1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
#include "astrolib.h"
#include "fitting.h"
#ifdef WIN
#pragma warning (disable: 4018) // disable warning for comparing signed and unsigned
#pragma warning (disable: 4065) // disable warning for switch with default without case
#endif /* WIN */
/*
; create a nice string of celestial coordinates.
; ra and dec should be given in radians.
*/
char *coordstring(double ra, double dec, char *buffer) {
static double rad_to_deg = 180.0 / M_PI;
char sign = dec < 0 ? '-' : '+';
double adec = fabs(dec);
double rad = ra * rad_to_deg / 15.0;
int rah = (int)rad;
rad = (rad-rah) * 60.0;
int ram = (int)rad;
rad = (rad-ram) * 60.0;
double de = adec * rad_to_deg;
int deh = (int)de;
de = (de-deh) * 60.0;
int dem = (int)de;
de = (de-dem) * 60.0;
sprintf(buffer, "RA = %2ih %2im %5.2fs, DEC = %c%2id %2i' %4.1f\"", rah, ram, rad, sign, deh, dem, de);
return buffer;
}
double ten(const double dd, const double mm, const double ss) {
double result;
result = fabs(dd) + fabs(mm) / 60.0 + fabs(ss) / 3600;
if ((dd < 0.0) || (mm < 0.0) || (ss < 0.0)) result *= -1.0;
return result;
}
void premat(const double equinox1, const double equinox2, double *r) {
static double deg_to_rad = M_PI / 180.0;
static double sec_to_rad = deg_to_rad / 3600;
double T = 0.001*( equinox2 - equinox1);
double ST = 0.001*( equinox1 - 2000.0);
// Compute 3 rotation angles
double A = sec_to_rad * T * (23062.181 + ST*(139.656 +0.0139*ST) + T*(30.188 - 0.344*ST+17.998*T));
double B = sec_to_rad * T * T * (79.280 + 0.410*ST + 0.205*T) + A;
double C = sec_to_rad * T * (20043.109 - ST*(85.33 + 0.217*ST) + T*(-42.665 - 0.217*ST -41.833*T));
double sina = sin(A); double sinb = sin(B); double sinc = sin(C);
double cosa = cos(A); double cosb = cos(B); double cosc = cos(C);
r[0] = cosa*cosb*cosc-sina*sinb;
r[1] = sina*cosb+cosa*sinb*cosc;
r[2] = cosa*sinc;
r[3] = -cosa*sinb-sina*cosb*cosc;
r[4] = cosa*cosb-sina*sinb*cosc;
r[5] = -sina*sinc;
r[6] = -cosb*sinc;
r[7] = -sinb*sinc;
r[8] = cosc;
}
void precess(double *ra, double *dec, const double equinox1, const double equinox2) {
static double deg_to_rad = M_PI/180;
double ra_rad = *ra * deg_to_rad;
double dec_rad = *dec * deg_to_rad;
double a = cos(dec_rad);
double x[3];
x[0] = a*cos(ra_rad);
x[1] = a*sin(ra_rad);
x[2] = sin(dec_rad);
// Use PREMAT function to get precession matrix from Equinox1 to Equinox2
double r[9];
premat(equinox1, equinox2, r);
double x2[3];
x2[0] = r[0] * x[0] + r[3] * x[1] + r[6] * x[2];
x2[1] = r[1] * x[0] + r[4] * x[1] + r[7] * x[2];
x2[2] = r[2] * x[0] + r[5] * x[1] + r[8] * x[2];
ra_rad = atan2(x2[1],x2[0]);
dec_rad = asin(x2[2]);
*ra = ra_rad ; *dec = dec_rad;
if (*ra < 0) *ra += 2.0*M_PI;
char buffer[100];
dp_output("Precessed coords are: %s\n", coordstring(*ra, *dec, buffer));
}
void precess(double rah, double ram, double ras, double ded, double dem, double des, const double equinox1, const double equinox2) {
double ra = ten(rah, ram, ras) * 15.0;
double dec = ten(ded, dem, des);
precess(&ra, &dec, equinox1, equinox2);
