1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
// The contents of this file is based on contents of:
//
// https://github.com/ulfjack/ryu/blob/master/ryu/common.h,
// https://github.com/ulfjack/ryu/blob/master/ryu/d2s.c, and
// https://github.com/ulfjack/ryu/blob/master/ryu/f2s.c,
//
// which are distributed under the following terms:
//--------------------------------------------------------------------------------
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
//--------------------------------------------------------------------------------
// Modifications Copyright 2020 Junekey Jeon
//
// Following modifications were made to the original contents:
// - Put everything inside the namespace jkj::fp_to_chars_detail
// - Combined decimalLength9 (from common.h) and decimalLength17 (from d2s.c)
// into a single template function decimal_length
// - Combined to_chars (from f2s.c) and to_chars (from d2s.c) into a
// single template function fp_to_chars_impl
// - Removed index counting statements; replaced them with pointer increments
// - Removed usages of DIGIT_TABLE; replaced them with radix_100_table
//
// These modifications, together with other contents of this file may be used
// under the same terms as the original contents.
#include "fp_to_chars.h"
namespace jkj {
namespace fp_to_chars_detail {
static constexpr char radix_100_table[] = {
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4',
'0', '5', '0', '6', '0', '7', '0', '8', '0', '9',
'1', '0', '1', '1', '1', '2', '1', '3', '1', '4',
'1', '5', '1', '6', '1', '7', '1', '8', '1', '9',
'2', '0', '2', '1', '2', '2', '2', '3', '2', '4',
'2', '5', '2', '6', '2', '7', '2', '8', '2', '9',
'3', '0', '3', '1', '3', '2', '3', '3', '3', '4',
'3', '5', '3', '6', '3', '7', '3', '8', '3', '9',
'4', '0', '4', '1', '4', '2', '4', '3', '4', '4',
'4', '5', '4', '6', '4', '7', '4', '8', '4', '9',
'5', '0', '5', '1', '5', '2', '5', '3', '5', '4',
'5', '5', '5', '6', '5', '7', '5', '8', '5', '9',
'6', '0', '6', '1', '6', '2', '6', '3', '6', '4',
'6', '5', '6', '6', '6', '7', '6', '8', '6', '9',
'7', '0', '7', '1', '7', '2', '7', '3', '7', '4',
'7', '5', '7', '6', '7', '7', '7', '8', '7', '9',
'8', '0', '8', '1', '8', '2', '8', '3', '8', '4',
'8', '5', '8', '6', '8', '7', '8', '8', '8', '9',
'9', '0', '9', '1', '9', '2', '9', '3', '9', '4',
'9', '5', '9', '6', '9', '7', '9', '8', '9', '9'
};
template <class UInt>
static constexpr std::uint32_t decimal_length(UInt const v) {
if constexpr (std::is_same_v<UInt, std::uint32_t>) {
// Function precondition: v is not a 10-digit number.
// (f2s: 9 digits are sufficient for round-tripping.)
// (d2fixed: We print 9-digit blocks.)
assert(v < 1000000000);
if (v >= 100000000) { return 9; }
if (v >= 10000000) { return 8; }
if (v >= 1000000) { return 7; }
if (v >= 100000) { return 6; }
if (v >= 10000) { return 5; }
if (v >= 1000) { return 4; }
if (v >= 100) { return 3; }
if (v >= 10) { return 2; }
return 1;
}
else {
static_assert(std::is_same_v<UInt, std::uint64_t>);
// This is slightly faster than a loop.
// The average output length is 16.38 digits, so we check high-to-low.
// Function precondition: v is not an 18, 19, or 20-digit number.
