1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
|
/*
* =========================================================================
* drawmap - A program to draw maps using data from USGS geographic data files.
* Copyright (c) 1997 Fred M. Erickson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* =========================================================================
*
*
* Program to process 250K Digital Elevation Model (DEM),
* 100K (optional-format) Digital Line Graph (DLG),
* and Geographic Names Information System (GNIS)
* files and produce colored maps in SUN Rasterfile format.
*
* At the time this program was written, DEM and DLG files were available
* for free download from http://edcwww.cr.usgs.gov/ and GNIS files
* were available from http://mapping.usgs.gov/
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <time.h>
#include "raster.h"
#include "font_5x8.h"
#include "font_6x10.h"
#define VERSION "Version 1.3"
struct point {
double x;
double y;
struct point *point;
};
ssize_t buf_read(int, void *, size_t);
ssize_t buf_write(int, const void *, size_t);
ssize_t get_a_line(int, void *, size_t);
ssize_t buf_read_z(int, void *, size_t);
ssize_t get_a_line_z(int, void *, size_t);
double lat_conv(unsigned char *);
double lon_conv(unsigned char *);
void add_text(char *, long, long, long, unsigned char *, long, long, long, long);
void fill_area(double, double, long);
long get_factor(double);
void process_optional_dlg_file(int, int);
void draw_lines(struct point *, long);
/* #define COPYRIGHT_NAME "Fred M. Erickson" */ /* Now defined in the Makefile */
#define DEM_SIZE 1201
/* The borders should be at least 60, if possible. */
#define TOP_BORDER 60
#define BOTTOM_BORDER 80
#define LEFT_BORDER 60
#define RIGHT_BORDER 60
#define NUM_DEM 20 /* Number of DEM files allowed on input */
#define NUM_DLG 400 /* Number of DLG files allowed on input */
#define HIGHEST_ELEVATION 32000 /* Elevation higher than any elevation expected in the DEM data */
#define SMOOTH_MAX 8 /* maximum radius of smoothing kernel */
#define BUF_SIZE 16384
#define OMIT_NEATLINES 1 /* If this is non-zero, then neatlines won't be drawn on the image. */
/*
* Boundaries of image in latitude and longitude.
* East Longitude is Positive, and North Latitude is positive.
* West Longitude is Negative, and South Latitude is negative.
*/
double latitude_low;
double latitude_high;
double longitude_low;
double longitude_high;
/* double hlat = 0.0, hlong = 0.0, llat = 1.0e20, llong = 1.0e20; */
long zone;
long x, y; /* width and height of output image (in pixels) */
long x_prime;
unsigned char *image_out; /* Output image. */
/* long histogram[256]; */ /* For debugging. */
/* long angle_hist[100000]; */ /* For debugging. */
/* long total; */ /* For debugging. */
/*
* Storage for attribute types.
*/
#define MAX_A_ATTRIB 100
#define MAX_L_ATTRIB 100
long num_A_attrib;
long num_L_attrib;
struct {
long major;
long minor;
} attributes_A[MAX_A_ATTRIB];
struct {
long major;
long minor;
} attributes_L[MAX_L_ATTRIB];
/*
* Color map index values for the beginning of the various color blocks.
*
* The color map is built in blocks of 16.
* In each block, the most intense version of a given color is first,
* followed by decreasingly intense versions, with the last being black.
* Thus any color plus 15 is black. Any color + (some integer less than 15)
* is a less intense version of that color.
*
* The 16th bank of 16 is reserved for bright, saturated colors, for use
* in drawing roads, streams, and such.