}
bool find(Fits &image, Fits &result, double hmin, double fwhm, Fits &roundlim, Fits &sharplim, bool PRINT) {
long i, _i;
int maxbox = 13; // ;Maximum size of convolution box in pixels
if (image.Naxis(0) != 2) {
dp_output("find: ERROR - Image array (first parameter) must be 2 dimensional\n");
return FALSE;
}
int n_x = image.Naxis(1);
int n_y = image.Naxis(2);
dp_output("Input Image Size is %i by %i\n", n_x, n_y);
double radius = 0.637*fwhm; //;Radius is 1.5 sigma
if (radius < 2.001) radius = 2.001;
double radsq = radius * radius;
int nhalf = int(radius);
if (nhalf > (maxbox-1)/2) nhalf = (maxbox-1) / 2;
int nbox = 2*nhalf + 1; // ;# of pixels in side of convolution box
int middle = nhalf; // ;Index of central pixel
int lastro = n_x - nhalf;
int lastcl = n_y - nhalf;
double sigsq = (fwhm / 2.35482) * (fwhm / 2.35482);
Fits mask;
mask.create(nbox, nbox, I1); // ;Mask identifies valid pixels in convolution box
Fits c;
c.create(nbox, nbox); // ;c will contain Gaussian convolution kernel
Fits dd, dd2, w;
dd.create(nbox - 1, 1);
for (_i = 0; _i < nbox-1; _i++) dd.r4data[_i] = _i + 0.5 - middle;
dd2.copy(dd);
dd2.mul(dd);
w.copy(dd);
for (_i = 0; _i < nbox-1; _i++) w.r4data[_i] = 1.0 - 0.5 * (fabs(w.r4data[_i]) - 0.5) / (middle - 0.5);
int ir = (nhalf-1);
if (ir < 1) ir = 1;
Fits row2;
row2.create(nbox, 1);
for (_i = 0; _i < nbox; _i++) row2.r4data[_i] = (_i - nhalf) * (_i - nhalf);
Fits temp;
for (i = 0; i <= nhalf; i++) {
temp.copy(row2);
temp.add((float)i*(float)i);
for (_i = 0; _i < nbox; _i++) {
c.r4data[c.C_I(_i,nhalf-i)] = temp[_i];
c.r4data[c.C_I(_i,nhalf+i)] = temp[_i];
}
}
for (_i = 0; _i < c.Nelements(); _i++) {
if (c.r4data[_i] <= radsq) mask.i1data[_i] = 1;
}
int pixels = 0;
Fits good;
good.create((int)mask.get_flux(), 1, I4);
for (_i = 0; _i < c.Nelements(); _i++) {
if (mask.i1data[_i] != 0) {
good.i4data[pixels] = _i;
pixels++;
}
}
// Value of c are now equal to distance to center
c *= mask;
// Make c into a Gaussian kernel
for (_i = 0; _i < pixels; _i++) c.r4data[good.i4data[_i]] = exp(-0.5 * c.r4data[good.i4data[_i]] / sigsq);
double sumc = c.get_flux();
Fits c1;
c1.copy(c);
c1.mul(c);
double sumcsq = c1.get_flux() - sumc * sumc / pixels;
sumc = sumc/pixels;
for (_i = 0; _i < pixels; _i++) c.r4data[good.i4data[_i]] = (c.r4data[good.i4data[_i]] - sumc)/sumcsq;
c1.copy(row2);
for (_i = 0; _i < c1.Nelements(); _i++) c1.r4data[_i] = exp(-.5*c1.r4data[_i]/sigsq);
double sumc1 = c1.get_flux()/nbox;
Fits cc;
cc.copy(c1);
cc.mul(c1);
double sumc1sq = cc.get_flux() - sumc1;
for (_i = 0; _i < c1.Nelements(); _i++) c1.r4data[_i] = (c1.r4data[_i]-sumc1)/sumc1sq;
sumc = w.get_flux(); // ;Needed for centroid computation
double _f = 0.0;
for (_i = 0; _i < pixels; _i++) _f += c.r4data[good.i4data[_i]] * c.r4data[good.i4data[_i]];
dp_output("RELATIVE ERROR computed from FWHM2: %f\n", sqrt(_f));
dp_output("Beginning convolution of image\n");
Fits h;
int _x, _y;
h.copy(image);
h.convol(c); // ;Convolve image with kernel "c"
for (_y = 0; _y < h.Naxis(2); _y++) {
