1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
// Copyright 2020-2022 Junekey Jeon
//
// The contents of this file may be used under the terms of
// the Apache License v2.0 with LLVM Exceptions.
//
// (See accompanying file LICENSE-Apache or copy at
// https://llvm.org/foundation/relicensing/LICENSE.txt)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#include "best_rational_approx.h"
#include "good_rational_approx.h"
#include "big_uint.h"
#include "rational_continued_fractions.h"
#include "dragonbox/dragonbox.h"
#include <algorithm>
#include <cstddef>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <stdexcept>
#include <utility>
#include <vector>
std::ostream& operator<<(std::ostream& out, jkj::big_uint const& n) {
auto dec = n.to_decimal();
assert(!dec.empty());
out << dec.back();
auto cur_fill = out.fill();
out << std::setfill('0');
for (std::size_t back_idx = 0; back_idx < dec.size() - 1; ++back_idx) {
out << std::setw(19) << dec[dec.size() - back_idx - 2];
}
out << std::setfill(cur_fill);
return out;
}
struct analysis_result {
struct result_per_cache_entry {
int sufficient_bits_for_multiplication;
int sufficient_bits_for_integer_checks;
jkj::unsigned_rational<jkj::big_uint> distance_to_upper_bound;
};
std::vector<result_per_cache_entry> results;
struct error_case {
int e;
int k;
jkj::unsigned_rational<jkj::big_uint> target;
jkj::unsigned_rational<jkj::big_uint> unit;
std::vector<jkj::big_uint> candidate_multipliers{};
};
std::vector<error_case> error_cases;
};
template <class FloatTraits>
bool analyze(std::ostream& out) {
out << "e,bits_for_multiplication,bits_for_integer_check\n";
using impl = jkj::dragonbox::detail::impl<typename FloatTraits::type, FloatTraits>;
using namespace jkj::dragonbox::detail::log;
auto n_max = jkj::big_uint::power_of_2(impl::significand_bits + 2);
analysis_result result;
result.results.resize(impl::max_k - impl::min_k + 1);
jkj::unsigned_rational<jkj::big_uint> target{1, 1}, unit;
int prev_k = impl::max_k + 1;
for (int e = impl::min_exponent - impl::significand_bits;
e <= impl::max_exponent - impl::significand_bits; ++e) {
int k = impl::kappa - floor_log10_pow2(e);
auto exp_2 = k - floor_log2_pow10(k) - 1;
int beta = e + floor_log2_pow10(k);
auto& results_for_k = result.results[k - impl::min_k];
// target = 2^(k - klog2(10) - 1) * 5^k = phi_k / 2^Q in [1/2, 1).
if (k != prev_k) {
target.numerator = 1;
target.denominator = 1;
if (k >= 0) {
target.numerator = jkj::big_uint::pow(5, k);
}
else {
target.denominator = jkj::big_uint::pow(5, -k);
}
if (exp_2 >= 0) {
target.numerator *= jkj::big_uint::power_of_2(exp_2);
}
else {
target.denominator *= jkj::big_uint::power_of_2(-exp_2);
}
}
// unit = 2^(e + k - 1) * 5^k = a/b.
unit.numerator = 1;
unit.denominator = 1;
if (k >= 0) {
unit.numerator = jkj::big_uint::pow(5, k);
}
else {
unit.denominator = jkj::big_uint::pow(5, -k);
}
if (e + k - 1 >= 0) {
unit.numerator *= jkj::big_uint::power_of_2(e + k - 1);
}
else {
unit.denominator *= jkj::big_uint::power_of_2(-e - k + 1);
}
jkj::unsigned_rational<jkj::big_uint> upper_bound;
int sufficient_bits_for_integer_checks;
if (unit.denominator <= n_max) {
if (unit.denominator == 1) {
upper_bound = {unit.numerator * n_max + 1, n_max * jkj::big_uint::power_of_2(beta)};
}
else {
// We want to find the largest v <= n_max such that va == -1 (mod b).