*/
#define GREEN 0
#define YELLOW 16
#define ORANGE 32 /* Really more like brown */
#define RED 48
#define MAGENTA 64
#define CYAN 80
#define L_GREEN 96
#define L_YELLOW 112
#define L_ORANGE 128
#define L_RED 144
#define L_MAGENTA 160
#define L_BLUE 176
#define L_CYAN 192
#define WHITE 208
#define UNUSED 224
#define COLOR_CHART_WIDTH UNUSED /* The color chart includes everything up through WHITE. */
#define MISC 240
#define BLUE 240
#define B_RED 241
#define B_GREEN 242
#define B_BLUE 243
#define B_CYAN 244
#define B_MAGENTA 245
#define B_YELLOW 246
#define BLACK GREEN + 15
#define BREAKPOINT (M_PI/2.0)
#define BREAKINDEX (3)
long round(double);
long max(long, long);
double max3(double, double, double);
double min3(double, double, double);
void
usage(char *program_name)
{
fprintf(stderr, "\nDrawmap, %s.\n\n", VERSION);
fprintf(stderr, "Usage: %s [-o output_file.sun] [-l latitude1,longitude1,latitude2,longitude2] [-L]\n", program_name);
fprintf(stderr, " [-d dem_file1 [-d dem_file2 [...]]] [-g gnis_file] [-a attribute_file]\n");
fprintf(stderr, " [-x x_size] [-y y_size] [dlg_file1 [dlg_file2 [...]]]\n");
fprintf(stderr, "\nNote that the DLG files are processed in order, and each one overlays the\n");
fprintf(stderr, "last. If you want (for example) roads on top of streams, put the\n");
fprintf(stderr, "transportation data after the hydrography data. Note also that\n");
fprintf(stderr, "latitude/longitude values are in decimal degrees, and that east and north\n");
fprintf(stderr, "are positive while west and south are negative.\n");
}
void
license(void)
{
fprintf(stderr, "This program is free software; you can redistribute it and/or modify\n");
fprintf(stderr, "it under the terms of the GNU General Public License as published by\n");
fprintf(stderr, "the Free Software Foundation; either version 2, or (at your option)\n");
fprintf(stderr, "any later version.\n\n");
fprintf(stderr, "This program is distributed in the hope that it will be useful,\n");
fprintf(stderr, "but WITHOUT ANY WARRANTY; without even the implied warranty of\n");
fprintf(stderr, "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n");
fprintf(stderr, "GNU General Public License for more details.\n\n");
fprintf(stderr, "You should have received a copy of the GNU General Public License\n");
fprintf(stderr, "along with this program; if not, write to the Free Software\n");
fprintf(stderr, "Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.\n");
}
main(int argc, char *argv[])
{
long i, j, k, l, m, n;
int interp_size;
long tick_width;
double f, g;
long file_index;
long xx, yy;
double red, green, blue;
unsigned char a, b, c, d;
long *lptr;
long lsize;
long smooth[SMOOTH_MAX + SMOOTH_MAX + 1][SMOOTH_MAX + SMOOTH_MAX + 1];
long smooth_size;
double tangent, tangent1, tangent2, tangent3;
double fraction;
double latitude;
double longitude;
long factor;
long angle;
long sum;
long sum_count;
struct rasterfile hdr;
unsigned char map[3][256];
int dem_fdesc;
int gnis_fdesc;
int attribute_fdesc;
int dlg_fdesc;
int output_fdesc;
ssize_t ret_val;
long length;
long start_x, start_y;
unsigned char buf[BUF_SIZE];
char *ptr;
unsigned char *font;
long font_width, font_height;
time_t time_val;
char latitude_code;
char e_w_code;
long location_code;
unsigned char dem_name[100];
long dem_flag;
double latitude_dem, longitude_dem;
double latitude1, longitude1, latitude2, longitude2;
long tmp_width, tmp_height, tmp_x, tmp_y;
char *dem_files[20];
long num_dem, num_dlg;
char *gnis_file;
char *attribute_file;
char *output_file;
long option;
long x_low, x_high, y_low, y_high;
double reduction_y, reduction_xy;
short *image_tmp;
short *image_in;
int gz_flag, lat_flag;
long dem_size_x, dem_size_y;
unsigned char ll_code[8];
if (argc == 1) {
usage(argv[0]);
exit(0);
}
/* Process arguments */
x = -1;
y = -1;
latitude_low = 91.0;
longitude_low = 181.0;
latitude_high = -91.0;
longitude_high = -181.0;
gnis_file = (char *)0;
attribute_file = (char *)0;
output_file = (char *)0;
num_dem = 0;
dem_flag = 0; /* When set to 1, this flag says that at least some DEM data was read in. */
lat_flag = 0; /* When set to 1, this flag says that the user explicitly specified the map boundaries. */
