File: voronoi.cpp

package info (click to toggle)
dpuser 4.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,632 kB
  • sloc: cpp: 121,623; ansic: 6,866; lex: 1,113; makefile: 747; yacc: 741; sh: 78
file content (526 lines) | stat: -rw-r--r-- 16,728 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#include "fits.h"

#ifdef WIN
#pragma warning (disable: 4018) // disable warning for comparing signed and unsigned
#endif /* WIN */

// Computes weighted centroid of one bin
void bin2d_weighted_centroid(Fits &x, Fits &y, Fits &density, double *xBar, double *yBar) {
	double mass = density.get_flux();
	Fits _tmp;
	_tmp.copy(density);
	_tmp.mul(x);
	*xBar = _tmp.get_flux() / mass;
	_tmp.copy(density);
	_tmp.mul(y);	
	*yBar = _tmp.get_flux() / mass;
}

// Implements equation (5) of Cappellari & Copin (2003)
double bin2d_roundness(Fits &x, Fits &y, double pixelSize) {
	double n = (double)(x.Nelements());
	double equivalentRadius = sqrt(n/M_PI)*pixelSize;
	double xBar = x.get_flux() / n;          // unweighted centroid here!
	double yBar = y.get_flux() / n;
	Fits _tmp1, _tmp2;
	_tmp1.copy(x);
	_tmp1.sub(xBar);
	_tmp1.mul(_tmp1);
	_tmp2.copy(y);
	_tmp2.sub(yBar);
	_tmp2.mul(_tmp2);
	_tmp1.add(_tmp2);
	double maxDistance = sqrt(_tmp1.get_max());
	return maxDistance / equivalentRadius - 1.0;
}

// Implements steps (i)-(v) in section 5.1 of Cappellari & Copin (2003)
void bin2d_accretion(Fits &x, Fits &y, Fits &signal, Fits &noise, double targetSN, Fits &cclass, double *pixelSize) {
	Fits unBinned, binned;
	Fits _tmp, _tmp1, _tmp2;
	Fits currentBin;
//	long ldummy;
	long n = x.Nelements();
	int m;
	double minDist;
	double SN;
	Fits w;
	int num, nc;
	long maxnum;
	double xBar, yBar;
	int k;
	Fits nextBin;
	double SNOld, roundness;
	int j;
	int ind;
	
	cclass.create(n, 1, I4); // will contain the bin number of each given pixel
	Fits good;
	good.create(n, 1, I1);   // will contain 1 if the bin has been accepted as good

// For each point, find the distance to all other points and select the minimum.
// This is a robus way of determining the pixel size of unbinned data.

	double dx = 1e30;
	for (j = 0; j <= n-2; j++) {
		double dd;
		x.extractRange(_tmp1, j+2, n, -1, -1, -1, -1); // fortran indices!!!
		y.extractRange(_tmp2, j+2, n, -1, -1, -1, -1);
		_tmp1 -= x[j];
		_tmp2 -= y[j];
		_tmp1 *= _tmp1;
		_tmp2 *= _tmp2;
		_tmp1 += _tmp2;
		dd = _tmp1.get_min();
		if (dd < dx) dx = dd;
	}
	*pixelSize = sqrt(dx);

	_tmp.copy(signal);
	_tmp.div(noise);
	currentBin.create(1, 1, I4);
	currentBin.i4data[0] = _tmp.maxLinearIndex(&SN); // Start from the pixel with highest S/N

// Rough estimate of the expected final bin number.
// This value is only used to have a feeling of the expected
// remaining computation time when binning very big dataset.

	num = w.where(_tmp, "<", targetSN);
	nc = _tmp.Nelements() - num;
	_tmp.mul(_tmp);
	maxnum = (long)(_tmp.get_flux() / (targetSN*targetSN) + .5) + nc;

// The first bin will be assigned CLASS = 1
// With N pixels there will be at most N bins

	for (ind = 1; ind <= n; ind++) {
		dp_output("Bin: %i / %i\n", ind, maxnum);
		cclass.i4data[currentBin.i4data[0]] = ind; // Here currentBin is still made of one pixel

		xBar = x[currentBin.i4data[0]];
		yBar = y[currentBin.i4data[0]]; // Centroid of one pixels

		while (TRUE) {
			m = unBinned.where(cclass, "==", 0);

			if (m == 0) break; // Stops if all pixels are binned
// Find the unbinned pixel closest to the centroid of the current bin

