1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
SUBROUTINE PGCELL(A,IDIM,JDIM,I1,I2,J1,J2,FG,BG,TR,NCOLS,R,G,B)
C ---------------------------------------------------------------
C
REAL A(IDIM,JDIM),TR(6)
REAL R(0:NCOLS-1),G(0:NCOLS-1),B(0:NCOLS-1)
INTEGER IDIM,JDIM,I1,I2,J1,J2,NCOLS
C
INCLUDE 'grpckg1.inc'
INTEGER IR(0:255),IG(0:255),IB(0:255)
LOGICAL LPS,LCOLOR,PGNOTO
CHARACTER*16 TYPE,CHR
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C Purpose
C This subroutine is designed to do the job of CELL_ARRAY in GKS;
C that is, it shades elements of a rectangular array with the
C appropriate colours passed down in the RGB colour-table. Essentially,
C it is a colour version of PGGRAY.
C The colour-index used for particular array pixel is given by:
C Colour Index = NINT{[A(i,j)-BG/(FG-BG)]*FLOAT(NCOLS-1)} ,
C with truncation at 0 and NCOLS-1, as necessary.
C The transform matrix TR is used to calculate the (bottom left)
C world coordinates of the cell which represents each array element:
C X = TR(1) + TR(2)*I + TR(3)*J
C Y = TR(4) + TR(5)*I + TR(6)*J .
C
C Parameters
C ARGUMENT TYPE I/O DIMENSION DESCRIPTION
C A R*4 I IDIMxJDIM The array to be plotted.
C IDIM I*4 I - The first dimension of array A.
C JDIM I*4 I - The second dimension of array A.
C I1,I2 I*4 I - The inclusive range of the first
C index (I) to be plotted.
C J1,J2 I*4 I - The inclusive range of the second
C index (J) to be plotted.
C FG R*4 I - The array value which is to appear
C with shade 1 ("foreground").
C BG R*4 I - The array value which is to appear
C with shade 0 ("background").
C TR R*4 I 6 Transformation matrix between array
C grid and world coordinates.
C NCOLS I*4 I - Number of colours in colour-table.
C R R*4 I NCOLS Red intensity for colour-table.
C G R*4 I NCOLS Green intensity for colour-table.
C B R*4 I NCOLS Blue intensity for colour-table.
C
C Globals
C GRPCKG1.INC
C
C External Calls
C SUBROUTINE DESCRIPTION
C PGNOTO Logical function to test if a PGPLOT device is open.
C GRBPIC Sends a "begin picture" command to the device driver.
C PGQCOL Inquires about the colour capability.
C PGQCI Inquires about the current colour index.
C PGQINF Inquires about general PGPLOT information.
C PGBBUF Recommended initial call (to start a PGPLOT buffer).
C PGEBUF Recommended final call (to end a PGPLOT buffer).
C PGCLPX Pixel-device support subroutine for PGCELL.
C PGCLPS PostScript support subroutine for PGCELL.
C GREXEC Dispatches command to appropriate device driver.
C DSQINF Inquires about viewport and window dimensions.
C
C History
C D. S. Sivia 3 Jul 1992 Initial release.
C D. S. Sivia 6 Feb 1995 Now uses GRGRAY approach instead of
C PGPOLY, and linearly interpolates.
C D. S. Sivia 6 Mar 1995 Slight changes for Postscript output.
C D. S. Sivia 1 Aug 1996 Replaced pgplot.inc with DSQINF!
C D. S. Sivia 21 Oct 1997 Made slightly friendlier for NT.
C D. S. Sivia 16 Jul 1999 Added a couple of PGPLOT calls to
C force proper initialisation.
C-----------------------------------------------------------------------
C
C A PGPLOT initialisation precaution.
C
IF (PGNOTO('PGCELL')) RETURN
IF (.NOT.GRPLTD(GRCIDE)) CALL GRBPIC
C
C Find out device-type. If not Postscript, then (i) return if less than
C 16 shades available; (ii) save initial colour index (and hope it's
C less than ICLOW).
C
NC=256
LPS=.TRUE.
CALL PGQINF('TYPE',TYPE,LCHR)
IF (TYPE.EQ.'PS' .OR. TYPE.EQ.'VPS') THEN
LCOLOR=.FALSE.
ELSEIF (TYPE.EQ.'CPS' .OR. TYPE.EQ.'VCPS') THEN
LCOLOR=.TRUE.
ELSE
LPS=.FALSE.
CALL PGQCOL(IC1,IC2)
NC=IC2-IC1+1
IF (NC.LT.16) THEN
WRITE(*,*)' *** Not enough colours available on this device!'
RETURN
ELSE
ICLOW=4
IF (NC.GE.96) ICLOW=16
IC1=IC1+ICLOW
NC=NC-ICLOW
ENDIF
CALL PGQCI(ICSAVE)
IF (ICSAVE.GE.IC1) ICSAVE=IC1+1
ENDIF
CALL PGBBUF
C
C Activate the colour table. If NCOLS is less than the number of colours
C available, simply assign NCOLS; otherwise, use a linear interpolation.