opterr = 0; /* Shut off automatic unrecognized-argument messages. */
while ((option = getopt(argc, argv, "o:d:g:a:x:y:l:L")) != EOF) {
switch(option) {
case 'o':
if (output_file != (char *)0) {
fprintf(stderr, "More than one output file specified with -o\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No output file specified\n");
usage(argv[0]);
exit(0);
}
output_file = optarg;
break;
case 'd':
if (num_dem >= NUM_DEM) {
fprintf(stderr, "Out of storage for DEM file names (max %d)\n", NUM_DEM);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No DEM file specified with -d\n");
usage(argv[0]);
exit(0);
}
dem_files[num_dem++] = optarg;
break;
case 'g':
if (gnis_file != (char *)0) {
fprintf(stderr, "More than one GNIS file specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No GNIS file specified with -g\n");
usage(argv[0]);
exit(0);
}
gnis_file = optarg;
break;
case 'a':
if (attribute_file != (char *)0) {
fprintf(stderr, "More than one attribute file specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No attribute file specified with -a\n");
usage(argv[0]);
exit(0);
}
attribute_file = optarg;
break;
case 'x':
if (x >= 0) {
fprintf(stderr, "More than one -x value specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No value specified with -x\n");
usage(argv[0]);
exit(0);
}
x = atoi(optarg);
break;
case 'y':
if (y >= 0) {
fprintf(stderr, "More than one -y value specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No value specified with -y\n");
usage(argv[0]);
exit(0);
}
y = atoi(optarg);
break;
case 'l':
if ((latitude_low != 91.0) || (longitude_low != 181.0) ||
(latitude_high != -91.0) || (longitude_high != -181.0)) {
fprintf(stderr, "More than one set of -l values specified\n");
usage(argv[0]);
exit(0);
}
if (optarg == (char *)0) {
fprintf(stderr, "No values specified with -l\n");
usage(argv[0]);
exit(0);
}
ptr = optarg;
if (*ptr != '\0') {
latitude_low = strtod(ptr, &ptr);
}
ptr++;
if (*ptr != '\0') {
longitude_low = strtod(ptr, &ptr);
}
ptr++;
if (*ptr != '\0') {
latitude_high = strtod(ptr, &ptr);
}
ptr++;
if (*ptr != '\0') {
longitude_high = strtod(ptr, &ptr);
}
if ((latitude_low == 91.0) || (longitude_low == 181.0) ||
(latitude_high == -91.0) || (longitude_high == -181.0)) {
fprintf(stderr, "Incomplete set of -l values specified\n");
usage(argv[0]);
exit(0);
}
if ((latitude_low < -90.0) || (latitude_low > 90.0) || (latitude_high < -90.0) || (latitude_high > 90.0)) {
fprintf(stderr, "Latitude must fall between -90 and 90 degrees, inclusive\n");
usage(argv[0]);
exit(0);
}
if ((longitude_low < -180.0) || (longitude_low > 180.0) || (longitude_high < -180.0) || (longitude_high > 180.0)) {
fprintf(stderr, "Longitude must fall between -180 and 180 degrees, inclusive\n");
usage(argv[0]);
exit(0);
}
if (latitude_low > latitude_high) {
f = latitude_low;
latitude_low = latitude_high;
latitude_high = f;
}
if (longitude_low > longitude_high) {
f = longitude_low;
longitude_low = longitude_high;
longitude_high = f;
}
lat_flag = 1;
break;
case 'L':
license();
exit(0);
break;
default:
usage(argv[0]);
exit(0);
break;
}
}
num_dlg = argc - optind;
/* Clean up the options. */
if (output_file == (char *)0) {
output_file = "drawmap.sun";
}
if (x < 0) {
/* The user didn't specify an x value. Provide one that is half of full resolution. */
if (lat_flag != 0) {
x = round(0.5 * (longitude_high - longitude_low) * (double)(DEM_SIZE - 1));
}
else {
x = (DEM_SIZE - 1) >> 1;
}
}
if (y < 0) {
/* The user didn't specify a y value. Provide one that is half of full resolution. */
if (lat_flag != 0) {
y = round(0.5 * (latitude_high - latitude_low) * (double)(DEM_SIZE - 1));
}
else {
y = (DEM_SIZE - 1) >> 1;
}
}
if ((num_dem != 1) && (lat_flag == 0)) {
fprintf(stderr, "The -l option is required unless there is exactly one -d option given.\n");
usage(argv[0]);
exit(0);
}
/* If we can't create the output file, then there is no point in continuing. */
if ((output_fdesc = open(output_file, O_WRONLY | O_CREAT | O_TRUNC, 0644)) < 0) {
fprintf(stderr, "Can't create %s for writing, errno = %d\n", output_file, errno);
exit(0);
}
/* If an attribute file was specified, then parse it now. */
num_A_attrib = 0;
num_L_attrib = 0;
if (attribute_file != (char *)0) {
