && job!=0 ) then { # write exponent
move to (W.x/4+E.x*3/4,3*charht*sign(job))
if vjog then { move to Here + (0,charht*sign(job)) }
{ "X 10" ht charht wid 4*charht*0.66
sprintf("-%g",xpow) at last "".e above ljust }
}
]}
# bodepl ( xsiz,ysiz, npts,logf,dbgain,phase, job )
#
# xsiz,ysiz plot box width and height
# npts the number of frequency values plotted on horiz log scale
# logf vector of length npts containing values of log(freq)
#
# dbgain vector containing npts magnitudes to be plotted
#
# phase array containing npts columns of phases to be plotted
# job blank or 0 = plot dB gain and phase on the same graph
# 1 = plot the gain graph
# 2 = plot the phase graph
#
define bodepl {[
# ( xsiz,ysiz, npts,logf,dbgain,phase,job )
xsiz=$1; ysiz=$2; npts=$3
if "$7"=="" then { job = 0 } else { job = $7 }
ltt = linethick; linethick *= 0.5
#
Box: box invis wid xsiz ht ysiz with .sw at (0,0)
# find the min and max values
fminl = $4[1]; fmaxl = fminl
gmin = $5[1]; gmax = gmin
pmin = $6[1]; pmax = pmin
for j = 1 to npts do {
fminl = min(fminl,$4[j]); fmaxl = max(fmaxl,$4[j])
gmin = min(gmin,$5[j]); gmax = max(gmax,$5[j])
pmin = min(pmin,$6[j]); pmax = max(pmax,$6[j]) }
# gain and phase scale factors and formats
scalop( gmin,gmax, gming,gmaxg,skg,igmin,igmax,gdigits,gpower )
scalop( pmin,pmax, pming,pmaxg,skp,ipmin,ipmax,pdigits,ppower )
if job != 0 then { xf = 1 } else { xf = (ipmax-ipmin)/(igmax-igmin) }
if xf > 1 then { ysizg = ysiz/xf } else { ysizg = ysiz }
if xf < 1 then { ysizp = ysiz*xf } else { ysizp = ysiz }
#
define f2graph { ($1-fminl)/(fmaxl-fminl)*xsiz }
define y2graph { ($1-gming)/(gmaxg-gming)*ysiz }
define g2graph { ($1-gming)/(gmaxg-gming)*ysizg }
define p2graph { ($1-pming)/(pmaxg-pming)*ysizp }
# gain curves and labels
if (job==0) || (job==1) then {
move to (f2graph($4[1]),g2graph($5[1]))
spline 0.55 thick ltt from Here to Here
for j=2 to npts do { continue to (f2graph($4[j]),g2graph($5[j])) }
#
if xf<=1 then { tic = xsiz } else { tic = 0 }
vaxtics(-1,tic,0.06,igmin,igmax,skg,g2graph,gdigits,gpower) with .S at Box.sw
iy = floor((igmax+igmin)/2)+0.5
"(dB)" at (-30/72*scale,g2graph(iy*skg))
}
# phase curves and labels
if (job==0) || (job==2) then {
move to (f2graph($4[1]),p2graph($6[1]))
spline 0.55 thick ltt from Here to Here
for j=2 to npts do { continue to (f2graph($4[j]),p2graph($6[j])) }
}
if job==0 then {# labels on right
if xf > 1 then { tic = xsiz } else { tic = 0 }
vaxtics( 1,-tic,0.06,ipmin,ipmax,skp,p2graph,pdigits,ppower) \
with .S at Box.se
iy = floor((ipmax+ipmin)/2)+0.5
"(deg)" at ( Box.e.x+40/72*scale,p2graph(iy*skp))
} \
else { if job==2 then {# labels on left
vaxtics(-1,xsiz,0.06,ipmin,ipmax,skp,p2graph,pdigits,ppower) \
with .S at Box.sw
iy = floor((ipmax+ipmin)/2)+0.5
"(deg)" at ( Box.w.x-40/72*scale,p2graph(iy*skp))
}}
# horizontal log scale
hlgtics( fminl,fmaxl,0,ysiz ) with .Orig at (0,0)
"Frequency" at (f2graph((fminl+fmaxl)/2),-30/72*scale)