for (_x = 0; _x <= nhalf - 1; _x++) h.r4data[h.C_I(_x, _y)] = 0.0;
for (_x = n_x - nhalf; _x <= n_x - 1; _x++) h.r4data[h.C_I(_x, _y)] = 0.0;
}
for (_x = 0; _x < h.Naxis(1); _x++) {
for (_y = 0; _y <= nhalf - 1; _y++) h.r4data[h.C_I(_x, _y)] = 0.0;
for (_y = n_y - nhalf; _y <= n_y - 1; _y++) h.r4data[h.C_I(_x, _y)] = 0.0;
}
dp_output("Finished convolution of image\n");
mask.i1data[mask.C_I(middle,middle)] = 0; //From now on we exclude the central pixel
pixels--; //so the number of valid pixels is reduced by 1
good.create((int)mask.get_flux(), 1, I4);
pixels = 0;
for (_i = 0; _i < c.Nelements(); _i++) {
if (mask.i1data[_i] != 0) {
good.i4data[pixels] = _i;
pixels++;
}
} //"good" identifies position of valid pixels
Fits xx, yy, offset; // x and y coordinate of valid pixels relative to the center
xx.copy(good);
yy.copy(good);
offset.copy(good);
for (_i = 0; _i < xx.Nelements(); _i++) {
xx.i4data[_i] = (good.i4data[_i] % nbox) - middle;
yy.i4data[_i] = (int)(good.i4data[_i] / nbox) - middle;
offset.i4data[_i] = yy.i4data[_i] * n_x + xx.i4data[_i];
}
int nfound;
Fits index, index1, stars;
//SEARCH: // Threshold dependent search begins here
index.dpGE(h, hmin); // Valid image pixels are greater than hmin
nfound = index.mask2index();
for (_i = 0; _i < nfound; _i++) index.i4data[_i]--;
if (nfound == 0) { // Any maxima found?
dp_output("ERROR - No maxima exceed input threshold of %f\n", hmin);
return FALSE;
}
Fits _h, __h;
for (i = 0; i < pixels; i++) {
_h.create(index.Nelements(), 1);
__h.copy(_h);
dp_output("%i %i\n", index.Nelements(), h.Nelements());
for (_i = 0; _i < index.Nelements(); _i++) {
_h.r4data[_i] = h.r4data[index.i4data[_i]];
__h.r4data[_i] = h.r4data[index.i4data[_i] + offset.i4data[i]];
}
stars.dpGE(_h, __h);
nfound = stars.mask2index();
for (_i = 0; _i < nfound; _i++) stars.i4data[_i]--;
if (nfound <= 0) { // Do valid local maxima exist?
dp_output("ERROR - No maxima exceed input threshold of %f\n", hmin);
return FALSE;
}
index1.create(nfound, 1, I4);
for (_i = 0; _i < nfound; _i++) index1.i4data[_i] = index.i4data[stars.i4data[_i]];
index.copy(index1);
}
Fits ix, iy;
ix.create(index.Nelements(), 1, I4);
iy.copy(ix);
for (_i = 0; _i < index.Nelements(); _i++) {
ix.i4data[_i] = index.i4data[_i] % n_x; // X index of local maxima
iy.i4data[_i] = index.i4data[_i] / n_x; // Y index of local maxima
}
int ngood = index.Nelements();
dp_output("%i local maxima located above threshold\n", ngood);
int nstar = 0, badround = 0, badsharp = 0, badcntrd = 0;
result.create(5, ngood);
Fits derivat, derivat2;
double d, sharp1, dx, dy, around, sumd, sumxd, sumxsq, xcen, ycen;
// Loop over star positions; compute statistics
for (i = 0; i < ngood; i++) {
temp.create(nhalf * 2 + 1, nhalf * 2 + 1);
_i = 0;
for (_x = ix[i] - nhalf; _x <= ix[i] + nhalf; _x++) {
for (_y = iy[i] - nhalf; _y <= iy[i] + nhalf; _y++) {
temp.r4data[_i] = image.ValueAt(image.C_I(_x, _y));
_i++;
}
}
d = h.r4data[h.C_I(ix[i],iy[i])]; //"d" is actual pixel intensity
// Compute Sharpness statistic
_h.copy(temp);
_h.mul(mask);
