1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
|
#include "../../../src/raft/configuration.h"
#include "../../../src/raft/flags.h"
#include "../../../src/raft/progress.h"
#include "../lib/cluster.h"
#include "../../lib/runner.h"
/******************************************************************************
*
* Fixture
*
*****************************************************************************/
struct fixture
{
FIXTURE_CLUSTER;
};
/******************************************************************************
*
* Helper macros
*
*****************************************************************************/
/* Standard startup sequence, bootstrapping the cluster and electing server 0 */
#define BOOTSTRAP_START_AND_ELECT \
CLUSTER_BOOTSTRAP; \
CLUSTER_START; \
CLUSTER_ELECT(0); \
ASSERT_TIME(1045)
/******************************************************************************
*
* Set up a cluster with a two servers.
*
*****************************************************************************/
static void *setUp(const MunitParameter params[], MUNIT_UNUSED void *user_data)
{
struct fixture *f = munit_malloc(sizeof *f);
SETUP_CLUSTER(2);
return f;
}
static void tearDown(void *data)
{
struct fixture *f = data;
TEAR_DOWN_CLUSTER;
free(f);
}
/******************************************************************************
*
* Assertions
*
*****************************************************************************/
/* Assert that the I'th server is in follower state. */
#define ASSERT_FOLLOWER(I) munit_assert_int(CLUSTER_STATE(I), ==, RAFT_FOLLOWER)
/* Assert that the I'th server is in candidate state. */
#define ASSERT_CANDIDATE(I) \
munit_assert_int(CLUSTER_STATE(I), ==, RAFT_CANDIDATE)
/* Assert that the I'th server is in leader state. */
#define ASSERT_LEADER(I) munit_assert_int(CLUSTER_STATE(I), ==, RAFT_LEADER)
/* Assert that the fixture time matches the given value */
#define ASSERT_TIME(TIME) munit_assert_int(CLUSTER_TIME, ==, TIME)
/* Assert that the configuration of the I'th server matches the given one */
#define ASSERT_CONFIGURATION(I, EXPECTED) \
do { \
struct raft *_raft = CLUSTER_RAFT(I); \
struct raft_configuration *_actual = &_raft->configuration; \
unsigned _i; \
\
munit_assert_uint(_actual->n, ==, (EXPECTED)->n); \
for (_i = 0; _i < _actual->n; _i++) { \
struct raft_server *_server1 = &_actual->servers[_i]; \
struct raft_server *_server2 = &(EXPECTED)->servers[_i]; \
munit_assert_ulong(_server1->id, ==, _server2->id); \
munit_assert_int(_server1->role, ==, _server2->role); \
munit_assert_string_equal(_server1->address, _server2->address); \
} \
} while (0)
/******************************************************************************
*
* Log replication.
*
*****************************************************************************/
SUITE(replication)
/* A leader sends a heartbeat message as soon as it gets elected. */
TEST(replication, sendInitialHeartbeat, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft *raft;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
/* Server 0 becomes candidate and sends vote requests after the election
* timeout. */
CLUSTER_STEP_N(19);
ASSERT_TIME(1000);
ASSERT_CANDIDATE(0);
/* Server 0 receives the vote result, becomes leader and sends
* heartbeats. */
CLUSTER_STEP_N(6);
ASSERT_LEADER(0);
ASSERT_TIME(1030);
raft = CLUSTER_RAFT(0);
munit_assert_int(raft->leader_state.progress[1].last_send, ==, 1030);
/* Server 1 receives the heartbeat from server 0 and resets its election
* timer. */
raft = CLUSTER_RAFT(1);
munit_assert_int(raft->election_timer_start, ==, 1015);
CLUSTER_STEP_N(2);
munit_assert_int(raft->election_timer_start, ==, 1045);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 1);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 1);
return MUNIT_OK;
}
/* After receiving an AppendEntriesResult, a leader has set the feature flags of
* a node. */
TEST(replication, receiveFlags, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft *raft;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
/* Server 0 becomes leader and sends the initial heartbeat. */
CLUSTER_STEP_N(24);
ASSERT_LEADER(0);
ASSERT_TIME(1030);
/* Flags is empty */
raft = CLUSTER_RAFT(0);
munit_assert_ullong(raft->leader_state.progress[1].features, ==, 0);
raft = CLUSTER_RAFT(1);
/* Server 1 receives the first heartbeat. */
CLUSTER_STEP_N(4);
munit_assert_int(raft->election_timer_start, ==, 1045);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 1);
/* Server 0 receives the reply to the heartbeat. */
CLUSTER_STEP_N(2);
munit_assert_int(CLUSTER_N_RECV(0, RAFT_IO_APPEND_ENTRIES_RESULT), ==, 1);
raft = CLUSTER_RAFT(0);
munit_assert_ullong(raft->leader_state.progress[1].features, ==,
RAFT_DEFAULT_FEATURE_FLAGS);
return MUNIT_OK;
}
/* A leader keeps sending heartbeat messages at regular intervals to
* maintain leadership. */
TEST(replication, sendFollowupHeartbeat, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft *raft;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