C
IF (NCOLS.LE.NC) THEN
NC=NCOLS
DO 10 I=0,NCOLS-1
CALL PGSCR(IC1+I,R(I),G(I),B(I))
IR(I)=NINT(R(I)*255.0)
IG(I)=NINT(G(I)*255.0)
IB(I)=NINT(B(I)*255.0)
10 CONTINUE
ELSE
COL=0.0
DCOL=0.999*FLOAT(NCOLS-1)/FLOAT(NC-1)
DO 20 I=0,NC-1
ICOL=INT(COL)
DICOL=COL-FLOAT(ICOL)
RL=R(ICOL)+DICOL*(R(ICOL+1)-R(ICOL))
GL=G(ICOL)+DICOL*(G(ICOL+1)-G(ICOL))
BL=B(ICOL)+DICOL*(B(ICOL+1)-B(ICOL))
CALL PGSCR(IC1+I,RL,GL,BL)
IR(I)=NINT(RL*255.0)
IG(I)=NINT(GL*255.0)
IB(I)=NINT(BL*255.0)
COL=COL+DCOL
20 CONTINUE
ENDIF
ASCALE=FLOAT(NC-1)/(FG-BG)
C
C Check to see whether a pixel device or Postscript is being used, and
C call the appropriate PGCELL support subrotuine.
C
IF (LPS) THEN
CALL PGCLPS(A,IDIM,JDIM,I1,I2,J1,J2,BG,TR,ASCALE,IR,IG,IB,NC,
* LCOLOR)
ELSE
NBUF=0
LCHR=LEN(CHR)
CALL GREXEC(GRGTYP,4,RBUF,NBUF,CHR,LCHR)
IF (CHR(7:7).EQ.'P') THEN
CALL PGCLPX(A,IDIM,JDIM,I1,I2,J1,J2,BG,TR,ASCALE,IC1,NC)
ELSE
WRITE(*,*)' Sorry, PGCELL does not support this device!'
ENDIF
ENDIF
C
C Reset the initial colour index.
C
IF (.NOT. LPS) CALL PGSCI(ICSAVE)
CALL PGEBUF
END
C
SUBROUTINE PGCLPX(A,IDIM,JDIM,I1,I2,J1,J2,BG,TR,ASCALE,IC1,NC)
C --------------------------------------------------------------
C
C Light-up the device pixels, with colours determined by a linearly
C interpolating array A.
C
INCLUDE 'grpckg1.inc'
REAL A(IDIM,*),TR(*),BUFFER(2050)
CHARACTER CHR*16
C
CALL DSQINF(XOFF,XLEN,XORG,XSCALE,XPERIN,XBLC,XTRC,
* YOFF,YLEN,YORG,YSCALE,YPERIN,YBLC,YTRC)
IX1=NINT(XOFF)
IX2=NINT(XOFF+XLEN)
JY1=NINT(YOFF)
JY2=NINT(YOFF+YLEN)
DET=TR(2)*TR(6)-TR(3)*TR(5)
TR11=+TR(6)/DET
TR12=-TR(3)/DET
TR21=-TR(5)/DET
TR22=+TR(2)/DET
DX=1.0/XSCALE
DY=1.0/YSCALE
X1=(XOFF-XORG)*DX-TR(1)
Y1=(YOFF-YORG)*DY-TR(4)
DXX=TR11*DX
DXY=TR12*DY
DYX=TR21*DX
DYY=TR22*DY
XI1=TR11*X1+TR12*Y1
YJ1=TR21*X1+TR22*Y1
DO 40 JY=JY1,JY2
XI=XI1
YJ=YJ1
BUFFER(2)=FLOAT(JY)
NPIX=2
DO 30 IX=IX1,IX2
I=INT(XI)
J=INT(YJ)
IF (I.GE.I1 .AND. I.LT.I2 .AND. J.GE.J1 .AND. J.LT.J2) THEN
IF (NPIX.EQ.2) BUFFER(1)=FLOAT(IX)
II=I+1
JJ=J+1
X=XI-FLOAT(I)
Y=YJ-FLOAT(J)
AXY=(1.0-X)*(A(I,J)+Y*(A(I,JJ)-A(I,J)))+
* X*(A(II,J)+Y*(A(II,JJ)-A(II,J)))
K=NINT((AXY-BG)*ASCALE)
IF (K.LT.0) K=0
IF (K.GE.NC) K=NC-1
NPIX=NPIX+1
BUFFER(NPIX)=FLOAT(K+IC1)
ENDIF
XI=XI+DXX
YJ=YJ+DYX
30 CONTINUE
CALL GREXEC(GRGTYP,26,BUFFER,NPIX,CHR,LCHR)
XI1=XI1+DXY
YJ1=YJ1+DYY
40 CONTINUE
END
C
SUBROUTINE PGCLPS(A,IDIM,JDIM,I1,I2,J1,J2,BG,TR,ASCALE,IR,IG,IB,
* NC,LCOLOR)
C -----------------------------------------------------------------
C
C Postscript support subroutine for PGCELL.