if (strcmp(attribute_file + strlen(attribute_file) - 3, ".gz") == 0) {
gz_flag = 1;
if ((attribute_fdesc = buf_open_z(attribute_file, O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", attribute_file, errno);
exit(0);
}
}
else {
gz_flag = 0;
if ((attribute_fdesc = buf_open(attribute_file, O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", attribute_file, errno);
exit(0);
}
}
fprintf(stderr, "Processing Attribute file: %s\n", attribute_file);
while ( 1 ) {
if (gz_flag == 0) {
if ((ret_val = get_a_line(attribute_fdesc, buf, BUF_SIZE)) <= 0) {
break;
}
}
else {
if ((ret_val = get_a_line_z(attribute_fdesc, buf, BUF_SIZE)) <= 0) {
break;
}
}
buf[ret_val - 1] = '\0'; /* Put a null in place of the newline */
switch(buf[0]) {
case '\0':
case '\n':
case ' ':
case '\t':
/* Blank line, or line that begins with white space. Ignore. */
break;
case '#':
/* Comment line. Ignore. */
break;
case 'N':
/* We don't currently use Node attributes, so do nothing with them. */
fprintf(stderr, "Ignoring Node attribute: %s\n", buf);
break;
case 'A':
/* Area attribute. */
if (num_A_attrib >= MAX_A_ATTRIB) {
fprintf(stderr, "Out of space for Area attributes, ignoring: %s\n", buf);
break;
}
attributes_A[num_A_attrib].major = strtol(&buf[1], &ptr, 10);
attributes_A[num_A_attrib].minor = strtol(ptr, &ptr, 10);
num_A_attrib++;
break;
case 'L':
/* Line attribute. */
if (num_L_attrib >= MAX_L_ATTRIB) {
fprintf(stderr, "Out of space for Line attributes, ignoring: %s\n", buf);
break;
}
attributes_L[num_L_attrib].major = strtol(&buf[1], &ptr, 10);
attributes_L[num_L_attrib].minor = strtol(ptr, &ptr, 10);
num_L_attrib++;
break;
default:
fprintf(stderr, "Ignoring unknown attribute type: %s\n", buf);
break;
}
}
if (gz_flag == 0) {
buf_close(attribute_fdesc);
}
else {
buf_close_z(attribute_fdesc);
}
}
/*
* Get memory for the DEM data.
*
* As all of the DEM files are read in, their data
* eventually get combined into this storage area.
* On the way, the data may get cropped, smoothed, or
* subsampled.
*/
image_in = (short *)malloc(2 * (y + 1) * (x + 1));
if (image_in == (short *)0) {
fprintf(stderr, "malloc of image_in failed\n");
exit(0);
}
/* Initialize SUN rasterfile header. */
hdr.magic = MAGIC;
hdr.width = x + LEFT_BORDER + RIGHT_BORDER;
hdr.height = y + TOP_BORDER + BOTTOM_BORDER;
hdr.depth = 8;
hdr.length = (x + LEFT_BORDER + RIGHT_BORDER) * (y + TOP_BORDER + BOTTOM_BORDER);
hdr.type = STANDARD;
hdr.maptype = EQUAL_RGB;
hdr.maplength = 768;
/*
* Set up the color map. A maximum of 15 colors (to denote elevation), each
* of which is modulated by 16 brightness levels (to denote topographical gradient).
*
* In general, a spiral on the CIE chromaticity diagram is considered
* a good way to encode sequential data. It begins with a relatively
* saturated version of a color and spirals inward to reach brighter, whiter
* colors. Since relief maps generally start with a greenish color at sea
* level, the spiral should go something like: green, yellow, orange, red,
* magenta, blue, cyan, lighter green, lighter yellow, ligher orange, lighter
* red, lighter magenta, lighter blue, lighter cyan, white.
*
* After trying the above color sequence, it appears prudent to eliminate blue
* from the rotation, because it makes it look like there are big lakes
* everywhere.
*
* CMYK printers and computer monitors roughly (but not completely) coincide
* in the portion of the CIE diagram that they occupy. Their region occupies
* the center of the diagram, but doesn't extend to the edges. Thus, if we
* want to be able to display and print on a wide variety of hardware,
* fully-saturated colors are not a good idea for the outer portions
* of the spiral. For elevations below sea level, it seems reasonable to run
* the spiral backwards through cyan, blue, magenta, and black, as the
* elevations proceed from 0 to the trench bottoms. For now, we aren't going
* to have any really deep depths, so we will just use cyan for any elevations
* below zero.
*
* Since most Americans prefer to deal in feet, we will use 1000-foot
* intervals, which are pretty close to 300-meter intervals. The DEM
* data is in meters.
*
* We choose RGB values for each color in multiples of 15,
* because they get divided by 15 to fill out the color map.