#
box wid Box.wid ht Box.ht at Box
]}
# hlgtics {[#( fminl,fmaxl,ymin,ymax )
# horizontal logarithmic tics,labels below
# fminl,fmaxl logarithms of the min and max horizontal values
# ymin,ymax min and max values of the ordinate.
hlgticsminlabels = 2
hlgticsmintics = 10
#
define hlgtics {[#( fminl,fmaxl,ymin,ymax )
fminl=$1; fmaxl=$2; ymin=$3; ymax=$4
#
Orig: 0,0
#
ifming = floor( fminl )
ifmaxg = -floor(-fmaxl )
x = (fmaxl-fminl)*1e-6
fmine = 10^(fminl-x) # values just less than min and just greater than max
fmaxe = 10^(fmaxl+x)
# set plevel for at least 2 horiz. labels
if (fmaxl-fminl) > 1 then { plevel = -2 } else { plevel = -1 }
for brk=0 to 1 do {
labelcount = 0
plevel += 1
ticlev = plevel
hlscan(labelcount,plevel,ticlev, ifming,ifmaxg,fmine,fmaxe,ymin,ymax,0 )
brk = (labelcount >= hlgticsminlabels)
}
# set ticlev for at least 10 minor tics
for brk=0 to 1 do {
ticcount = 0
ticlev += 1
hlscan( ticcount,plevel,ticlev, ifming,ifmaxg,fmine,fmaxe,ymin,ymax,0 )
brk = (ticcount >= hlgticsmintics)
}
# write the lines, tics and labels
hlscan( labelcount,plevel,ticlev,\
ifming,ifmaxg,fmine,fmaxe,ymin,ymax,1 ) with .Orig at Orig
]}
define hvlgpush {
hlgstk[stkx+1] := $1
hlgstk[stkx+2] := $2
hlgstk[stkx+3] := $3
hlgstk[stkx+4] := $4
stkx +=4 }
define hvlgpop { stkx -=4
$4 = hlgstk[stkx+4]
$3 = hlgstk[stkx+3]
$2 = hlgstk[stkx+2]
$1 = hlgstk[stkx+1] }
for i=1 to 4*15 do { hlgstk[i] = 0 }
stkx = 0
# recursive scan of the horiz plot interval to level ticlev
define hlscan {[#( count,plevel,ticlev,
# ifming,ifmaxg,fmine,fmaxe,ymin,ymax,flag )
sccount=0; scplev=$2; sctlev=$3;
ifming=$4; ifmaxg=$5; fmine=$6; fmaxe=$7; ymin=$8; ymax=$9; flag=$10
#
Orig: (0,0)
# horizontal coord of last written label
lastx[1] = -1e6; lastx[2] = -1e6
ix = ifming
for outer = 0 to 1 do {
l = 10^ix
if (ix==ifming || scplev < 0) && (l>=fmine) && (l<=fmaxe) then {
hlgmrk( ix,l,ymin,ymax,scplev,scplev,sctlev,lastx,sccount,0,flag ) \
with .Orig at Orig
}
if ix >= ifmaxg then { outer = 1 } else { outer = 0
stkx := 0
hvlgpush( l,l,0,1 )
for inner = 0 to 1 do {
if stkx <= 0 then { inner = 1 } else { inner = 0
hvlgpop( l,dl,lv,i )
r = l+dl*i
if (r>=fmine) && (r<=fmaxe) then {
hlgmrk( log(r),r,ymin,ymax,lv,scplev,sctlev,lastx,sccount,i,flag )\
with .Orig at Orig
}
# stack next interval this level
if (r < fmaxe) && (i <= 8 || ((lv > 0) && (i <= 9))) then {
hvlgpush( l,dl,lv,i+1 ) }
# stack interval next level
if (lv < max(scplev,sctlev)) && (l < fmaxe) && (r > fmine) then {
hvlgpush( l+dl*(i-1),dl/10,lv+1,1 ) }
}
}
ix += 1
}}
$1 := sccount; $2 := scplev; $3 := sctlev
]}
#
define hlgmrk {[#( xl,x,ymin,ymax,lv,plevel,ticlev,lastx,count,i,prtflag )
xl=$1; x=$2; ymin=$3; ymax=$4; lv=$5; plevel=$6; ticlev=$7;
mrcount = $9; i=$10; prtflag=$11
#
# Count numerical labels and optionally draw tics and labels
#
Orig: (0,0)
#
herex = f2graph(xl)
icvsiz = textht
ichsiz = icvsiz*0.66
if prtflag!=0 then { move to (herex,ymin) }
# vertical line and label
if ((plevel<0) && (i==0)) || (lv==plevel) then {{
if prtflag!=0 then { { line up ymax-ymin } }
ix = floor( xl+0.00001 ) - max(lv,0)
if ix < -6 || ix > 6 then { ix = -7 }
if ix > 0 && ix < 7 then { ix = 0 }
digits = -ix; if digits==-0 then { digits = 0 }
field = floor(log(abs(x)))+digits+1
# shift scale number down if overlapped
labeloffset = 1
if (field+digits > 7) && (lv == plevel) then { labeldig = 4 } \
else { labeldig = field+3 }
if herex-labeldig/2*ichsiz < $8[1] then {
if prtflag!=0 then { move down icvsiz*1.3 }
labeloffset = 2
if herex-labeldig/2*ichsiz < $8[2] then {
if prtflag!=0 then { move down icvsiz*1.3 }
labeloffset = 3 } }
if labeloffset < 3 then {
if prtflag!=0 then {
if field+digits > 7 then {
if lv==plevel then {{
"10" wid 2*ichsiz at Here+(0,-icvsiz/4-textoffset) below
sprintf("%g",xl) ht icvsiz*3/4 at last "".ne ljust }} \
else {{
sprintf(sprintf("%%%g.%gg",field,digits),x) \
at Here+(0,-icvsiz/4) below }}
} \
else {{ # f format
sprintf(sprintf("%%%g.%gf",field,digits),x) \
at Here+(0,-icvsiz/4) below} }}
mrcount += 1
$8[labeloffset] := herex+(labeldig-1)*ichsiz/2
}
}} \
else { if lv==ticlev then {# draw tics top and bottom
if prtflag!=0 then {
line up icvsiz
line from (herex,ymax) down icvsiz }
mrcount += 1 }
}
$9 := mrcount
]}
define plotlib {1}
|