/* Server 0 becomes leader and sends the initial heartbeat. */
CLUSTER_STEP_N(24);
ASSERT_LEADER(0);
ASSERT_TIME(1030);
raft = CLUSTER_RAFT(1);
/* Server 1 receives the first heartbeat. */
CLUSTER_STEP_N(4);
munit_assert_int(raft->election_timer_start, ==, 1045);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 1);
/* Server 1 receives the second heartbeat. */
CLUSTER_STEP_N(8);
munit_assert_int(raft->election_timer_start, ==, 1215);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 2);
/* Server 1 receives the third heartbeat. */
CLUSTER_STEP_N(7);
munit_assert_int(raft->election_timer_start, ==, 1315);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 3);
/* Server 1 receives the fourth heartbeat. */
CLUSTER_STEP_N(7);
munit_assert_int(raft->election_timer_start, ==, 1415);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 4);
munit_assert_int(CLUSTER_N_RECV(0, RAFT_IO_APPEND_ENTRIES_RESULT), ==, 4);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 4);
munit_assert_int(CLUSTER_N_SEND(1, RAFT_IO_APPEND_ENTRIES_RESULT), ==, 4);
return MUNIT_OK;
}
/* If a leader replicates some entries during a given heartbeat interval, it
* skips sending the heartbeat for that interval. */
TEST(replication, sendSkipHeartbeat, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft *raft;
struct raft_apply req;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
raft = CLUSTER_RAFT(0);
/* Server 0 becomes leader and sends the first two heartbeats. */
CLUSTER_STEP_UNTIL_ELAPSED(1215);
ASSERT_LEADER(0);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 2);
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 2);
/* Server 0 starts replicating a new entry after 15 milliseconds. */
CLUSTER_STEP_UNTIL_ELAPSED(15);
ASSERT_TIME(1230);
CLUSTER_APPLY_ADD_X(0, &req, 1, NULL);
CLUSTER_STEP_N(1);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 3);
munit_assert_int(raft->leader_state.progress[1].last_send, ==, 1230);
/* When the heartbeat timeout expires, server 0 does not send an empty
* append entries. */
CLUSTER_STEP_UNTIL_ELAPSED(70);
ASSERT_TIME(1300);
CLUSTER_STEP_N(1);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 3);
munit_assert_int(raft->leader_state.progress[1].last_send, ==, 1230);
return MUNIT_OK;
}
/* The leader doesn't send replication messages to idle servers. */
TEST(replication, skipIdle, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_change req1;
struct raft_apply req2;
BOOTSTRAP_START_AND_ELECT;
CLUSTER_ADD(&req1);
CLUSTER_STEP_UNTIL_APPLIED(0, 3, 1000);
CLUSTER_APPLY_ADD_X(CLUSTER_LEADER, &req2, 1, NULL);
CLUSTER_STEP_UNTIL_ELAPSED(1000);
munit_assert_int(CLUSTER_LAST_APPLIED(0), ==, 4);
munit_assert_int(CLUSTER_LAST_APPLIED(1), ==, 4);
munit_assert_int(CLUSTER_LAST_APPLIED(2), ==, 0);
return MUNIT_OK;
}
/* A follower remains in probe mode until the leader receives a successful
* AppendEntries response. */
TEST(replication, sendProbe, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply req1;
struct raft_apply req2;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
/* Server 0 becomes leader and sends the initial heartbeat. */
CLUSTER_STEP_N(25);
ASSERT_LEADER(0);
ASSERT_TIME(1030);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 1);
/* Set a very high network latency for server 1, so server 0 will send a
* second probe AppendEntries without transitioning to pipeline mode. */
munit_assert_int(CLUSTER_N_RECV(1, RAFT_IO_APPEND_ENTRIES), ==, 0);
CLUSTER_SET_NETWORK_LATENCY(1, 250);
/* Server 0 receives a new entry after 15 milliseconds. Since the follower
* is still in probe mode and since an AppendEntries message was already
* sent recently, it does not send the new entry immediately. */
CLUSTER_STEP_UNTIL_ELAPSED(15);
CLUSTER_APPLY_ADD_X(0, &req1, 1, NULL);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 1);
/* A heartbeat timeout elapses without receiving a response, so server 0
* sends an new AppendEntries to server 1. */
CLUSTER_STEP_UNTIL_ELAPSED(85);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 2);
/* Server 0 receives a second entry after 15 milliseconds. Since the
* follower is still in probe mode and since an AppendEntries message was
* already sent recently, it does not send the new entry immediately. */
CLUSTER_STEP_UNTIL_ELAPSED(15);
CLUSTER_APPLY_ADD_X(0, &req2, 1, NULL);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 2);
/* Eventually server 0 receives AppendEntries results for both entries. */
CLUSTER_STEP_UNTIL_APPLIED(0, 4, 1000);
return MUNIT_OK;
}
static bool indices_updated(struct raft_fixture *f, void *data)
{
(void)f;
const struct raft *r = data;
return r->last_stored == 4 && r->leader_state.progress[1].match_index == 3;
}
/* A follower transitions to pipeline mode after the leader receives a
* successful AppendEntries response from it. */
TEST(replication, sendPipeline, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft *raft;