*
*
* Feet Color [R,G,B] Meters
* -------------- ---------- ------------- ----------------------
* Below 0 Cyan [ 60,255,255] (center of Earth to 0)
* 0 to 1000 Green [ 60,255, 60] ( 0 to 305)
* 1000 to 2000 Yellow [255,255, 60] ( 305 to 610)
* 2000 to 3000 Orange [255,165, 60] ( 610 to 914)
* 3000 to 4000 Red [255, 60, 60] ( 914 to 1219)
* 4000 to 5000 Magenta [255, 60,255] (1219 to 1524)
* 5000 to 6000 Cyan [ 60,255,255] (1524 to 1829)
* 6000 to 7000 Light Green [165,255,165] (1829 to 2134)
* 7000 to 8000 Light Yellow [255,255,165] (2134 to 2438)
* 8000 to 9000 Light Orange [255,210,165] (2438 to 2743)
* 9000 to 10000 Light Red [255,165,165] (2743 to 3048)
* 10000 to 11000 Light Magenta [255,165,255] (3048 to 3353)
* 11000 to 12000 Light Blue [165,165,255] (3353 to 3658)
* 12000 to 13000 Light Cyan [165,255,255] (3658 to 3962)
* Above 13000 White [255,255,255] (4267 to infinity)
*/
map[0][GREEN] = 60;
map[1][GREEN] = 255;
map[2][GREEN] = 60;
map[0][YELLOW] = 255;
map[1][YELLOW] = 255;
map[2][YELLOW] = 60;
map[0][ORANGE] = 255;
map[1][ORANGE] = 165;
map[2][ORANGE] = 60;
map[0][RED] = 255;
map[1][RED] = 60;
map[2][RED] = 60;
map[0][MAGENTA] = 255;
map[1][MAGENTA] = 60;
map[2][MAGENTA] = 255;
map[0][CYAN] = 60;
map[1][CYAN] = 255;
map[2][CYAN] = 255;
map[0][L_GREEN] = 165;
map[1][L_GREEN] = 255;
map[2][L_GREEN] = 165;
map[0][L_YELLOW] = 255;
map[1][L_YELLOW] = 255;
map[2][L_YELLOW] = 165;
map[0][L_ORANGE] = 255;
map[1][L_ORANGE] = 210;
map[2][L_ORANGE] = 165;
map[0][L_RED] = 255;
map[1][L_RED] = 165;
map[2][L_RED] = 165;
map[0][L_MAGENTA] = 255;
map[1][L_MAGENTA] = 165;
map[2][L_MAGENTA] = 255;
map[0][L_BLUE] = 165;
map[1][L_BLUE] = 165;
map[2][L_BLUE] = 255;
map[0][L_CYAN] = 165;
map[1][L_CYAN] = 255;
map[2][L_CYAN] = 255;
map[0][WHITE] = 255;
map[1][WHITE] = 255;
map[2][WHITE] = 255;
/* Put black into the miscellaneous part of the table, for later update. */
map[0][MISC] = 0;
map[1][MISC] = 0;
map[2][MISC] = 0;
/* Put black into the rest of the table, which is unused for now. */
map[0][UNUSED] = 0;
map[1][UNUSED] = 0;
map[2][UNUSED] = 0;
/*
* We have the most intense color values inserted into the table.
* Now insert decreasingly less intense versions of each color.
* Each color decreases to black.
*/
for (i = 0; i < 16; i++) {
red = (double)map[0][i * 16] / 15.0;
blue = (double)map[1][i * 16] / 15.0;
green = (double)map[2][i * 16] / 15.0;
for (j = 1; j < 15; j++) {
map[0][(i * 16) + j] = map[0][i * 16] - (unsigned char)round(((double)j * red));
map[1][(i * 16) + j] = map[1][i * 16] - (unsigned char)round(((double)j * blue));
map[2][(i * 16) + j] = map[2][i * 16] - (unsigned char)round(((double)j * green));
}
map[0][(i * 16) + 15] = 0;
map[1][(i * 16) + 15] = 0;
map[2][(i * 16) + 15] = 0;
}
/* Generate miscellaneous colors. */
map[0][BLUE] = 60;
map[1][BLUE] = 60;
map[2][BLUE] = 255;
map[0][B_RED] = 255;
map[1][B_RED] = 0;
map[2][B_RED] = 0;
map[0][B_GREEN] = 0;
map[1][B_GREEN] = 255;
map[2][B_GREEN] = 0;
map[0][B_BLUE] = 0;
map[1][B_BLUE] = 0;
map[2][B_BLUE] = 255;
map[0][B_CYAN] = 0;
map[1][B_CYAN] = 255;
map[2][B_CYAN] = 255;
map[0][B_MAGENTA] = 255;
map[1][B_MAGENTA] = 0;
map[2][B_MAGENTA] = 255;
map[0][B_YELLOW] = 255;
map[1][B_YELLOW] = 255;
map[2][B_YELLOW] = 0;
/*
* Write SUN rasterfile header and color map.
* My X86 Linux machine requires some swabbing.
* Your mileage may vary.