sharp1 = (temp.r4data[temp.C_I(middle,middle)] - (_h.get_flux())/pixels)/d;
if ((sharp1 < sharplim[0]) || (sharp1 > sharplim[1])) {
badsharp++;
goto REJECT; // ;Does not meet sharpness criteria
}
// Compute Roundness statistic
dx = dy = 0.0;
_h.collapse(temp, 1);
_h.mul(c1);
dx = _h.get_flux();
_h.collapse(temp, 2);
_h.mul(c1);
dy = _h.get_flux();
if ((dx <= 0) || (dy <= 0)) {
badround++;
goto REJECT; // ;Cannot compute roundness
}
around = 2*(dx-dy) / ( dx + dy ); // ;Roundness statistic
if ((around < roundlim[0]) || (around > roundlim[1])) {
badround++;
goto REJECT; // ;Does not meet roundness criteria
}
// Find X centroid
derivat.copy(temp);
derivat.wrap(0,-1,0);
derivat.sub(temp);
derivat.extractRange(derivat2,middle-ir+1,middle+ir+1, 1,nbox-1, -1, -1);
derivat.copy(derivat2);
derivat2.collapse(derivat, 1);
derivat.copy(derivat2);
derivat.mul(w);
sumd = derivat.get_flux();
derivat.mul(dd);
sumxd = derivat.get_flux();
derivat.copy(w);
derivat.mul(dd2);
sumxsq = derivat.get_flux();
if (sumxd >= 0.0) {
badcntrd++;
goto REJECT; // ;Cannot compute X centroid
}
dx =sumxsq*sumd/(sumc*sumxd);
if (fabs(dx) > nhalf) {
badcntrd++;
goto REJECT; // ;X centroid too far from local X maxima
}
xcen = ix[i]-dx; // ;Convert back to big image coordinates
// Find Y centroid
derivat.copy(temp);
derivat.wrap(-1,0,0);
derivat.sub(temp);
derivat.extractRange(derivat2, 1,nbox-1,middle-ir+1,middle+ir+1, -1, -1);
derivat.copy(derivat2);
derivat2.collapse(derivat, 2);
derivat.copy(derivat2);
derivat.mul(w);
sumd = derivat.get_flux();
derivat.mul(dd);
sumxd = derivat.get_flux();
derivat.copy(w);
derivat.mul(dd2);
sumxsq = derivat.get_flux();
if (sumxd >= 0.0) {
badcntrd++;
goto REJECT; // ;Cannot compute X centroid
}
dy =sumxsq*sumd/(sumc*sumxd);
if (fabs(dy) > nhalf) {
badcntrd++;
goto REJECT; // ;X centroid too far from local X maxima
}
ycen = iy[i]-dy; // ;Convert back to big image coordinates
// This star has met all selection criteria. Print out and save results
result.r4data[result.C_I(0, nstar)] = xcen + 1.0;
result.r4data[result.C_I(1, nstar)] = ycen + 1.0;
result.r4data[result.C_I(2, nstar)] = d;
result.r4data[result.C_I(3, nstar)] = sharp1;
result.r4data[result.C_I(4, nstar)] = around;
if (PRINT) {
if (nstar == 0) dp_output(" STAR X Y FLUX SHARP ROUND\n");
dp_output("%7i %8.1f %8.1f %9.1f %9.2f %9.2f\n", nstar+1, xcen+1.0, ycen+1.0, d, sharp1, around);
}
nstar++;
REJECT: ;
}
dp_output(" No. of sources rejected by SHARPNESS criteria: %i\n", badsharp);
dp_output(" No. of sources rejected by ROUNDNESS criteria: %i\n", badround);
dp_output(" No. of sources rejected by CENTROID criteria: %i\n", badcntrd);
if (nstar > 0) result.resize(5, nstar+1);
return TRUE;
}
void abszissaGenerate(Fits &values, const Fits &data, int axis) {
unsigned long i;
double crval, crpix, cdelt;
values.create(data.Naxis(axis), 1, R8);
crval = data.getCRVAL(axis);
crpix = data.getCRPIX(axis);
cdelt = data.getCDELT(axis);
for (i = 1; i <= data.Naxis(axis); i++) {
values.r8data[i-1] = crval + ((double)i - crpix) * cdelt;