struct raft_apply req1;
struct raft_apply req2;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
raft = CLUSTER_RAFT(0);
/* Server 0 becomes leader and sends the initial heartbeat, receiving a
* successful response. */
CLUSTER_STEP_UNTIL_ELAPSED(1070);
ASSERT_LEADER(0);
ASSERT_TIME(1070);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 1);
/* Server 0 receives a new entry after 15 milliseconds. Since the follower
* has transitioned to pipeline mode the new entry is sent immediately and
* the next index is optimistically increased. */
CLUSTER_STEP_UNTIL_ELAPSED(15);
CLUSTER_APPLY_ADD_X(0, &req1, 1, NULL);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 2);
munit_assert_int(raft->leader_state.progress[1].next_index, ==, 4);
/* After another 15 milliseconds server 0 receives a second apply request,
* which is also sent out immediately */
CLUSTER_STEP_UNTIL_ELAPSED(15);
CLUSTER_APPLY_ADD_X(0, &req2, 1, NULL);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 3);
munit_assert_int(raft->leader_state.progress[1].next_index, ==, 5);
/* Wait until the leader has stored entry 4 and the follower has matched
* entry 3. Expect the commit index to have been updated to 3. */
CLUSTER_STEP_UNTIL(indices_updated, CLUSTER_RAFT(0), 2000);
munit_assert_ulong(raft->commit_index, ==, 3);
/* Eventually server 0 receives AppendEntries results for both entries. */
CLUSTER_STEP_UNTIL_APPLIED(0, 4, 1000);
return MUNIT_OK;
}
/* A follower disconnects while in probe mode. */
TEST(replication, sendDisconnect, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
/* Server 0 becomes leader and sends the initial heartbeat, however they
* fail because server 1 has disconnected. */
CLUSTER_STEP_N(24);
ASSERT_LEADER(0);
CLUSTER_DISCONNECT(0, 1);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 0);
/* After the heartbeat timeout server 0 retries, but still fails. */
CLUSTER_STEP_UNTIL_ELAPSED(100);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 0);
/* After another heartbeat timeout server 0 retries and this time
* succeeds. */
CLUSTER_STEP_UNTIL_ELAPSED(100);
CLUSTER_RECONNECT(0, 1);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 1);
return MUNIT_OK;
}
/* A follower disconnects while in pipeline mode. */
TEST(replication, sendDisconnectPipeline, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply req1;
struct raft_apply req2;
CLUSTER_BOOTSTRAP;
CLUSTER_START;
/* Server 0 becomes leader and sends a couple of heartbeats. */
CLUSTER_STEP_UNTIL_ELAPSED(1215);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 2);
/* It then starts to replicate a few entries, however the follower
* disconnects before delivering results. */
CLUSTER_APPLY_ADD_X(0, &req1, 1, NULL);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 3);
CLUSTER_APPLY_ADD_X(0, &req2, 1, NULL);
CLUSTER_STEP;
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 4);
CLUSTER_DISCONNECT(0, 1);
/* The next heartbeat fails, transitioning the follower back to probe
* mode. */
CLUSTER_STEP_UNTIL_ELAPSED(115);
munit_assert_int(CLUSTER_N_SEND(0, RAFT_IO_APPEND_ENTRIES), ==, 4);
/* After reconnection the follower eventually replicates the entries and
* reports back. */
CLUSTER_RECONNECT(0, 1);
CLUSTER_STEP_UNTIL_APPLIED(0, 3, 1000);
return MUNIT_OK;
}
static char *send_oom_heap_fault_delay[] = {"5", NULL};
static char *send_oom_heap_fault_repeat[] = {"1", NULL};
static MunitParameterEnum send_oom_params[] = {
{TEST_HEAP_FAULT_DELAY, send_oom_heap_fault_delay},
{TEST_HEAP_FAULT_REPEAT, send_oom_heap_fault_repeat},
{NULL, NULL},
};
/* Out of memory failures. */
TEST(replication, sendOom, setUp, tearDown, 0, send_oom_params)
{
struct fixture *f = data;
return MUNIT_SKIP;
struct raft_apply req;
BOOTSTRAP_START_AND_ELECT;
HEAP_FAULT_ENABLE;
CLUSTER_APPLY_ADD_X(0, &req, 1, NULL);
CLUSTER_STEP;
return MUNIT_OK;
}
/* A failure occurs upon submitting the I/O request. */
TEST(replication, persistError, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply req;
BOOTSTRAP_START_AND_ELECT;
raft_fixture_append_fault(&f->cluster, 0, 0);
CLUSTER_APPLY_ADD_X(0, &req, 1, NULL);
CLUSTER_STEP;
return MUNIT_OK;
}
/* Receive the same entry a second time, before the first has been persisted. */
TEST(replication, recvTwice, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply *req = munit_malloc(sizeof *req);
BOOTSTRAP_START_AND_ELECT;
CLUSTER_APPLY_ADD_X(CLUSTER_LEADER, req, 1, NULL);
/* Set a high disk latency for server 1, so server 0 won't receive an
* AppendEntries result within the heartbeat and will re-send the same
* entries */
CLUSTER_SET_DISK_LATENCY(1, 300);
CLUSTER_STEP_UNTIL_DELIVERED(0, 1, 100); /* First AppendEntries */
CLUSTER_STEP_UNTIL_ELAPSED(110); /* Heartbeat timeout */
CLUSTER_STEP_UNTIL_DELIVERED(0, 1, 100); /* Second AppendEntries */
CLUSTER_STEP_UNTIL_APPLIED(0, req->index, 500);
free(req);
return MUNIT_OK;
}
/* If the term in the request is stale, the server rejects it. */