*/
lsize = sizeof(struct rasterfile) / 4;
lptr = (long *)&hdr;
for (i = 0; i < lsize; i++) {
a = ((*lptr) >> 24) & 0xff;
b = ((*lptr) >> 16) & 0xff;
c = ((*lptr) >> 8) & 0xff;
d = (*lptr) & 0xff;
*lptr = d << 8;
*lptr = (*lptr | c) << 8;
*lptr = (*lptr | b) << 8;
*lptr = *lptr | a;
lptr++;
}
write(output_fdesc, &hdr, sizeof(struct rasterfile));
write(output_fdesc, map, sizeof(map));
/*
* Before we begin processing map data, here is a short lecture on the
* Universal Transverse Mercator (UTM) coordinate system, which is commonly
* used in topographical maps, and by the military (it has been adopted by
* NATO and is used by the US military for ground operations). UTM coordinates
* take the place of latitude and longitude, which can be cumbersome to deal
* with in the context of a small-area map.
*
* (UTM coordinates are used in the optional-format DLG files,
* and there is some reference to them in the DEM files. GNIS files
* use latitude and longitude, in DDDMMSS format.)
*
* The UTM system begins by dividing the earth into 60 zones, each of
* which represents a slice (like a colored panel in a beach ball) that
* spans 6 degrees of longitude. Zone 1 runs from 180 degrees West
* Longitude to 174 degrees West Longitude. Zone 2 runs from 175W to
* 168W. Zone 60 runs from 174E to 180E.
*
* UTM is only used from 84N to 80S. At the poles, the Universal Polar
* Stereographic (UPS) projection is used.
*
* In each zone, points are represented by rectangular (x,y) coordinates
* that give distances, in meters, from the zone reference point. This
* reference point is at the intersection of the Equator and the Central
* Meridian (the longitude line that runs down the center of the zone).
* The (x,y) coordinates give the distance in meters to the east and north
* of the reference point.
*
* In order to avoid having negative values for the UTM coordinates,
* some adjustments are made. In the northern hemisphere, the y
* coordinate is simply measured from zero at the equator, but the
* Central Meridian is assigned a value of 500,000 meters (called a
* false easting), meaning that the distance (to the east) of a
* given point in the zone is the UTM x coordinate minus 500,000.
* In the southern hemisphere, the Central Meridian is again assigned
* a false easting of 500,000 meters, but the equator is no longer
* assigned a value of 0, but rather is assigned a value of 10,000,000
* meters north (called a false northing).
*
* When the zone is further divided into 4-degree latitude bands, the
* resulting pseudo-rectangular areas are called UTM grids.
*
* Note that a Mercator projection can be visualized by imagining
* a cylinder, sitting on one of its ends, with a globe inside.
* If a light is shined from, say, the center of the globe, the longitude
* lines will be projected onto the cylinder as vertical lines, and the
* latitude lines will be projected as circles around the cylinder.
* The longitude lines will be evenly spaced, but the latitude lines
* will be farther apart as the latitude increases. One advantage
* of this projection is that it is conformal, meaning that angles and
* shapes are preserved during the transformation, for any given small
* region of the map.
*
* The Transverse Mercator projection is the same deal, except that the
* cylinder is tipped on its side and the desired Central Meridian is
* aligned so that it is vertical and tangent to the cylinder wall.
* Because of this orientation, shapes and areas near the Central
* Meridian are preserved, while shapes and areas distant from it
* are less accurate, especially when the top and/or bottom of the map
* is close to one of the poles so that the zone slice must be considerably
* stretched to form a rectangular grid. Within a given UTM zone, however,
* the distortion is small.
*
* UTM is a Transverse Mercator projection, standardized for international
* use.
*/
/*
* Before reading in the DEM data, initialize the entire image to
* HIGHEST_ELEVATION, which will eventually be translated to the color WHITE.
* This is because we don't know, in advance, which parts of the image will
* be covered with data from the various DEM files.
*/
for (i = 0; i <= y; i++) {
for (j = 0; j <= x; j++) {
*(image_in + i * (x + 1) + j) = HIGHEST_ELEVATION;
}
}
/*
* Read in DEM data, and rotate so North is on top.
* DEM files have a lot of header information, which we throw away,
* except for the code that tells us the latitude and longitude of the
* block, the x,y sample size of the block, and the name of the DEM block.
*
* Before getting started, malloc() some memory for temporary storage.
* Each DEM file is read into this temporary area, and then transferred to the
* appropriate place in the image_in storage area, after any needed
* smoothing, cropping, or subsampling.
