1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
// Copyright 2020-2022 Junekey Jeon
//
// The contents of this file may be used under the terms of
// the Apache License v2.0 with LLVM Exceptions.
//
// (See accompanying file LICENSE-Apache or copy at
// https://llvm.org/foundation/relicensing/LICENSE.txt)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#include "dragonbox/dragonbox.h"
#include "big_uint.h"
#include "rational_continued_fractions.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <vector>
int main() {
// We are trying to verify that an appropriate shift of phi_k * 5^a
// can be used instead of phi_(a+k). Since phi_k is defined in terms of ceiling,
// the shift of phi_k * 5^a will be phi_(a+k) + (error) for some nonnegative error.
//
// For correct multiplication, the margin for binary32 is at least
// 2^64 * 5091154818982829 / 12349290596248284087255008291061760 = 7.60...,
// so we are safe if the error is up to 7.
// The margin for binary64 is at least
// 2^128 * 723173431431821867556830303887 /
// 18550103527668669801949286474444582643081334006759269899933694558208
// = 13.26..., so we are safe if the error is up to 13.
//
// For correct integer checks, the case b > n_max is fine because the only condition on the
// recovered cache is a lower bound which must be already true for phi_k.
// For the case b <= n_max, we only need to check the upper bound
// (recovered_cache) < 2^(Q-beta) * a/b + 2^(q-beta)/(floor(nmax/b) * b),
// so we check it manually for each e.
using namespace jkj::dragonbox::detail::log;
using namespace jkj::dragonbox::detail::wuint;
using info = jkj::dragonbox::detail::compressed_cache_detail;
using impl = jkj::dragonbox::detail::impl<double>;
std::cout << "[Verifying cache recovery for compressed cache...]\n";
jkj::unsigned_rational<jkj::big_uint> unit;
auto n_max = jkj::big_uint::power_of_2(impl::significand_bits + 2);
int prev_k = impl::max_k + 1;
for (int e = impl::min_exponent - impl::significand_bits;
e <= impl::max_exponent - impl::significand_bits; ++e) {
int const k = impl::kappa - floor_log10_pow2(e);
using jkj::dragonbox::policy::cache::full;
auto const real_cache = full.get_cache<jkj::dragonbox::ieee754_binary64>(k);
// Compute the base index.
int const kb =
((k - impl::min_k) / info::compression_ratio) * info::compression_ratio + impl::min_k;
// Get the base cache.
auto const base_cache = full.get_cache<jkj::dragonbox::ieee754_binary64>(kb);
// Get the index offset.
auto const offset = k - kb;
if (offset != 0) {
// Obtain the corresponding power of 5.
auto const pow5 = info::pow5.table[offset];
// Compute the required amount of bit-shifts.
auto const alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
assert(alpha > 0 && alpha < 64);
// Try to recover the real cache.
auto recovered_cache = umul128(base_cache.high(), pow5);
auto const middle_low = umul128(base_cache.low(), pow5);
recovered_cache += middle_low.high();
auto const high_to_middle = recovered_cache.high() << (64 - alpha);
auto const middle_to_low = recovered_cache.low() << (64 - alpha);
recovered_cache = uint128{(recovered_cache.low() >> alpha) | high_to_middle,
((middle_low.low() >> alpha) | middle_to_low)};
if (recovered_cache.low() + 1 == 0) {
std::cout << "Overflow detected.\n";
return -1;
}
else {
recovered_cache = {recovered_cache.high(), recovered_cache.low() + 1};
}
// Measure the difference
if (real_cache.high() != recovered_cache.high() ||
real_cache.low() > recovered_cache.low()) {
std::cout << "Overflow detected.\n";
return -1;
}
auto const diff = std::uint32_t(recovered_cache.low() - real_cache.low());
if (diff != 0) {
if (diff > 13) {
// Multiplication might be no longer valid.
std::cout << "Overflow detected.\n";
return -1;
}
// For the case b <= n_max, integer check might be no longer valid.
int const beta = e + floor_log2_pow10(k);
// unit = 2^(e + k - 1) * 5^k = a/b.
unit.numerator = 1;
unit.denominator = 1;
if (k >= 0) {
unit.numerator = jkj::big_uint::pow(5, k);
}
else {
unit.denominator = jkj::big_uint::pow(5, -k);
}
if (e + k - 1 >= 0) {
unit.numerator *= jkj::big_uint::power_of_2(e + k - 1);
}
else {
unit.denominator *= jkj::big_uint::power_of_2(-e - k + 1);
}
if (unit.denominator <= n_max) {
// Check (recovered_cache) < 2^(Q-beta) * a/b + 2^(q-beta)/(floor(nmax/b) * b),
// or equivalently,
// b * (recovered_cache) - 2^(Q-beta) * a < 2^(q-beta) / floor(nmax/b).
auto const rc = jkj::big_uint{recovered_cache.low(), recovered_cache.high()};
auto const left_hand_side =
unit.denominator * rc -
jkj::big_uint::power_of_2(impl::cache_bits - beta) * unit.numerator;
if (left_hand_side * (n_max / unit.denominator) >=
jkj::big_uint::power_of_2(impl::carrier_bits - beta)) {
std::cout << "Overflow detected.\n";
return -1;
}
}
}
}
}
std::cout << "Verification succeeded. No error detected.\n";
std::cout << "Done.\n\n\n";
}
|