TEST(replication, recvStaleTerm, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
BOOTSTRAP_START_AND_ELECT;
/* Set a very high election timeout and the disconnect the leader so it will
* keep sending heartbeats. */
raft_fixture_set_randomized_election_timeout(&f->cluster, 0, 5000);
raft_set_election_timeout(CLUSTER_RAFT(0), 5000);
CLUSTER_SATURATE_BOTHWAYS(0, 1);
CLUSTER_SATURATE_BOTHWAYS(0, 2);
/* Eventually a new leader gets elected. */
CLUSTER_STEP_UNTIL_HAS_NO_LEADER(5000);
CLUSTER_STEP_UNTIL_HAS_LEADER(10000);
munit_assert_int(CLUSTER_LEADER, ==, 1);
/* Reconnect the old leader to the current follower. */
CLUSTER_DESATURATE_BOTHWAYS(0, 2);
/* Step a few times, so the old leader sends heartbeats to the follower,
* which rejects them. */
CLUSTER_STEP_UNTIL_ELAPSED(200);
return MUNIT_OK;
}
/* If server's log is shorter than prevLogIndex, the request is rejected . */
TEST(replication, recvMissingEntries, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry;
CLUSTER_BOOTSTRAP;
/* Server 0 has an entry that server 1 doesn't have */
entry.type = RAFT_COMMAND;
entry.term = 1;
FsmEncodeSetX(1, &entry.buf);
CLUSTER_ADD_ENTRY(0, &entry);
/* Server 0 wins the election because it has a longer log. */
CLUSTER_START;
CLUSTER_STEP_UNTIL_HAS_LEADER(5000);
munit_assert_int(CLUSTER_LEADER, ==, 0);
/* The first server replicates missing entries to the second. */
CLUSTER_STEP_UNTIL_APPLIED(1, 3, 3000);
return MUNIT_OK;
}
/* If the term of the last log entry on the server is different from the one
* prevLogTerm, and value of prevLogIndex is greater than server's commit commit
* index (i.e. this is a normal inconsistency), we reject the request. */
TEST(replication, recvPrevLogTermMismatch, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry1;
struct raft_entry entry2;
CLUSTER_BOOTSTRAP;
/* The servers have an entry with a conflicting term. */
entry1.type = RAFT_COMMAND;
entry1.term = 2;
FsmEncodeSetX(1, &entry1.buf);
CLUSTER_ADD_ENTRY(0, &entry1);
entry2.type = RAFT_COMMAND;
entry2.term = 1;
FsmEncodeSetX(2, &entry2.buf);
CLUSTER_ADD_ENTRY(1, &entry2);
CLUSTER_START;
CLUSTER_ELECT(0);
/* The follower eventually replicates the entry */
CLUSTER_STEP_UNTIL_APPLIED(1, 2, 3000);
return MUNIT_OK;
}
/* The follower has an uncommitted log entry that conflicts with a new one sent
* by the leader (same index but different term). The follower's conflicting log
* entry happens to be a configuration change. In that case the follower
* discards the conflicting entry from its log and rolls back its configuration
* to the initial one contained in the log entry at index 1. */
TEST(replication, recvRollbackConfigurationToInitial, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry1;
struct raft_entry entry2;
struct raft_configuration base; /* Committed configuration at index 1 */
struct raft_configuration conf; /* Uncommitted configuration at index 2 */
CLUSTER_BOOTSTRAP;
CLUSTER_CONFIGURATION(&base);
/* Both servers have an entry at index 2, but with conflicting terms. The
* entry of the second server is a configuration change. */
entry1.type = RAFT_COMMAND;
entry1.term = 2;
FsmEncodeSetX(1, &entry1.buf);
CLUSTER_ADD_ENTRY(0, &entry1);
entry2.type = RAFT_CHANGE;
entry2.term = 1;
CLUSTER_CONFIGURATION(&conf);
raft_configuration_add(&conf, 3, "3", 2);
raft_configuration_encode(&conf, &entry2.buf);
CLUSTER_ADD_ENTRY(1, &entry2);
/* At startup the second server uses the most recent configuration, i.e. the
* one contained in the entry that we just added. The server can't know yet
* if it's committed or not, and regards it as pending configuration
* change. */
CLUSTER_START;
ASSERT_CONFIGURATION(1, &conf);
/* The first server gets elected. */
CLUSTER_ELECT(0);
/* The second server eventually replicates the first server's log entry at
* index 2, truncating its own log and rolling back to the configuration
* contained in the log entry at index 1. */
CLUSTER_STEP_UNTIL_APPLIED(1, 2, 3000);
ASSERT_CONFIGURATION(0, &base);
ASSERT_CONFIGURATION(1, &base);
raft_configuration_close(&base);
raft_configuration_close(&conf);
return MUNIT_OK;
}
/* The follower has an uncommitted log entry that conflicts with a new one sent
* by the leader (same index but different term). The follower's conflicting log
* entry happens to be a configuration change. There's also an older committed
* configuration entry present. In that case the follower discards the
* conflicting entry from its log and rolls back its configuration to the
* committed one in the older configuration entry. */
TEST(replication, recvRollbackConfigurationToPrevious, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry1;
struct raft_entry entry2;
struct raft_entry entry3;
struct raft_entry entry4;
struct raft_configuration base; /* Committed configuration at index 2 */
struct raft_configuration conf; /* Uncommitted configuration at index 3 */
CLUSTER_BOOTSTRAP;
CLUSTER_CONFIGURATION(&base);