// To obtain such v, we first find the smallest positive v0 such that
// v0 * a == -1 (mod b). Then v = v0 + floor((n_max - v0)/b) * b.
auto v0 = jkj::find_best_rational_approx<
jkj::rational_continued_fractions<jkj::big_uint>>(
unit, unit.denominator - 1)
.above.denominator;
auto v = v0 + ((n_max - v0) / unit.denominator) * unit.denominator;
auto div_result = div(v * unit.numerator + 1, unit.denominator);
assert(div_result.rem.is_zero());
upper_bound = jkj::unsigned_rational<jkj::big_uint>{
div_result.quot, v * jkj::big_uint::power_of_2(beta)};
}
sufficient_bits_for_integer_checks =
impl::carrier_bits + int(jkj::big_uint(1).multiply_2_until(unit.denominator));
}
else {
auto [below, above] =
jkj::find_best_rational_approx<jkj::rational_continued_fractions<jkj::big_uint>>(
unit, n_max);
upper_bound = std::move(above);
upper_bound.denominator *= jkj::big_uint::power_of_2(beta);
sufficient_bits_for_integer_checks =
impl::carrier_bits +
int((unit.numerator * below.denominator - below.numerator * unit.denominator)
.multiply_2_until(unit.denominator));
// Collect all cases where cache_bits seems insufficient.
if (sufficient_bits_for_integer_checks > impl::cache_bits) {
result.error_cases.push_back({e, k, target, unit});
}
}
// Compute the required number of bits for successful multiplication.
// The following is an upper bound.
auto div_result = div(upper_bound.denominator * target.denominator,
upper_bound.numerator * target.denominator -
upper_bound.denominator * target.numerator);
if (!div_result.rem.is_zero()) {
div_result.quot += 1;
}
auto sufficient_bits_for_multiplication =
int(jkj::big_uint(1).multiply_2_until(div_result.quot));
// Tentatively decrease the above result to find the minimum admissible value.
while (sufficient_bits_for_multiplication > 0) {
auto r = (jkj::big_uint::power_of_2(sufficient_bits_for_multiplication - 1) *
target.numerator) %
target.denominator;
if (!r.is_zero()) {
r = target.denominator - r;
}
if (r * upper_bound.denominator >=
jkj::big_uint::power_of_2(sufficient_bits_for_multiplication - 1) *
(upper_bound.numerator * target.denominator -
upper_bound.denominator * target.numerator)) {
break;
}
--sufficient_bits_for_multiplication;
}
out << e << "," << sufficient_bits_for_multiplication << ","
<< sufficient_bits_for_integer_checks << "\n";
// Update.
if (results_for_k.sufficient_bits_for_multiplication < sufficient_bits_for_multiplication) {
results_for_k.sufficient_bits_for_multiplication = sufficient_bits_for_multiplication;
}
if (results_for_k.sufficient_bits_for_integer_checks < sufficient_bits_for_integer_checks) {
results_for_k.sufficient_bits_for_integer_checks = sufficient_bits_for_integer_checks;
}
auto distance = jkj::unsigned_rational<jkj::big_uint>{
upper_bound.numerator * target.denominator - upper_bound.denominator * target.numerator,
upper_bound.denominator * target.denominator};
if (results_for_k.distance_to_upper_bound.denominator.is_zero()) {
results_for_k.distance_to_upper_bound = std::move(distance);
}
else if (results_for_k.distance_to_upper_bound.numerator * distance.denominator >
distance.numerator * results_for_k.distance_to_upper_bound.denominator) {
results_for_k.distance_to_upper_bound = distance;
}
}
// Analyze all error cases.
auto reciprocal_error_threshold =
jkj::big_uint::power_of_2(impl::cache_bits - impl::carrier_bits);
for (auto& ec : result.error_cases) {
// We want to find all n such that
// d:= na/b - floor(na/b) < 2^(q-Q).