}
}
bool fitcontinuum(Fits &cont, const Fits &x, const Fits &y) {
Fits _err, cont2, fitter, newy, newx;
double deviation;
unsigned int i, j;
_err.create(x.Naxis(1), 1, R8);
newy.copy(_err);
newx.copy(_err);
_err = 1.0;
polyfit1d(fitter, x, y, _err, 1);
cont.copy(x);
cont *= fitter.ValueAt(1);
cont += fitter.ValueAt(0);
cont2.copy(y);
cont2 -= cont;
cont2.cblank();
deviation = cont2.get_meddev();
j = 0;
for (i = 0; i < x.Nelements(); i++) {
if (fabs(y.ValueAt(i) - cont.ValueAt(i)) < deviation) {
j++;
newy.setValue(y.ValueAt(i), j, 1);
newx.setValue(x.ValueAt(i), j, 1);
}
}
if (j < 10) {
cont = 0.0;
return FALSE;
} else {
newx.resize(j);
newy.resize(j);
_err.resize(j);
polyfit1d(fitter, newx, newy, _err, 2);
cont.copy(x);
cont2.copy(x);
cont2 *= cont2;
cont2 *= fitter.ValueAt(2);
cont *= fitter.ValueAt(1);
cont += fitter.ValueAt(0);
cont += cont2;
}
return TRUE;
}
/*
cross-correlate an object with a template.
The object and the template are rebinned to the same (smallest) dispersion
and clipped to the overlapping spectral region.
The variable option defines what should be done before
doing the cross-correlation:
option & 1: fit a continuum to the object and subtract
option & 2: fit a continuum to the template and subtract
Those values can be or'ed to perform both operations.
*/
bool fxcor(Fits &result, Fits &object, const Fits &templat, int option) {
Fits xt, xo, yt, yo, x, cont;
double xmin, xmax, xdelt;
// unsigned long i;
int objmin, objmax;
xdelt = templat.getCDELT(1);
if (object.getCDELT(1) > xdelt) xdelt = object.getCDELT(1);
abszissaGenerate(xt, templat, 1);
abszissaGenerate(xo, object, 1);
xmin = xt.r8data[0];
if (xo.r8data[0] > xmin) xmin = xo.r8data[0];
xmax = xt.r8data[xt.Nelements() - 1];
if (xo.r8data[xo.Nelements() - 1] < xmax) xmax = xo.r8data[xo.Nelements() - 1];
yt.copy(templat);
yt.norm();
yt.rebin1d(xmin, xmax, xdelt);
objmin = (int)(object.getCRPIX(1) + (xmin - object.getCRVAL(1)) / object.getCDELT(1) + 0.5);
if (objmin < 1) objmin = 1;
objmax = (int)(object.getCRPIX(1) + (xmax - object.getCRVAL(1)) / object.getCDELT(1) + 0.5);
if (objmax > object.Naxis(1)) objmax = object.Naxis(1);
object.extractRange(yo, objmin, objmax, 1, 1, 1, 1);
yo.norm();
yo.rebin1d(xmin, xmax, xdelt);
abszissaGenerate(x, yo, 1);
if (option & 1) { // continuum subtract object
if (!fitcontinuum(cont, x, yo)) return FALSE;
yo -= cont;
}
if (option & 2) { // continuum subtract template
if (!fitcontinuum(cont, x, yt)) return FALSE;
yt -= cont;
}
result.copy(yt);
result.correl_real(yo);
result.reass();
return TRUE;
}
bool correlmap(Fits &result, Fits &cube, const Fits &templat, int method) {
long x, y;
int dispersionaxis = 3;
double xmin, xmax, xdelt;
Fits spectrum, correlation, xt, xo, yt, cont;
int objmin, objmax;
if (cube.Naxis(0) != 3) return FALSE;
result.create(cube.Naxis(1), cube.Naxis(2), R4);
dpProgress(-cube.Naxis(1), (const char *)("correlmap"));
// find out inclusive spectral range of object and template and minimum dispersion
xdelt = templat.getCDELT(1);