			_tmp1.extractLinearRange(x, unBinned);
			_tmp2.extractLinearRange(y, unBinned);
			_tmp1 -= xBar;
			_tmp2 -= yBar;
			_tmp1 *= _tmp1;
			_tmp2 *= _tmp2;
			_tmp1 += _tmp2;
			k = _tmp1.minLinearIndex(&minDist);
// Find the distance from the closest pixel to the current bin
			_tmp1.extractLinearRange(x, currentBin);
			_tmp2.extractLinearRange(y, currentBin);
			_tmp1 -= x[unBinned.i4data[k]];
			_tmp2 -= y[unBinned.i4data[k]];
			_tmp1 *= _tmp1;
			_tmp2 *= _tmp2;
			_tmp1 += _tmp2;
			minDist = _tmp1.get_min();

// Estimate the `roundness' of the POSSIBLE new bin
			nextBin.create(currentBin.Nelements() + 1, 1, I4);
			for (j = 0; j < currentBin.Nelements(); j++)
				nextBin.i4data[j] = currentBin.i4data[j];
			nextBin.i4data[nextBin.Nelements() - 1] = unBinned.i4data[k];

			_tmp1.extractLinearRange(x, nextBin);
			_tmp2.extractLinearRange(y, nextBin);
			roundness = bin2d_roundness(_tmp1, _tmp2, *pixelSize);

// Compute the S/N one would obtain by adding
// the CANDIDATE pixel to the current bin

			SNOld = SN;
			_tmp1.extractLinearRange(signal, nextBin);
			_tmp2.extractLinearRange(noise, nextBin);
			_tmp2 *= _tmp2;
			_tmp1 /= sqrt(_tmp2.get_flux());
			SN = _tmp1.get_flux();

// Test whether the CANDIDATE pixel is connected to the
// current bin, whether the POSSIBLE new bin is round enough
// and whether the resulting S/N would get closer to targetSN

			if ((sqrt(minDist) > 1.2* (*pixelSize)) || 
				(roundness > 0.3) ||
				(fabs(SN-targetSN) > fabs(SNOld-targetSN))) {
					if (SNOld > 0.8*targetSN) {
						for (int j = 0; j < currentBin.Nelements(); j++) {
							good.i1data[currentBin.i4data[j]] = 1;
						}
					}
				break;
			}

// If all the above tests are negative then accept the CANDIDATE pixel,
// add it to the current bin, and continue accreting pixels

			cclass.i4data[unBinned.i4data[k]] = ind;
			currentBin.copy(nextBin);

// Update the centroid of the current bin
			_tmp1.extractLinearRange(x, currentBin);
			_tmp2.extractLinearRange(y, currentBin);
			_tmp.extractLinearRange(signal, currentBin);
			bin2d_weighted_centroid(_tmp1, _tmp2, _tmp, &xBar, &yBar);
		}

// Get the centroid of all the binned pixels
    	m = unBinned.where(cclass, "==", 0);
		if (m == 0) break; // Stop if all pixels are binned
		binned.where(cclass, "!=", 0);
		_tmp1.extractLinearRange(x, binned);
		_tmp2.extractLinearRange(y, binned);
		_tmp.extractLinearRange(signal, binned);
		bin2d_weighted_centroid(_tmp1, _tmp2, _tmp, &xBar, &yBar);

// Find the closest unbinned pixel to the centroid of all
// the binned pixels, and start a new bin from that pixel.
		_tmp1.extractLinearRange(x, unBinned);
		_tmp2.extractLinearRange(y, unBinned);
		_tmp1 -= xBar;
		_tmp1 *= _tmp1;
		_tmp2 -= yBar;
		_tmp2 *= _tmp2;
		_tmp1 += _tmp2;
		k = _tmp1.minLinearIndex(&minDist);
		currentBin.create(1, 1, I4);
		currentBin.i4data[0] = unBinned.i4data[k]; // The bin is initially made of one pixel
		SN = signal[currentBin.i4data[0]]/noise[currentBin.i4data[0]];
	}

// Set to zero all bins that did not reach the target S/N
	for (j = 0; j < cclass.Nelements(); j++)
		cclass.i4data[j] *= good.i1data[j];
}

// Implements steps (vi)-(vii) in section 5.1 of Cappellari & Copin (2003)
void bin2d_reassign_bad_bins(Fits &x, Fits &y, Fits &signal, Fits &noise, double targetSN, Fits &cclass, Fits &xnode, Fits &ynode) {