*/
image_tmp = (short *)malloc(2 * DEM_SIZE * DEM_SIZE);
if (image_tmp == (short *)0) {
fprintf(stderr, "malloc of image_tmp failed\n");
exit(0);
}
dem_name[0] = '\0';
file_index = 0;
while (file_index < num_dem) {
if (strcmp(&dem_files[file_index][strlen(dem_files[file_index]) - 3], ".gz") == 0) {
gz_flag = 1;
if ((dem_fdesc = buf_open_z(dem_files[file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", dem_files[file_index], errno);
exit(0);
}
}
else {
gz_flag = 0;
if ((dem_fdesc = open(dem_files[file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", dem_files[file_index], errno);
exit(0);
}
}
fprintf(stderr, "Processing DEM file: %s\n", dem_files[file_index]);
dem_flag = 1;
file_index++;
if (gz_flag == 0) {
if ((ret_val = read(dem_fdesc, buf, 1024)) != 1024) { /* First strip the big header from the front */
fprintf(stderr, "read from DEM file returns %d, expected 1024\n", ret_val);
exit(0);
}
}
else {
if ((ret_val = buf_read_z(dem_fdesc, buf, 1024)) != 1024) { /* First strip the big header from the front */
fprintf(stderr, "zread from DEM file returns %d, expected 1024\n", ret_val);
exit(0);
}
}
/*
* Apparently, when the USGS digitized the DEM data, they didn't decide
* on a consistent format for the file headers. Some files have the
* latitude/longitude code (described in a later comment) at column 49
* in the header, some files have it right at the beginning of the header,
* and others may have it somewhere else (although I have no examples of
* such at this time).
*
* It appears that the code always appears in the first 144-byte record,
* so we will just search the whole thing for something that looks like the
* code. This is a pain, but it should be reliable.
*/
for (i = 0; i < 137; i++) {
if ((buf[i] != 'N') && (buf[i] != 'S')) {
continue;
}
if ((buf[i + 1] < 'A') || (buf[i + 1] > 'Z') ||
(buf[i + 2] < '0') || (buf[i + 2] > '9') ||
(buf[i + 3] < '0') || (buf[i + 3] > '9') ||
(buf[i + 4] != '-') ||
(buf[i + 5] < '0') || (buf[i + 5] > '9') ||
(buf[i + 6] < '0') || (buf[i + 6] > '9') ||
((buf[i + 7] != 'E') && (buf[i + 7] != 'W'))) {
continue;
}
strncpy(ll_code, &buf[i], 8);
strncpy(&buf[i], " ", 8);
}
/*
* Save the name of the DEM block for later use.
* Strip out excessive spaces.
*/
if (dem_name[0] == '\0') {
i = 0;
for (j = 0; j < 144; j++) {
if (buf[j] != ' ') {
/* If the character is not a space, just copy it. */
dem_name[i++] = buf[j];
}
else {
/* Allow a maximum of two spaces in a row */
if (i < 3) continue;
if ((dem_name[i - 2] != ' ') || (dem_name[i - 1] != ' ')) {
dem_name[i++] = ' ';
}
}
}
dem_name[i] = '\0';
}
else {
strcpy(dem_name, "Map area spans multiple 1 degree blocks");
}
/*
* The longitude/latitude code in a DEM file is cryptic, and apparently
* is the name of corresponding map sheet. It basically encodes the description
* of a UTM grid. It takes a form that is illustrated by the following example:
*
* NL12-08W
*
* where I think the N simply means "Northern Hemisphere".
* The L12 is a code that gives a 4 degree by 6 degree block.
* Starting at the equator, with 'A', the letter represents 4 degree
* chunks of latitude. Thus 'L' represents the block from 44N to 48N.
* The 12 is the UTM zone number. The calculation "-186 + (6 * zone)"
* gives the lower longitude of a 6 degree zone. Thus, zone 12 represents
* longitudes from -114 to -108 (108W to 114W).
*
* The 4 degree by 6 degree block is divided into 12 rectangular areas,
* each of which contains an east and west chunk. (The W tells us that
* this is the western 1 degree by 1 degree block.) The areas are numbered
* as follows:
*
* 1 2 3
* 4 5 6
* 7 8 9
* 10 11 12
*
* In this case, area 08 is at 45N-46N and 110W-112W,
* so NL12-08W is at 45N-46N and 111W-112W.
* Area 1 defines the highest-latitude, highest-longitude
* block which, in this case, spans 47N-48N and 112W-114W.
* Area 12 defines the lowest-latitude, lowest-longitude
* block which, in this case, spans 44N-46N and 108W-110W.
*/
latitude_code = ll_code[1];
zone = strtol(&ll_code[2], (char **)0, 10);
location_code = strtol(&ll_code[5], (char **)0, 10);
e_w_code = ll_code[7];
latitude_dem = (double)((latitude_code - 'A') * 4);
longitude_dem = -186.0 + (double)(zone * 6);
i = (location_code - 1) / 3;
j = (location_code + 2) % 3;
latitude_dem = latitude_dem + 3.0 - (double)i;
longitude_dem = longitude_dem + (double)j * 2.0 + (e_w_code == 'W' ? 0.0 : 1.0);
/* If user did not provide the -l option, then initialize image boundary specifications. */
if (lat_flag == 0) {
if (latitude_low > latitude_dem) {
latitude_low = latitude_dem;
}
if (longitude_low > longitude_dem) {
longitude_low = longitude_dem;
}
if (latitude_high < (latitude_dem + 1.0)) {
latitude_high = latitude_dem + 1.0;
}
if (longitude_high < (longitude_dem + 1.0)) {
longitude_high = longitude_dem + 1.0;
}
}
/*
* If the DEM data don't overlap the image, then ignore them.