if (cube.getCDELT(dispersionaxis) > xdelt) xdelt = cube.getCDELT(dispersionaxis);
abszissaGenerate(xt, templat, 1);
abszissaGenerate(xo, cube, dispersionaxis);
xmin = xt.r8data[0];
if (xo.r8data[0] > xmin) xmin = xo.r8data[0];
xmax = xt.r8data[xt.Nelements() - 1];
if (xo.r8data[xo.Nelements() - 1] < xmax) xmax = xo.r8data[xo.Nelements() - 1];
// prepare template: normalize, rebin, and continuum subtract
yt.copy(templat);
yt.norm();
yt.rebin1d(xmin, xmax, xdelt);
abszissaGenerate(xt, yt, 1);
if (!fitcontinuum(cont, xt, yt)) return FALSE;
yt -= cont;
// find out range for object
objmin = (int)(cube.getCRPIX(dispersionaxis) + (xmin - cube.getCRVAL(dispersionaxis)) / cube.getCDELT(dispersionaxis) + 0.5);
if (objmin < 1) objmin = 1;
objmax = (int)(cube.getCRPIX(dispersionaxis) + (xmax - cube.getCRVAL(dispersionaxis)) / cube.getCDELT(dispersionaxis) + 0.5);
if (objmax > cube.Naxis(dispersionaxis)) objmax = cube.Naxis(dispersionaxis);
for (x = 1; x <= cube.Naxis(1); x++) {
for (y = 1; y <= cube.Naxis(2); y++) {
cube.extractRange(spectrum, x, x, y, y, objmin, objmax);
spectrum.norm();
spectrum.rebin1d(xmin, xmax, xdelt);
if (!fitcontinuum(cont, xt, spectrum)) result.r4data[result.F_I(x, y)] = 0.0;
else {
spectrum -= cont;
correlation.copy(yt);
correlation.correl_real(spectrum);
correlation.reass();
switch (method) {
default:
result.r4data[result.F_I(x, y)] = correlation.get_max();
break;
}
}
}
if (FitsInterrupt) {
dpProgress(0, "correlmap");
return TRUE;
}
dpProgress(x, "correlmap");
}
return TRUE;
}
bool longslit(Fits &result, Fits &cube, int xcenter, int ycenter, double angle, int width, double opening_angle) {
int newx, newy, sx, sy, z, y, i, owidth;
double value, tan_opening = tan(opening_angle * M_PI / 180.);
Fits slice, line, linesum;
char key[255];
if (cube.Naxis(3) < 2) return FALSE;
newx = (int)(cube.Naxis(1) * 1.5);
newy = (int)(cube.Naxis(2) * 1.5);
if (newx > newy) newy = newx;
if (newy > newx) newx = newy;
sx = (int)((newx - cube.Naxis(1)) / 2);
sy = (int)((newy - cube.Naxis(2)) / 2);
// sx = (int)(cube.Naxis(1) * .25);
// sy = (int)(cube.Naxis(2) * .25);
xcenter += sx;
ycenter += sy;
if (!result.create(cube.Naxis(3), newy, R4)) return FALSE;
result.CopyHeader(cube);
result.SetFloatKey("CRVAL1", cube.getCRVAL(3));
result.SetFloatKey("CRPIX1", cube.getCRPIX(3));
result.SetFloatKey("CDELT1", cube.getCDELT(3));
if (cube.GetStringKey("CTYPE3", key)) result.SetStringKey("CTYPE1", key);
else result.DeleteKey("CTYPE1");
if (cube.GetStringKey("CUNIT3", key)) result.SetStringKey("CUNIT1", key);
else result.DeleteKey("CUNIT1");
for (i = 2; i <= MAXNAXIS; i++) {
sprintf(key, "CUNIT%i", i);
result.DeleteKey(key);
sprintf(key, "CTYPE%i", i);
result.DeleteKey(key);
sprintf(key, "CRPIX%i", i);
result.DeleteKey(key);
sprintf(key, "CRVAL%i", i);
result.DeleteKey(key);
sprintf(key, "CDELT%i", i);
result.DeleteKey(key);
}
result.DeleteKey("CROTA1");
result.DeleteKey("CROTA2");
result.DeleteKey("CD1_1");
result.DeleteKey("CD1_2");
result.DeleteKey("CD2_1");
result.DeleteKey("CD2_2");
result.DeleteKey("CD3_3");