C
INCLUDE 'grpckg1.inc'
REAL A(IDIM,*),TR(*)
INTEGER IR(0:*),IG(0:*),IB(0:*)
INTEGER VALUE(33)
LOGICAL LCOLOR
CHARACTER INLINE*80
C
C Set clipping rectangle in device.
C
CALL DSQINF(XOFF,XLEN,XORG,XSCALE,XPERIN,XBLC,XTRC,
* YOFF,YLEN,YORG,YSCALE,YPERIN,YBLC,YTRC)
WRITE (INLINE,100) NINT(XOFF),NINT(YOFF),NINT(XLEN),NINT(YLEN),
* -NINT(XLEN)
100 FORMAT(I6,I6,' moveto ',I6, ' 0 rlineto 0 ',I6,' rlineto ',
*I6,' 0 rlineto')
CALL GRTERM
CALL GRESC(' newpath ')
CALL GRESC(INLINE)
CALL GRESC(' closepath ')
C
C Work out the nunmber of X and Y pixels for PS image, with NDOTS per
C inch, and build an image transformation matrix.
C
NDOTS=100
C IF (LCOLOR) NDOTS=50
NXP=NINT(FLOAT(NDOTS)*XLEN/XPERIN)
NYP=NINT(FLOAT(NDOTS)*YLEN/YPERIN)
DXI=FLOAT(I2-I1)/FLOAT(NXP)
DYJ=FLOAT(J2-J1)/FLOAT(NYP)
DET=TR(2)*TR(6)-TR(3)*TR(5)
TR11=+TR(6)/DET
TR12=-TR(3)/DET
TR21=-TR(5)/DET
TR22=+TR(2)/DET
AT=TR11/(XSCALE*DXI)
BT=TR21/(XSCALE*DYJ)
CT=TR12/(YSCALE*DXI)
DT=TR22/(YSCALE*DYJ)
TX=-(TR11*(XORG/XSCALE+TR(1))+TR12*(YORG/YSCALE+TR(4))+I1)/DXI
TY=-(TR21*(XORG/XSCALE+TR(1))+TR22*(YORG/YSCALE+TR(4))+J1)/DYJ
C
C Use a PostScript "image" operator.
C
WRITE (INLINE, '(A,I5,A)') '/picstr ',NXP,' string def'
CALL GRESC(INLINE)
WRITE (INLINE,110) NXP,NYP,AT,BT,CT,DT,TX,TY
110 FORMAT(2I4,' 8 [',6(1PE10.3,' '),']')
CALL GRESC(INLINE)
CALL GRESC('{ currentfile picstr readhexstring pop}')
IF (LCOLOR) THEN
CALL GRESC(' false 3 colorimage')
ELSE
CALL GRESC(' image')
ENDIF
C
C Write out the image array in hexadecimal.
C
ASCALE=ASCALE*255.0/FLOAT(NC-1)
YJ=FLOAT(J1)
DO 20 JP=1,NYP
J=INT(YJ)
Y=YJ-FLOAT(J)
JJ=J+1
IF (JJ.GT.J2) JJ=J2
XI=FLOAT(I1)
L=0
DO 10 IP=1,NXP
L=L+1
I=INT(XI)
X=XI-FLOAT(I)
II=I+1
IF (II.GT.I2) II=I2
AXY=(1.0-X)*(A(I,J)+Y*(A(I,JJ)-A(I,J)))+
* X*(A(II,J)+Y*(A(II,JJ)-A(II,J)))
IC=NINT((AXY-BG)*ASCALE)
IF (IC.LT.0) IC=0
IF (IC.GE.NC) IC=NC-1
IF (LCOLOR) THEN
VALUE(L)=IR(IC)
VALUE(L+1)=IG(IC)
VALUE(L+2)=IB(IC)
L=L+2
ELSE
VALUE(L)=(IR(IC)+IG(IC)+IB(IC))/3
ENDIF
IF (L.EQ.33) THEN
WRITE(INLINE,120) (VALUE(K),K=1,33)
120 FORMAT(33Z2.2)
CALL GRESC(INLINE(1:66))
L=0
ENDIF
XI=XI+DXI
10 CONTINUE
IF (L.NE.0) THEN
WRITE(INLINE,120) (VALUE(K),K=1,L)
CALL GRESC(INLINE(1:2*L))
ENDIF
YJ=YJ+DYJ
20 CONTINUE
CALL GRESC(' newpath ')
CALL GRTERM
END
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
|