/* Both servers have a matching configuration entry at index 2. */
CLUSTER_CONFIGURATION(&conf);
entry1.type = RAFT_CHANGE;
entry1.term = 1;
raft_configuration_encode(&conf, &entry1.buf);
CLUSTER_ADD_ENTRY(0, &entry1);
entry2.type = RAFT_CHANGE;
entry2.term = 1;
raft_configuration_encode(&conf, &entry2.buf);
CLUSTER_ADD_ENTRY(1, &entry2);
/* Both servers have an entry at index 3, but with conflicting terms. The
* entry of the second server is a configuration change. */
entry3.type = RAFT_COMMAND;
entry3.term = 2;
FsmEncodeSetX(1, &entry3.buf);
CLUSTER_ADD_ENTRY(0, &entry3);
entry4.type = RAFT_CHANGE;
entry4.term = 1;
raft_configuration_add(&conf, 3, "3", 2);
raft_configuration_encode(&conf, &entry4.buf);
CLUSTER_ADD_ENTRY(1, &entry4);
/* At startup the second server uses the most recent configuration, i.e. the
* one contained in the log entry at index 3. The server can't know yet if
* it's committed or not, and regards it as pending configuration change. */
CLUSTER_START;
ASSERT_CONFIGURATION(1, &conf);
/* The first server gets elected. */
CLUSTER_ELECT(0);
/* The second server eventually replicates the first server's log entry at
* index 3, truncating its own log and rolling back to the configuration
* contained in the log entry at index 2. */
CLUSTER_STEP_UNTIL_APPLIED(1, 3, 3000);
ASSERT_CONFIGURATION(0, &base);
ASSERT_CONFIGURATION(1, &base);
raft_configuration_close(&base);
raft_configuration_close(&conf);
return MUNIT_OK;
}
/* The follower has an uncommitted log entry that conflicts with a new one sent
* by the leader (same index but different term). The follower's conflicting log
* entry happens to be a configuration change. The follower's log has been
* truncated after a snashot and does not contain the previous committed
* configuration anymore. In that case the follower discards the conflicting
* entry from its log and rolls back its configuration to the previous committed
* one, which was cached when the snapshot was restored. */
TEST(replication, recvRollbackConfigurationToSnapshot, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry1;
struct raft_entry entry2;
struct raft_configuration base; /* Committed configuration at index 1 */
struct raft_configuration conf; /* Uncommitted configuration at index 2 */
int rv;
CLUSTER_CONFIGURATION(&conf);
CLUSTER_CONFIGURATION(&base);
/* Bootstrap the first server. This creates a log entry at index 1
* containing the initial configuration. */
rv = raft_bootstrap(CLUSTER_RAFT(0), &conf);
munit_assert_int(rv, ==, 0);
/* The second server has a snapshot up to entry 1. Entry 1 is not present in
* the log. */
CLUSTER_SET_SNAPSHOT(1 /* */,
1 /* last index */,
1 /* last term */,
1 /* conf index */,
5 /* x */,
0 /* y */);
CLUSTER_SET_TERM(1, 1);
/* Both servers have an entry at index 2, but with conflicting terms. The
* entry of the second server is a configuration change and gets appended to
* the truncated log. */
entry1.type = RAFT_COMMAND;
entry1.term = 3;
FsmEncodeSetX(1, &entry1.buf);
CLUSTER_ADD_ENTRY(0, &entry1);
entry2.type = RAFT_CHANGE;
entry2.term = 2;
raft_configuration_add(&conf, 3, "3", 2);
raft_configuration_encode(&conf, &entry2.buf);
CLUSTER_ADD_ENTRY(1, &entry2);
/* At startup the second server uses the most recent configuration, i.e. the
* one contained in the log entry at index 2. The server can't know yet if
* it's committed or not, and regards it as pending configuration change. */
CLUSTER_START;
ASSERT_CONFIGURATION(1, &conf);
CLUSTER_ELECT(0);
/* The second server eventually replicates the first server's log entry at
* index 3, truncating its own log and rolling back to the configuration
* contained in the snapshot, which is not present in the log anymore but
* was cached at startup. */
CLUSTER_STEP_UNTIL_APPLIED(1, 3, 3000);
ASSERT_CONFIGURATION(0, &base);
ASSERT_CONFIGURATION(1, &base);
raft_configuration_close(&base);
raft_configuration_close(&conf);
return MUNIT_OK;
}
/* If any of the new entry has the same index of an existing entry in our log,
* but different term, and that entry index is already committed, we bail out
* with an error. */
TEST(replication, recvPrevIndexConflict, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry1;
struct raft_entry entry2;
CLUSTER_BOOTSTRAP;
/* The servers have an entry with a conflicting term. */
entry1.type = RAFT_COMMAND;
entry1.term = 2;
FsmEncodeSetX(1, &entry1.buf);
CLUSTER_ADD_ENTRY(0, &entry1);
entry2.type = RAFT_COMMAND;
entry2.term = 1;
FsmEncodeSetX(2, &entry2.buf);
CLUSTER_ADD_ENTRY(1, &entry2);
CLUSTER_START;
CLUSTER_ELECT(0);
/* Artificially bump the commit index on the second server */
CLUSTER_RAFT(1)->commit_index = 2;
CLUSTER_STEP;
CLUSTER_STEP;
return MUNIT_OK;
}
/* A write log request is submitted for outstanding log entries. If some entries
* are already existing in the log, they will be skipped. */
TEST(replication, recvSkip, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply *req = munit_malloc(sizeof *req);
BOOTSTRAP_START_AND_ELECT;