sprintf(result.crtype, "");
dpProgress(-cube.Naxis(3), "longslit");
for (z = 1; z <= cube.Naxis(3); z++) {
dpProgress(z, "longslit");
cube.extractRange(slice, -1, -1, -1, -1, z, z);
slice.resize(newx, newy);
slice.ishift(sx, sy, 0);
slice.rotate(angle, xcenter, ycenter, FALSE);
slice.extractRange(linesum, xcenter, xcenter, -1, -1, -1, -1);
for (y = 1; y <= newy; y++) {
owidth = width + fabs(y - ycenter) * tan_opening * 2.; // TODO: Calculate opening
if (owidth % 2 == 1) {
for (i = 1; i <= (int)(owidth / 2); i++) {
value = slice.ValueAt(slice.at(xcenter-i, y));
linesum.setValue(linesum.ValueAt(linesum.at(y, 1)) + value, y, 1);
value = slice.ValueAt(slice.at(xcenter+i, y));
linesum.setValue(linesum.ValueAt(linesum.at(y, 1)) + value, y, 1);
// slice.extractRange(line, xcenter-i, xcenter-i, -1, -1, -1, -1);
// linesum += line;
// slice.extractRange(line, xcenter+i, xcenter+i, -1, -1, -1, -1);
// linesum += line;
}
} else {
for (i = 1; i <= (int)(owidth / 2 - 1); i++) {
value = slice.ValueAt(slice.at(xcenter-i, y));
linesum.setValue(linesum.ValueAt(linesum.at(y, 1)) + value, y, 1);
value = slice.ValueAt(slice.at(xcenter+i, y));
linesum.setValue(linesum.ValueAt(linesum.at(y, 1)) + value, y, 1);
// slice.extractRange(line, xcenter-i, xcenter-i, -1, -1, -1, -1);
// linesum += line;
// slice.extractRange(line, xcenter+i, xcenter+i, -1, -1, -1, -1);
// linesum += line;
}
value = slice.ValueAt(slice.at(xcenter-(int)(owidth / 2), y));
linesum.setValue(linesum.ValueAt(linesum.at(y, 1)) + value / 2., y, 1);
value = slice.ValueAt(slice.at(xcenter+(int)(owidth / 2), y));
linesum.setValue(linesum.ValueAt(linesum.at(y, 1)) + value / 2., y, 1);
// slice.extractRange(line, xcenter-(int)(width / 2), xcenter-(int)(width / 2), -1, -1, -1, -1);
// line /= 2.;
// linesum += line;
// slice.extractRange(line, xcenter+(int)(width / 2), xcenter+(int)(width / 2), -1, -1, -1, -1);
// line /= 2.;
// linesum += line;
}
}
result.setRange(linesum, z, z, -1, -1, -1, -1);
}
return TRUE;
}
bool twodcut(Fits &result, Fits &image, int xcenter, int ycenter, double angle, int width) {
int newx, newy, sx, sy, /*z,*/ i;
Fits slice, line, linesum;
char key[255];
if (image.Naxis(2) < 2) return FALSE;
// handle case 0 or 180 degrees (cut along y-axis)
if (angle == 0. || angle == 180.) {
image.extractRange(line, xcenter - (int)(width / 2), xcenter + (int)(width / 2), -1, -1, -1, -1);
line.setType(R8);
if (width % 2 == 0) {
for (i = 0; i < line.Naxis(2); i++) {
line.r8data[line.C_I(0, i)] /= 2.;
line.r8data[line.C_I(width, i)] /= 2.;
}
}
if (width < 2) {
result.copy(line);
} else {
result.collapse(line, 1);
}
if (angle == 180.) result.flip(1);
return TRUE;
}
// handle case 90 or 270 degrees (cut along x-axis)
if (angle == 90. || angle == 270.) {
image.extractRange(line, -1, -1, ycenter - (int)(width / 2), ycenter + (int)(width / 2), -1, -1);
line.setType(R8);
if (width % 2 == 0) {
for (i = 0; i < line.Naxis(1); i++) {
line.r8data[line.C_I(i, 0)] /= 2.;
line.r8data[line.C_I(i, width)] /= 2.;
}
}
result.collapse(line, 2);
