1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*
* Kabsch's algorithm: compute least-square-best-fit transformation (2D version)
* Copyright (C) 2003, Arno Formella (formella@ei.uvigo.es)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* This is a gsl-based implementation of Kabsch's algorithm presented in:
*
* W. Kabsch, A solution for the best rotation to relate two sets of vectors,
* Acta Cryst. (1976), A32, 922-923
*
* W. Kabsch, A discussion of the solution for the best rotation to relate
* two sets of vectors, Acta Cryst. (1978), A34, 827-828
*
* The code is C and C++ compilable.
*
* More information about GSL:
*
* The project homepage is http://www.gnu.org/software/gsl/
* The development site is http://sources.redhat.com/gsl/
*/
#include <stdio.h>
#include "kabsch2d.h"
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_blas.h>
#define NORM_EPS 0.00000001
int kabsch2d(
unsigned int size, /* the number of points */
gsl_matrix *X, /* the points to be moved */
gsl_matrix *Y, /* the points to move to */
gsl_matrix *U, /* the rotation matrix */
gsl_vector *t, /* the translation vector */
double *s /* the optimal scaling, if != 0 */
) {
unsigned int i,j,k;
int U_ok=1;
double n=1.0/size;
gsl_vector *cx=gsl_vector_alloc(2); /* centroid of X */
gsl_vector *cy=gsl_vector_alloc(2); /* centroid of Y */
gsl_matrix *R=gsl_matrix_alloc(2,2); /* Kabsch's R */
gsl_matrix *RTR=gsl_matrix_alloc(2,2); /* R_trans * R (and Kabsch's bk) */
gsl_eigen_symmv_workspace *espace=gsl_eigen_symmv_alloc(2);
gsl_matrix *evec=gsl_matrix_alloc(2,2); /* eigenvectors (and Kabsch's ak) */
gsl_vector *eval=gsl_vector_alloc(2); /* vector of eigenvalues */
/* compute centroid of X */
gsl_vector_set_zero(cx);
for(i=size;i>0;) {
gsl_vector_const_view row=gsl_matrix_const_row(X,--i);
gsl_vector_add(cx,&row.vector);
}
gsl_vector_scale(cx,n);
/* move X to origin */
for(i=size;i>0;) {
gsl_vector_view row=gsl_matrix_row(X,--i);
gsl_vector_sub(&row.vector,cx);
}
/* compute centroid of Y */
gsl_vector_set_zero(cy);
for(i=size;i>0;) {
gsl_vector_const_view row=gsl_matrix_const_row(Y,--i);
gsl_vector_add(cy,&row.vector);
}
gsl_vector_scale(cy,n);
/* move Y to origin */
for(i=size;i>0;) {
gsl_vector_view row=gsl_matrix_row(Y,--i);
gsl_vector_sub(&row.vector,cy);
}
if(size==1) {
/* just one point, so U is trival */
gsl_matrix_set_identity(U);
}
else {
/* compute R */
gsl_matrix_set_zero(R);
for(k=size;k>0;) {
--k;
for(i=2;i>0;) {
--i;
for(j=2;j>0;) {
--j;
gsl_matrix_set(R,i,j,
gsl_matrix_get(R,i,j)+
gsl_matrix_get(Y,k,i)*gsl_matrix_get(X,k,j)
);
}
}
}
/* compute RTR = R_trans * R */
gsl_matrix_set_zero(RTR);
gsl_blas_dgemm(CblasTrans,CblasNoTrans,1.0,R,R,0.0,RTR);
/* compute orthonormal eigenvectors */
gsl_eigen_symmv(RTR,eval,evec,espace); /* RTR will be modified! */
gsl_eigen_symmv_sort(eval,evec,GSL_EIGEN_SORT_VAL_DESC);
if(gsl_vector_get(eval,1)>NORM_EPS) {
/* compute ak's (as columns of evec) and bk's (as columns of RTR) */
double norm_b0,norm_b1;
gsl_vector_const_view a0=gsl_matrix_const_column(evec,0);
gsl_vector_const_view a1=gsl_matrix_const_column(evec,1);
gsl_vector_view b0=gsl_matrix_column(RTR,0);
gsl_vector_view b1=gsl_matrix_column(RTR,1);
gsl_blas_dgemv(CblasNoTrans,1.0,R,&a0.vector,0.0,&b0.vector);
norm_b0=gsl_blas_dnrm2(&b0.vector);
gsl_blas_dgemv(CblasNoTrans,1.0,R,&a1.vector,0.0,&b1.vector);
norm_b1=gsl_blas_dnrm2(&b1.vector);
if(norm_b0>NORM_EPS&&norm_b1>NORM_EPS) {
gsl_vector_scale(&b0.vector,1.0/norm_b0); /* b0 = ||R * a0|| */
gsl_vector_scale(&b1.vector,1.0/norm_b1); /* b1 = ||R * a1|| */
/* we reach this point only if all bk different from 0 */
/* compute U = B * A_trans (use RTR as B and evec as A) */
gsl_matrix_set_zero(U); /* to avoid nan */
gsl_blas_dgemm(CblasNoTrans,CblasTrans,1.0,RTR,evec,0.0,U);
}
else {
U_ok=0;
gsl_matrix_set_identity(U);
}
}
else {
U_ok=0;
gsl_matrix_set_identity(U);
}
}
if(s) {
/* let us compute the optimal scaling as well */
/* s = <Y,UX> / <UX,UX> */
*s=1.0;
if(U_ok&&size>1) {
double dom=0.0;
double nom=0.0;
double dom_i,nom_i;
gsl_vector *Uxi=gsl_vector_alloc(2);
for(i=size;i>0;) {
gsl_vector_const_view row_x=gsl_matrix_const_row(X,--i);
gsl_vector_const_view row_y=gsl_matrix_const_row(Y,i);
gsl_vector_set_zero(Uxi);
gsl_blas_dgemv(CblasNoTrans,1.0,U,&row_x.vector,1.0,Uxi);
gsl_blas_ddot(&row_y.vector,Uxi,&nom_i);
nom+=nom_i;
gsl_blas_ddot(Uxi,Uxi,&dom_i);
dom+=dom_i;
}
*s=nom/dom;
gsl_vector_free(Uxi);
}
gsl_vector_scale(cx,*s);
}
/* compute t = cy - s * U * cx */
gsl_vector_memcpy(t,cy);
gsl_blas_dgemv(CblasNoTrans,-1.0,U,cx,1.0,t);
gsl_vector_free(eval);
gsl_matrix_free(evec);
gsl_eigen_symmv_free(espace);
gsl_matrix_free(RTR);
gsl_matrix_free(R);
gsl_vector_free(cy);
gsl_vector_free(cx);
return U_ok;
}
|