// Find the centroid of all succesful bins.
// CLASS = 0 are unbinned pixels which are excluded.
	Fits area, good, r, p, bad;
	Fits _tmp, _tmp1, _tmp2;
	int k, nnodes, m, index, j;
	double xBar, yBar, max, tmp;

	max = cclass.get_max();
	area.histogram(cclass, 1., max);
	r.histogram_indices(cclass, 1.0, max);
	for (j = 0; j < r.Nelements(); j++) r.i4data[j]--;
	nnodes = good.where(area, ">", 0.0); // Obtain the index of the good bins
	xnode.create(nnodes, 1, R8);
	ynode.create(nnodes, 1, R8);
	for (j = 0; j < nnodes; j++) {
		k = good.i4data[j];
		r.extractLinearIndex(p, r.i4data[k], r.i4data[k+1]-1); // Find subscripts of pixels in bin k.
		_tmp1.extractLinearRange(x, p);
		_tmp2.extractLinearRange(y, p);
		_tmp.extractLinearRange(signal, p);
		bin2d_weighted_centroid(_tmp1, _tmp2, _tmp, &xBar, &yBar);
		xnode.r8data[j] = xBar;
		ynode.r8data[j] = yBar;
	}

// Reassign pixels of bins with S/N < targetSN
// to the closest centroid of a good bin

	m = bad.where(cclass, "==", 0);
	for (j = 0; j < m; j++) {
		_tmp1.copy(xnode);
		_tmp1 *= -1.;
		_tmp1 += x[bad.i4data[j]];
		_tmp1 *= _tmp1;
		_tmp2.copy(ynode);
		_tmp2 *= -1.;
		_tmp2 += y[bad.i4data[j]];
		_tmp2 *= _tmp2;
		_tmp1 += _tmp2;
		index = _tmp.minLinearIndex(&tmp);
		cclass.i4data[bad.i4data[j]] = good.i4data[index] + 1;
	}

// Recompute all centroids of the reassigned bins.
// These will be used as starting points for the CVT.

	max = cclass.get_max();
	area.histogram(cclass, 0.0, max, 1.0);
	r.histogram_indices(cclass, 0.0, max, 1.0);
	for (j = 0; j < r.Nelements(); j++) r.i4data[j]--;
	nnodes = good.where(area, ">", 0.0); // Re-obtain the index of the good bins
	for (j = 0; j < nnodes-1; j++) {
		k = good.i4data[j];
		r.extractLinearIndex(p, r.i4data[k], r.i4data[k+1]-1); // Find subscripts of pixels in bin k.
		_tmp1.extractLinearRange(x, p);
		_tmp2.extractLinearRange(y, p);
		_tmp.extractLinearRange(signal, p);
		bin2d_weighted_centroid(_tmp1, _tmp2, _tmp, &xBar, &yBar);
		xnode.r8data[j] = xBar;
		ynode.r8data[j] = yBar;
	}
}

// Implements the modified Lloyd algorithm
// in section 4.1 of Cappellari & Copin (2003)
void bin2d_cvt_equal_mass(Fits &x, Fits &y, Fits &signal, Fits &noise, Fits &xnode, Fits &ynode, int *iter) {
	unsigned long npixels;
	int index, m, k, j;
	double tmp, xBar, yBar, diff, min, max;
	Fits cclass, dens, xnodeOld, ynodeOld, _tmp, _tmp1, _tmp2, area, r, w, p;

	npixels = signal.Nelements();
	cclass.create(npixels, 1, I4);
	dens.copy(signal);
	dens /= noise;
	dens *= dens;      // See beginning of section 4.1

	*iter = 1;
	do {
		xnodeOld.copy(xnode);
		ynodeOld.copy(ynode);

// Computes Voronoi Tessellation of the pixels grid

		for (j = 0; j < npixels; j++) {
			_tmp1.copy(xnode);
			_tmp1 *= -1.;
			_tmp1 += x[j];
			_tmp1 *= _tmp1;
			_tmp2.copy(ynode);
			_tmp2 *= -1.;
			_tmp2 += y[j];
			_tmp2 *= _tmp2;
			_tmp1 += _tmp2;
			index = _tmp1.minLinearIndex(&tmp);
			cclass.i4data[j] = index;
		}