/* Submit an entry */
CLUSTER_APPLY_ADD_X(0, req, 1, NULL);
/* The leader replicates the entry to the follower however it does not get
* notified about the result, so it sends the entry again. */
CLUSTER_STEP;
CLUSTER_SATURATE_BOTHWAYS(0, 1);
CLUSTER_STEP_UNTIL_ELAPSED(150);
/* The follower reconnects and receives again the same entry. This time the
* leader receives the notification. */
CLUSTER_DESATURATE_BOTHWAYS(0, 1);
CLUSTER_STEP_UNTIL_APPLIED(0, req->index, 2000);
free(req);
return MUNIT_OK;
}
/* If the index and term of the last snapshot on the server match prevLogIndex
* and prevLogTerm the request is accepted. */
TEST(replication, recvMatch_last_snapshot, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry;
struct raft_configuration configuration;
int rv;
CLUSTER_CONFIGURATION(&configuration);
rv = raft_bootstrap(CLUSTER_RAFT(0), &configuration);
munit_assert_int(rv, ==, 0);
raft_configuration_close(&configuration);
/* The first server has entry 2 */
entry.type = RAFT_COMMAND;
entry.term = 2;
FsmEncodeSetX(5, &entry.buf);
CLUSTER_ADD_ENTRY(0, &entry);
/* The second server has a snapshot up to entry 2 */
CLUSTER_SET_SNAPSHOT(1 /* */,
2 /* last index */,
2 /* last term */,
1 /* conf index */,
5 /* x */,
0 /* y */);
CLUSTER_SET_TERM(1, 2);
CLUSTER_START;
CLUSTER_ELECT(0);
/* Apply an additional entry and check that it gets replicated on the
* follower. */
CLUSTER_MAKE_PROGRESS;
CLUSTER_STEP_UNTIL_APPLIED(1, 3, 3000);
return MUNIT_OK;
}
/* If a candidate server receives a request containing the same term as its
* own, it it steps down to follower and accept the request . */
TEST(replication, recvCandidateSameTerm, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
CLUSTER_BOOTSTRAP;
/* Disconnect server 2 from the other two and set a low election timeout on
* it, so it will immediately start an election. */
CLUSTER_SATURATE_BOTHWAYS(2, 0);
CLUSTER_SATURATE_BOTHWAYS(2, 1);
raft_fixture_set_randomized_election_timeout(&f->cluster, 2, 800);
raft_set_election_timeout(CLUSTER_RAFT(2), 800);
/* Server 2 becomes candidate. */
CLUSTER_START;
CLUSTER_STEP_UNTIL_STATE_IS(2, RAFT_CANDIDATE, 1000);
munit_assert_int(CLUSTER_TERM(2), ==, 2);
/* Server 0 wins the election and replicates an entry. */
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_LEADER, 2000);
munit_assert_int(CLUSTER_TERM(0), ==, 2);
munit_assert_int(CLUSTER_TERM(1), ==, 2);
munit_assert_int(CLUSTER_TERM(2), ==, 2);
CLUSTER_MAKE_PROGRESS;
/* Now reconnect the third server, which eventually steps down and
* replicates the entry. */
munit_assert_int(CLUSTER_STATE(2), ==, RAFT_CANDIDATE);
munit_assert_int(CLUSTER_TERM(2), ==, 2);
CLUSTER_DESATURATE_BOTHWAYS(2, 0);
CLUSTER_DESATURATE_BOTHWAYS(2, 1);
CLUSTER_STEP_UNTIL_STATE_IS(2, RAFT_FOLLOWER, 2000);
CLUSTER_STEP_UNTIL_APPLIED(2, 2, 2000);
return MUNIT_OK;
}
/* If a candidate server receives a request containing an higher term as its
* own, it it steps down to follower and accept the request . */
TEST(replication, recvCandidateHigherTerm, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
CLUSTER_BOOTSTRAP;
/* Set a high election timeout on server 1, so it won't become candidate */
raft_fixture_set_randomized_election_timeout(&f->cluster, 1, 2000);
raft_set_election_timeout(CLUSTER_RAFT(1), 2000);
/* Disconnect server 2 from the other two. */
CLUSTER_SATURATE_BOTHWAYS(2, 0);
CLUSTER_SATURATE_BOTHWAYS(2, 1);
/* Set a low election timeout on server 0, and disconnect it from server 1,
* so by the time it wins the second round, server 2 will have turned
* candidate */
raft_fixture_set_randomized_election_timeout(&f->cluster, 0, 800);
raft_set_election_timeout(CLUSTER_RAFT(0), 800);
CLUSTER_SATURATE_BOTHWAYS(0, 1);
CLUSTER_START;
/* Server 2 becomes candidate, and server 0 already is candidate. */
CLUSTER_STEP_UNTIL_STATE_IS(2, RAFT_CANDIDATE, 1500);
munit_assert_int(CLUSTER_TERM(2), ==, 2);
munit_assert_int(CLUSTER_STATE(0), ==, RAFT_CANDIDATE);
munit_assert_int(CLUSTER_TERM(0), ==, 2);
/* Server 0 starts a new election, while server 2 is still candidate */
CLUSTER_STEP_UNTIL_TERM_IS(0, 3, 2000);
munit_assert_int(CLUSTER_TERM(2), ==, 2);
munit_assert_int(CLUSTER_STATE(2), ==, RAFT_CANDIDATE);
/* Reconnect the first and second server and let the election succeed and
* replicate an entry. */
CLUSTER_DESATURATE_BOTHWAYS(0, 1);
CLUSTER_STEP_UNTIL_HAS_LEADER(1000);
CLUSTER_MAKE_PROGRESS;
/* Now reconnect the third server, which eventually steps down and
* replicates the entry. */
munit_assert_int(CLUSTER_STATE(2), ==, RAFT_CANDIDATE);
munit_assert_int(CLUSTER_TERM(2), ==, 2);
CLUSTER_DESATURATE_BOTHWAYS(2, 0);
CLUSTER_DESATURATE_BOTHWAYS(2, 1);
CLUSTER_STEP_UNTIL_STATE_IS(2, RAFT_FOLLOWER, 2000);
CLUSTER_STEP_UNTIL_APPLIED(2, 2, 2000);
return MUNIT_OK;
}
/* If the server handling the response is not the leader, the result
* is ignored. */
TEST(replication, resultNotLeader, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
BOOTSTRAP_START_AND_ELECT;