ec.candidate_multipliers = jkj::find_all_good_rational_approx_from_below_denoms<
jkj::rational_continued_fractions<jkj::big_uint>>(
ec.unit, n_max, jkj::unsigned_rational<jkj::big_uint>{1, reciprocal_error_threshold});
}
auto sufficient_bits_for_multiplication =
std::max_element(result.results.cbegin(), result.results.cend(),
[](auto const& a, auto const& b) {
return a.sufficient_bits_for_multiplication <
b.sufficient_bits_for_multiplication;
})
->sufficient_bits_for_multiplication;
auto sufficient_bits_for_integer_checks =
std::max_element(result.results.cbegin(), result.results.cend(),
[](auto const& a, auto const& b) {
return a.sufficient_bits_for_integer_checks <
b.sufficient_bits_for_integer_checks;
})
->sufficient_bits_for_integer_checks;
auto larger = std::max(sufficient_bits_for_multiplication, sufficient_bits_for_integer_checks);
auto distance_to_upper_bound =
std::min_element(
result.results.cbegin(), result.results.cend(),
[](auto const& a, auto const& b) {
if (a.distance_to_upper_bound.denominator == 0) {
return false;
}
else if (b.distance_to_upper_bound.denominator == 0) {
return true;
}
return a.distance_to_upper_bound.numerator * b.distance_to_upper_bound.denominator <
b.distance_to_upper_bound.numerator * a.distance_to_upper_bound.denominator;
})
->distance_to_upper_bound;
// Reduce the fraction.
distance_to_upper_bound =
jkj::find_best_rational_approx<jkj::rational_continued_fractions<jkj::big_uint>>(
distance_to_upper_bound, distance_to_upper_bound.denominator)
.below;
std::cout << "An upper bound on the minimum required bits for successful multiplication is "
<< sufficient_bits_for_multiplication
<< "-bits.\nAn upper bound on the minimum required bits for successful integer "
"checks is "
<< sufficient_bits_for_integer_checks << "-bits.\n";
std::cout << "A lower bound on the margin is " << distance_to_upper_bound.numerator << " / "
<< distance_to_upper_bound.denominator << ".\n";
if (impl::cache_bits < larger) {
auto success = true;
std::cout << "Error cases:\n";
auto threshold = jkj::big_uint::power_of_2(impl::significand_bits + 1) - 1;
for (auto const& ec : result.error_cases) {
for (auto const& n : ec.candidate_multipliers) {
std::cout << " e: " << ec.e << " k: " << ec.k << " n: " << n;
// When e != min_e and n != 1, 2, then
// n must be at least 2^(p+1)-2, otherwise this is a false
// positive.
if (ec.e != impl::min_exponent - impl::significand_bits && n != 1 && n != 2 &&
n < threshold) {
std::cout << "\n n is smaller than " << threshold
<< ", so this case is a false positive.";
}
else if (ec.e == -81 && n == 29711844 || ec.e == -80 && n == 29711844) {
std::cout << "\n This case has been carefully addressed.";
}
else {
success = false;
}
std::cout << "\n\n";
}
}
if (!success) {
std::cout << "Verification failed. " << impl::cache_bits
<< "-bits are not sufficient.\n\n";
return false;
}
}
std::cout << "Verified. " << impl::cache_bits << "-bits are sufficient.\n\n";
return true;
}
int main() {
bool success = true;
std::ofstream out;
std::cout << "[Verifying sufficiency of cache precision for binary32...]\n";
out.open("results/binary32.csv");
if (!analyze<jkj::dragonbox::default_float_traits<float>>(out)) {
success = false;
}
out.close();
std::cout << "[Verifying sufficiency of cache precision for binary64...]\n";
out.open("results/binary64.csv");
if (!analyze<jkj::dragonbox::default_float_traits<double>>(out)) {
success = false;
}
out.close();
return success ? 0 : -1;
}
|