// Computes centroids of the bins, weighted by dens^2.
// Exponent 2 on the density produces equal-mass Voronoi bins.
		cclass.get_minmax(&min, &max);
		area.histogram(cclass, min, max);
		r.histogram_indices(cclass, min, max);
		for (j = 0; j < r.Nelements(); j++) r.i4data[j]--;
		m = w.where(area, ">", 0.0); // Check for zero-size Voronoi bins
		for (j = 0; j < m; j++) {
			k = w.i4data[j];
			r.extractLinearIndex(p, r.i4data[k], r.i4data[k+1]-1); // Find subscripts of pixels in bin k.
			_tmp1.extractLinearRange(x, p);
			_tmp2.extractLinearRange(y, p);
			_tmp.extractLinearRange(dens, p);
			bin2d_weighted_centroid(_tmp1, _tmp2, _tmp, &xBar, &yBar);
			xnode.r8data[k] = xBar;
			ynode.r8data[k] = yBar;
		}
		
		_tmp1.copy(xnode);
		_tmp1 -= xnodeOld;
		_tmp1 *= _tmp1;
		_tmp2.copy(ynode);
		_tmp2 -= ynodeOld;
		_tmp2 *= _tmp2;
		_tmp1 += _tmp2;
		
		diff = _tmp1.get_flux();
		(*iter)++;

		dp_output("Iter:  %i,  Diff:  %f\n", *iter, diff);
	} while (diff != 0.0);

// Only return the generators of the nonzero Voronoi bins
	_tmp.copy(xnode);
	xnode.extractLinearRange(_tmp, w);
	_tmp.copy(ynode);
	ynode.extractLinearRange(_tmp, w);
}

// Recomputes Voronoi Tessellation of the pixels grid to make sure
// that the class number corresponds to the proper Voronoi generator.
// This is done to take into account possible zero-size Voronoi bins
// in output from the previous CVT.
void bin2d_compute_useful_bin_quantities(Fits &x, Fits &y, Fits &signal, Fits &noise, Fits &xnode, Fits &ynode, Fits &cclass, Fits &xBar, Fits &yBar, Fits &sn, Fits &area) {
	int npix, index, nbins, j;
	Fits _tmp1, _tmp2, _tmp, p, r;
	double tmp, min, max, xb, yb;
	
	npix = x.Nelements();
	cclass.create(npix, 1, I4); // will contain the bin number of each given pixel
	for (j = 0; j < npix; j++) {
		_tmp1.copy(xnode);
		_tmp1 *= -1.;
		_tmp1 += x[j];
		_tmp1 *= _tmp1;
		_tmp2.copy(ynode);
		_tmp2 *= -1.;
		_tmp2 += y[j];
		_tmp2 *= _tmp2;
		_tmp1 += _tmp2;
		index = _tmp1.minLinearIndex(&tmp);
		cclass.i4data[j] = index;
	}

// At the end of the computation evaluate the bin luminosity-weighted
// centroids (xbar,ybar) and the corresponding final S/N of each bin.

	cclass.get_minmax(&min, &max);
	area.histogram(cclass, min, max);
	r.histogram_indices(cclass, min, max);
	for (j = 0; j < r.Nelements(); j++) r.i4data[j]--;
	nbins = xnode.Nelements();
	xBar.create(nbins, 1, R8);
	yBar.create(nbins, 1, R8);
	sn.create(nbins, 1, R8);
	for (j = 0; j < nbins; j++) {
		r.extractLinearIndex(p, r.i4data[j], r.i4data[j+1]-1); // Find subscripts of pixels in bin j.
		_tmp1.extractLinearRange(x, p);
		_tmp2.extractLinearRange(y, p);
		_tmp.extractLinearRange(signal, p);
		
		bin2d_weighted_centroid(_tmp1, _tmp2, _tmp, &xb, &yb);
		xBar.r8data[j] = xb;
		yBar.r8data[j] = yb;
		_tmp1.extractLinearRange(noise, p);
		_tmp1 *= _tmp1;
		sn.r8data[j] = _tmp.get_flux() / sqrt(_tmp1.get_flux());
	}
}

void voronoi(Fits &signal, Fits &noise, Fits &apply, double targetSN, Fits &result, int returnwhat) {
	double pixelSize;
	Fits cclass, xNode, yNode, xbar, ybar, sn, area, x, y, ssignal, snoise;
	int iter, i, j, count, z;

// Create x and y vectors
	x.copy(signal);
	x.setType(I4);
	y.copy(x);
	
	for (i = 1; i <= signal.Naxis(1); i++) {
		for (j = 1; j <= signal.Naxis(2); j++) {
			x.i4data[x.F_I(i, j)] = i-1;
			y.i4data[y.F_I(i, j)] = j-1;
		}
	}
	x.setNaxis(1, x.Nelements());
	x.setNaxis(2, 1);
	x.setNaxis(3, 1);
	y.setNaxis(1, y.Nelements());
	y.setNaxis(2, 1);
	y.setNaxis(3, 1);