/* Set a very high-latency for the second server's outgoing messages, so the
* first server won't get notified about the results for a while. */
CLUSTER_SET_NETWORK_LATENCY(1, 400);
/* Set a low election timeout on the first server so it will step down very
* soon. */
raft_fixture_set_randomized_election_timeout(&f->cluster, 0, 200);
raft_set_election_timeout(CLUSTER_RAFT(0), 200);
/* Eventually leader steps down and becomes candidate. */
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_CANDIDATE, 2000);
/* The AppendEntries result eventually gets delivered, but the candidate
* ignores it. */
CLUSTER_STEP_UNTIL_ELAPSED(400);
return MUNIT_OK;
}
/* If the response has a term which is lower than the server's one, it's
* ignored. */
TEST(replication, resultLowerTerm, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
BOOTSTRAP_START_AND_ELECT;
/* Set a very high-latency for the second server's outgoing messages, so the
* first server won't get notified about the results for a while. */
CLUSTER_SET_NETWORK_LATENCY(1, 2000);
/* Set a high election timeout on server 1, so it won't become candidate */
raft_fixture_set_randomized_election_timeout(&f->cluster, 1, 2000);
raft_set_election_timeout(CLUSTER_RAFT(1), 2000);
/* Disconnect server 0 and set a low election timeout on it so it will step
* down very soon. */
CLUSTER_SATURATE_BOTHWAYS(0, 2);
raft_fixture_set_randomized_election_timeout(&f->cluster, 0, 200);
raft_set_election_timeout(CLUSTER_RAFT(0), 200);
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_FOLLOWER, 2000);
/* Make server 0 become leader again. */
CLUSTER_DESATURATE_BOTHWAYS(0, 2);
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_LEADER, 4000);
/* Eventually deliver the result message. */
CLUSTER_STEP_UNTIL_ELAPSED(2500);
return MUNIT_OK;
}
/* If the response has a term which is higher than the server's one, step down
* to follower. */
TEST(replication, resultHigherTerm, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
BOOTSTRAP_START_AND_ELECT;
/* Set a very high election timeout for server 0 so it won't step down. */
raft_fixture_set_randomized_election_timeout(&f->cluster, 0, 5000);
raft_set_election_timeout(CLUSTER_RAFT(0), 5000);
/* Disconnect the server 0 from the rest of the cluster. */
CLUSTER_SATURATE_BOTHWAYS(0, 1);
CLUSTER_SATURATE_BOTHWAYS(0, 2);
/* Eventually a new leader gets elected */
CLUSTER_STEP_UNTIL_HAS_NO_LEADER(2000);
CLUSTER_STEP_UNTIL_HAS_LEADER(4000);
munit_assert_int(CLUSTER_LEADER, ==, 1);
/* Reconnect the old leader to the current follower, which eventually
* replies with an AppendEntries result containing an higher term. */
CLUSTER_DESATURATE_BOTHWAYS(0, 2);
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_FOLLOWER, 2000);
return MUNIT_OK;
}
/* If the response fails because a log mismatch, the nextIndex for the server is
* updated and the relevant older entries are resent. */
TEST(replication, resultRetry, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_entry entry;
CLUSTER_BOOTSTRAP;
/* Add an additional entry to the first server that the second server does
* not have. */
entry.type = RAFT_COMMAND;
entry.term = 1;
FsmEncodeSetX(5, &entry.buf);
CLUSTER_ADD_ENTRY(0, &entry);
CLUSTER_START;
CLUSTER_ELECT(0);
/* The first server receives an AppendEntries result from the second server
* indicating that its log does not have the entry at index 2, so it will
* resend it. */
CLUSTER_STEP_UNTIL_APPLIED(1, 3, 2000);
return MUNIT_OK;
}
static void applyAssertStatusCb(struct raft_apply *req, int status)
{
int status_expected = (int)(intptr_t)(req->data);
munit_assert_int(status_expected, ==, status);
}
/* When the leader fails to write some new entries to disk, it steps down. */
TEST(replication, diskWriteFailure, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply *req = munit_malloc(sizeof(*req));
req->data = (void *)(intptr_t)RAFT_IOERR;
BOOTSTRAP_START_AND_ELECT;
raft_fixture_append_fault(&f->cluster, 0, 0);
CLUSTER_APPLY_ADD_X(0, req, 1, applyAssertStatusCb);
/* The leader steps down when its disk write fails. */
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_FOLLOWER, 2000);
free(req);
return MUNIT_OK;
}
/* A follower updates its term number while persisting entries. */
TEST(replication, newTermWhileAppending, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply *req = munit_malloc(sizeof(*req));
raft_term term;
CLUSTER_GROW;
/* Make sure that persisting entries will take a long time */
CLUSTER_SET_DISK_LATENCY(2, 3000);
BOOTSTRAP_START_AND_ELECT;
CLUSTER_APPLY_ADD_X(0, req, 1, NULL);
/* Wait for the leader to replicate the entry */
CLUSTER_STEP_UNTIL_ELAPSED(500);
/* Force a new term */
term = CLUSTER_RAFT(2)->current_term;
CLUSTER_DEPOSE;
CLUSTER_ELECT(1);
CLUSTER_STEP_UNTIL_ELAPSED(500);
munit_assert_ullong(CLUSTER_RAFT(2)->current_term, ==, term + 1);
/* Wait for the long disk write to complete */
CLUSTER_STEP_UNTIL_ELAPSED(3000);
free(req);
return MUNIT_OK;