// (17 digits are sufficient for round-tripping.)
assert(v < 100000000000000000L);
if (v >= 10000000000000000L) { return 17; }
if (v >= 1000000000000000L) { return 16; }
if (v >= 100000000000000L) { return 15; }
if (v >= 10000000000000L) { return 14; }
if (v >= 1000000000000L) { return 13; }
if (v >= 100000000000L) { return 12; }
if (v >= 10000000000L) { return 11; }
if (v >= 1000000000L) { return 10; }
if (v >= 100000000L) { return 9; }
if (v >= 10000000L) { return 8; }
if (v >= 1000000L) { return 7; }
if (v >= 100000L) { return 6; }
if (v >= 10000L) { return 5; }
if (v >= 1000L) { return 4; }
if (v >= 100L) { return 3; }
if (v >= 10L) { return 2; }
return 1;
}
}
template <class Float>
static char* fp_to_chars_impl(unsigned_fp_t<Float> v, char* buffer)
{
auto output = v.significand;
auto const olength = decimal_length(output);
// Print the decimal digits.
// The following code is equivalent to:
// for (uint32_t i = 0; i < olength - 1; ++i) {
// const uint32_t c = output % 10; output /= 10;
// result[index + olength - i] = (char) ('0' + c);
// }
// result[index] = '0' + output % 10;
uint32_t i = 0;
if constexpr (sizeof(Float) == 8) {
// We prefer 32-bit operations, even on 64-bit platforms.
// We have at most 17 digits, and uint32_t can store 9 digits.
// If output doesn't fit into uint32_t, we cut off 8 digits,
// so the rest will fit into uint32_t.
if ((output >> 32) != 0) {
// Expensive 64-bit division.
const uint64_t q = output / 100000000;
uint32_t output2 = ((uint32_t)output) - 100000000 * ((uint32_t)q);
output = q;
const uint32_t c = output2 % 10000;
output2 /= 10000;
const uint32_t d = output2 % 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
const uint32_t d0 = (d % 100) << 1;
const uint32_t d1 = (d / 100) << 1;
memcpy(buffer + olength - i - 1, radix_100_table + c0, 2);
memcpy(buffer + olength - i - 3, radix_100_table + c1, 2);
memcpy(buffer + olength - i - 5, radix_100_table + d0, 2);
memcpy(buffer + olength - i - 7, radix_100_table + d1, 2);
i += 8;
}
}
auto output2 = (uint32_t)output;
while (output2 >= 10000) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = output2 - 10000 * (output2 / 10000);
#else
const uint32_t c = output2 % 10000;
#endif
output2 /= 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
memcpy(buffer + olength - i - 1, radix_100_table + c0, 2);
memcpy(buffer + olength - i - 3, radix_100_table + c1, 2);
i += 4;
}
if (output2 >= 100) {
const uint32_t c = (output2 % 100) << 1;
output2 /= 100;
memcpy(buffer + olength - i - 1, radix_100_table + c, 2);
i += 2;
}
if (output2 >= 10) {
const uint32_t c = output2 << 1;
// We can't use memcpy here: the decimal dot goes between these two digits.
buffer[olength - i] = radix_100_table[c + 1];
buffer[0] = radix_100_table[c];
}
else {
buffer[0] = (char)('0' + output2);
}
// Print decimal point if needed.
if (olength > 1) {
buffer[1] = '.';
buffer += olength + 1;
}
else {
++buffer;
}
// Print the exponent.
*buffer = 'E';
++buffer;
int32_t exp = v.exponent + (int32_t)olength - 1;
if (exp < 0) {
*buffer = '-';
++buffer;
exp = -exp;
}
if constexpr (sizeof(Float) == 8) {
if (exp >= 100) {
const int32_t c = exp % 10;
memcpy(buffer, radix_100_table + 2 * (exp / 10), 2);
buffer[2] = (char)('0' + c);
buffer += 3;
}
else if (exp >= 10) {
memcpy(buffer, radix_100_table + 2 * exp, 2);
buffer += 2;
}
else {
*buffer = (char)('0' + exp);
++buffer;
}
}
else {
if (exp >= 10) {
memcpy(buffer, radix_100_table + 2 * exp, 2);
buffer += 2;
}
else {
*buffer = (char)('0' + exp);
++buffer;
}
}
return buffer;
}
char* float_to_chars(unsigned_fp_t<float> v, char* buffer) {
return fp_to_chars_impl(v, buffer);
}
char* double_to_chars(unsigned_fp_t<double> v, char* buffer) {
return fp_to_chars_impl(v, buffer);
}
}
}
|