// exclude pixels with noise <= 0
	count = 0;
	ssignal.copy(signal);
	ssignal.setType(R8);
	snoise.copy(noise);
	snoise.setType(R8);
	ssignal.setNaxis(1, x.Nelements());
	ssignal.setNaxis(2, 1);
	ssignal.setNaxis(3, 1);
	snoise.setNaxis(1, y.Nelements());
	snoise.setNaxis(2, 1);
	snoise.setNaxis(3, 1);
	for (i = 0; i < x.Nelements(); i++) {
		if (noise[i] > 0.0) {
			x.i4data[count] = x.i4data[i];
			y.i4data[count] = y.i4data[i];
			ssignal.r8data[count] = signal[i];
			snoise.r8data[count] = noise[i];
			count++;
		}
	}
	x.resize(count, 1);
	y.resize(count, 1);
	ssignal.resize(count, 1);
	snoise.resize(count, 1);

	dp_output("Bin-accretion...\n");
	bin2d_accretion(x, y, ssignal, snoise, targetSN, cclass, &pixelSize);
	dp_output("%i initial bins.\n", (int)cclass.get_max());
	dp_output("Reassign bad bins...\n");
	bin2d_reassign_bad_bins(x, y, ssignal, snoise, targetSN, cclass, xNode, yNode);
	dp_output("%i good bins.\n", xNode.Nelements());
	dp_output("Modified Lloyd algorithm...\n");
	bin2d_cvt_equal_mass(x, y, ssignal, snoise, xNode, yNode, &iter);
	dp_output("%i iterations.\n", iter-1);
	bin2d_compute_useful_bin_quantities(x, y, ssignal, snoise, xNode, yNode, cclass, xbar, ybar, sn, area);

	Fits image, binval, w, p;
	image.copy(signal);
	image.setType(R8);
	
	if (apply.Naxis(3) < 2) {
		count = 0;
		ssignal.copy(apply);
		ssignal.setType(R8);
		ssignal.setNaxis(1, ssignal.Nelements());
		ssignal.setNaxis(2, 1);
		ssignal.setNaxis(3, 1);
//		for (i = 0; i < x.Nelements(); i++) {
                for (i = 0; i < signal.Nelements(); i++) {
                        if (noise[i] > 0.0) {
				ssignal.r8data[count] = ssignal[i];
				count++;
			}
		}
		ssignal.resize(count, 1);

// find mean values & positions of bins
		binval.create(cclass.get_max() + 1, 1, R8);
		for (i = 0; i < binval.Nelements(); i++) {
			w.where(cclass, "==", i);
			p.extractLinearRange(ssignal, w);
			binval.r8data[i] = p.get_avg();
			if (returnwhat == 1) binval.r8data[i] = (double)i;
		}

// create output image - binned
		image = 0.0;
		for (i = 0; i < ssignal.Nelements(); i++) {
			image.r8data[image.C_I((int)x[i], (int)y[i])] = binval.r8data[cclass.i4data[i]];
		}
		result.copy(image);
	} else {
		result.copy(apply);
		for (z = 1; z <= apply.Naxis(3); z++) {
			count = 0;
			apply.extractRange(ssignal, -1, -1, -1, -1, z, z);
			ssignal.setType(R8);
			ssignal.setNaxis(1, ssignal.Nelements());
			ssignal.setNaxis(2, 1);
			ssignal.setNaxis(3, 1);
//			for (i = 0; i < x.Nelements(); i++) {
                        for (i = 0; i < signal.Nelements(); i++) {
                                if (noise[i] > 0.0) {
					ssignal.r8data[count] = ssignal[i];
					count++;
				}
			}
			ssignal.resize(count, 1);

// find mean values & positions of bins
			binval.create(cclass.get_max() + 1, 1, R8);
			for (i = 0; i < binval.Nelements(); i++) {
				w.where(cclass, "==", i);
				p.extractLinearRange(ssignal, w);
				binval.r8data[i] = p.get_avg();
				if (returnwhat == 1) binval.r8data[i] = (double)i;
			}

// create output image - binned
			image = 0.0;
			for (i = 0; i < ssignal.Nelements(); i++) {
				image.r8data[image.C_I((int)x[i], (int)y[i])] = binval.r8data[cclass.i4data[i]];
			}
			result.setRange(image, -1, -1, -1, -1, z, z);
		}
	}
}