}
/* A leader with slow disk commits an entry that it hasn't persisted yet,
* because enough followers to have a majority have aknowledged that they have
* appended the entry. The leader's last_stored field hence lags behind its
* commit_index. A new leader gets elected, with a higher commit index and sends
* first a new entry than a heartbeat to the old leader, that needs to update
* its commit_index taking into account its lagging last_stored. */
TEST(replication, lastStoredLaggingBehindCommitIndex, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
/* Server 0 takes a long time to persist entry 2 (the barrier) */
CLUSTER_SET_DISK_LATENCY(0, 10000);
/* Server 0 gets elected and creates a barrier entry at index 2 */
BOOTSTRAP_START_AND_ELECT;
/* Server 0 commits and applies barrier entry 2 even if it not persist it
* yet. */
CLUSTER_STEP_UNTIL_APPLIED(0, 2, 2000);
munit_assert_int(CLUSTER_RAFT(0)->last_stored, ==, 1);
munit_assert_int(CLUSTER_RAFT(0)->commit_index, ==, 2);
munit_assert_int(CLUSTER_RAFT(0)->last_applied, ==, 2);
/* Server 1 stored barrier entry 2, but did not yet receive a notification
* from server 0 about the new commit index. */
munit_assert_int(CLUSTER_RAFT(1)->last_stored, ==, 2);
munit_assert_int(CLUSTER_RAFT(1)->commit_index, ==, 1);
munit_assert_int(CLUSTER_RAFT(1)->last_applied, ==, 1);
/* Disconnect server 0 from server 1 and 2. */
CLUSTER_DISCONNECT(0, 1);
CLUSTER_DISCONNECT(0, 2);
/* Set a very high election timeout on server 0, so it won't step down for a
* while, even if disconnected. */
raft_fixture_set_randomized_election_timeout(&f->cluster, 0, 10000);
raft_set_election_timeout(CLUSTER_RAFT(0), 10000);
/* Server 1 and 2 eventually timeout and start an election, server 1
* wins. */
CLUSTER_STEP_UNTIL_HAS_NO_LEADER(4000);
CLUSTER_STEP_UNTIL_HAS_LEADER(2000);
munit_assert_int(CLUSTER_LEADER, ==, 1);
/* Server 1 commits the barrier entry at index 3 that it created at the
* start of its term. */
CLUSTER_STEP_UNTIL_APPLIED(1, 3, 2000);
/* Reconnect server 0 to server 1, which will start replicating entry 3 to
* it. */
CLUSTER_RECONNECT(0, 1);
CLUSTER_STEP_UNTIL_APPLIED(0, 3, 20000);
return MUNIT_OK;
}
/* A leader with faulty disk fails to persist the barrier entry upon election.
*/
TEST(replication, failPersistBarrier, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
/* Server 0 will fail to persist entry 2, a barrier */
raft_fixture_append_fault(&f->cluster, 0, 0);
/* Server 0 gets elected and creates a barrier entry at index 2 */
CLUSTER_BOOTSTRAP;
CLUSTER_START;
CLUSTER_START_ELECT(0);
/* Cluster recovers. */
CLUSTER_STEP_UNTIL_HAS_LEADER(20000);
return MUNIT_OK;
}
/* All servers fail to persist the barrier entry upon election of the first
* leader. Ensure the cluster is able to make progress afterwards.
*/
TEST(replication, failPersistBarrierFollower, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
CLUSTER_GROW;
/* The servers will fail to persist entry 2, a barrier */
raft_fixture_append_fault(&f->cluster, 1, 0);
raft_fixture_append_fault(&f->cluster, 2, 0);
/* Server 0 gets elected and creates a barrier entry at index 2 */
CLUSTER_BOOTSTRAP;
CLUSTER_START;
CLUSTER_START_ELECT(0);
CLUSTER_MAKE_PROGRESS;
CLUSTER_MAKE_PROGRESS;
CLUSTER_MAKE_PROGRESS;
return MUNIT_OK;
}
/* A leader originates a log entry, fails to persist it, and steps down.
* A follower that received the entry wins the ensuing election and sends
* the same entry back to the original leader, while the original leader
* still has an outgoing pending message that references its copy of the
* entry. This triggers the original leader to reinstate the entry in its
* log. */
TEST(replication, receiveSameWithPendingSend, setUp, tearDown, 0, NULL)
{
struct fixture *f = data;
struct raft_apply req;
/* Three voters. */
CLUSTER_GROW;
/* Server 0 is the leader. */
BOOTSTRAP_START_AND_ELECT;
/* Server 1 never gets the entry. */
raft_fixture_set_send_latency(&f->cluster, 0, 1, 10000);
/* Disk write fails, but not before the entry gets to server 2. */
CLUSTER_SET_DISK_LATENCY(0, 1000);
raft_fixture_append_fault(&f->cluster, 0, 0);
req.data = (void *)(intptr_t)RAFT_IOERR;
CLUSTER_APPLY_ADD_X(0, &req, 1, NULL);
/* Server 0 steps down. */
CLUSTER_STEP_UNTIL_STATE_IS(0, RAFT_FOLLOWER, 1500);
munit_assert_ullong(CLUSTER_RAFT(0)->current_term, ==, 2);
ASSERT_FOLLOWER(1);
ASSERT_FOLLOWER(2);
/* Only server 2 has the new entry. */
munit_assert_ullong(CLUSTER_RAFT(0)->last_stored, ==, 2);
munit_assert_ullong(CLUSTER_RAFT(1)->last_stored, ==, 2);
munit_assert_ullong(CLUSTER_RAFT(2)->last_stored, ==, 3);
/* Server 2 times out first and wins the election. */
raft_set_election_timeout(CLUSTER_RAFT(2), 500);
raft_fixture_start_elect(&f->cluster, 2);
CLUSTER_STEP_UNTIL_STATE_IS(2, RAFT_LEADER, 1000);
munit_assert_ullong(CLUSTER_RAFT(2)->current_term, ==, 3);
/* Server 0 gets the same entry back from server 2. */
CLUSTER_STEP_UNTIL_APPLIED(2, 3, 1000);
return MUNIT_OK;
}
|