if (angle == 270.) result.flip(1);
return TRUE;
}
newx = (int)(image.Naxis(1) * 1.5);
newy = (int)(image.Naxis(2) * 1.5);
if (newx > newy) newy = newx;
if (newy > newx) newx = newy;
sx = (int)((newx - image.Naxis(1)) / 2);
sy = (int)((newy - image.Naxis(2)) / 2);
xcenter += sx;
ycenter += sy;
result.CopyHeader(image);
result.SetFloatKey("CRVAL1", 1.0);
result.SetFloatKey("CRPIX1", 1.0);
result.SetFloatKey("CDELT1", (image.getCDELT(1) + image.getCDELT(2)) / 2.0);
for (i = 2; i <= MAXNAXIS; i++) {
sprintf(key, "CUNIT%i", i);
result.DeleteKey(key);
sprintf(key, "CTYPE%i", i);
result.DeleteKey(key);
sprintf(key, "CRPIX%i", i);
result.DeleteKey(key);
sprintf(key, "CRVAL%i", i);
result.DeleteKey(key);
sprintf(key, "CDELT%i", i);
result.DeleteKey(key);
}
result.DeleteKey("CROTA1");
result.DeleteKey("CROTA2");
result.DeleteKey("CD1_1");
result.DeleteKey("CD1_2");
result.DeleteKey("CD2_1");
result.DeleteKey("CD2_2");
sprintf(result.crtype, "");
slice.copy(image);
slice.resize(newx, newy);
slice.ishift(sx, sy, 0);
slice.rotate(angle, xcenter, ycenter, FALSE);
slice.extractRange(linesum, xcenter, xcenter, -1, -1, -1, -1);
if (width % 2 == 1) {
for (i = 1; i <= (int)(width / 2); i++) {
slice.extractRange(line, xcenter-i, xcenter-i, -1, -1, -1, -1);
linesum += line;
slice.extractRange(line, xcenter+i, xcenter+i, -1, -1, -1, -1);
linesum += line;
}
} else {
for (i = 1; i <= (int)(width / 2 - 1); i++) {
slice.extractRange(line, xcenter-i, xcenter-i, -1, -1, -1, -1);
linesum += line;
slice.extractRange(line, xcenter+i, xcenter+i, -1, -1, -1, -1);
linesum += line;
}
slice.extractRange(line, xcenter-(int)(width / 2), xcenter-(int)(width / 2), -1, -1, -1, -1);
line /= 2.;
linesum += line;
slice.extractRange(line, xcenter+(int)(width / 2), xcenter+(int)(width / 2), -1, -1, -1, -1);
line /= 2.;
linesum += line;
}
if (!result.copy(linesum)) return FALSE;
result.CopyHeader(image);
result.SetFloatKey("CRVAL1", 1.0);
result.SetFloatKey("CRPIX1", 1.0);
result.SetFloatKey("CDELT1", (fabs(image.getCDELT(1)) + fabs(image.getCDELT(2))) / 2.0);
if (result.getCDELT(1) == 0.0) result.SetFloatKey("CDELT1", 1.0);
for (i = 2; i <= MAXNAXIS; i++) {
sprintf(key, "CUNIT%i", i);
result.DeleteKey(key);
sprintf(key, "CTYPE%i", i);
result.DeleteKey(key);
sprintf(key, "CRPIX%i", i);
result.DeleteKey(key);
sprintf(key, "CRVAL%i", i);
result.DeleteKey(key);
sprintf(key, "CDELT%i", i);
result.DeleteKey(key);
}
result.DeleteKey("CROTA1");
result.DeleteKey("CROTA2");
sprintf(result.crtype, "");
return TRUE;
}
Fits &primes(int k, Fits &rv) {
rv.create(k, 1, I4);
if (k == 1) {
rv.i4data[0] = 2;
return rv;
}
rv.i4data[0] = 2;
unsigned long n = 3;
unsigned long count = 1;
rv.i4data[count] = 3;
count++;
while(count < k) {
n = n + 2;
for (int ip = 1; ip < count; ip++) {
double q = n / rv.i4data[ip];
int r = n % rv.i4data[ip];
if (r == 0) {
ip = count + 1; // n is not prime.
} else {
if (q <= rv.i4data[ip]) { // n is prime.
rv.i4data[count] = n;
count++; // compute next prime.
ip = count + 1;
}
}
}
}
return rv;
}
|