*/
if ((latitude_dem >= latitude_high) || ((latitude_dem + 1.0) <= latitude_low) ||
(longitude_dem >= longitude_high) || ((longitude_dem + 1.0) <= longitude_low)) {
continue;
}
/*
* Get the number of columns in the data set.
* For all states in the USA, except Alaska, this value should be 1201.
* In Alaska, it can be 401 or 601.
*
* We use the number of columns to calculate an interpolation step size,
* which will be used to interpolate to fill out the dataset to 1201 by 1201 samples.
*/
dem_size_x = strtol(&buf[858], (char **)0, 10);
if ((dem_size_x != 401) && (dem_size_x != 601) && (dem_size_x != 1201)) {
fprintf(stderr, "Unexpected number of south-north columns in DEM data: %d\n", dem_size_x);
exit(0);
}
interp_size = (DEM_SIZE - 1) / (dem_size_x - 1);
/*
* Read in the entire DEM file into image_tmp. We will select
* the chunks we need and process them into image_in later.
*
* Each record we read is a south-to-north slice of the DEM block. Successive records move from
* west to east. Thus, we read each record into a one-dimensional array, and then copy it
* into the desired two-dimensional storage area, simulaneously rotating the data so that north
* is at row zero and west is at column zero.
*/
dem_size_y = -1;
for (i = 0; i < DEM_SIZE; i = i + interp_size) {
if (gz_flag == 0) {
if ((ret_val = read(dem_fdesc, buf, 8192)) != 8192) {
fprintf(stderr, "read from DEM file returns %d, expected 8192\n", ret_val);
exit(0);
}
}
else {
if ((ret_val = buf_read_z(dem_fdesc, buf, 8192)) != 8192) {
fprintf(stderr, "zread from DEM file returns %d, expected 8192\n", ret_val);
exit(0);
}
}
if (dem_size_y < 0) {
dem_size_y = strtol(&buf[12], (char **)0, 10);
if (dem_size_y != DEM_SIZE) {
fprintf(stderr, "Number of rows in DEM file is %d, and should be 1201.\n", dem_size_y);
exit(0);
}
}
ptr = &buf[144]; /* Ignore header information on each block */
for (j = DEM_SIZE - 1; j >=0; j--) {
*(image_tmp + j * DEM_SIZE + i) = strtol(ptr, &ptr, 10);
/*
* If there are less than 1201 south-north columns, then interpolate to form
* a full 1201x1201 dataset. That way the program only needs to handle one
* dataset size, and things are a lot easier.
*/
if ((interp_size > 1) && (i > 0)) {
if (interp_size == 2) {
*(image_tmp + j * DEM_SIZE + i - 1) = round(0.5 * (double)(*(image_tmp + j * DEM_SIZE + i) +
*(image_tmp + j * DEM_SIZE + i - 2)));
}
else {
f = (double)(*(image_tmp + j * DEM_SIZE + i) -
*(image_tmp + j * DEM_SIZE + i - 3)) / 3.0;
g = (double)*(image_tmp + j * DEM_SIZE + i - 3);
*(image_tmp + j * DEM_SIZE + i - 2) = round(g + f);
*(image_tmp + j * DEM_SIZE + i - 1) = round(g + f + f);
}
}
}
}
/*
* Figure out the area of the image that will be covered by this set of DEM file data.
* Fill in that area with data from image_tmp.
*
* Because the relative sizes can take any ratio (in either the x or y direction)
* we simply choose the point from image_tmp that lies closest to the relative
* location in the covered area. The exception to this is when the image is
* being subsampled, in which case we smooth the data to get representative data points.
*
* Note: All 250K DEM files represent 1-degree by 1-degree blocks (as far as I know).
*/
latitude1 = max3(-91.0, latitude_dem, latitude_low);
longitude1 = max3(-181.0, longitude_dem, longitude_low);
latitude2 = min3(91.0, latitude_dem + 1.0, latitude_high);
longitude2 = min3(181.0, longitude_dem + 1.0, longitude_high);
tmp_width = round((double)(DEM_SIZE - 1) * (longitude2 - longitude1));
tmp_height = round((double)(DEM_SIZE - 1) * (latitude2 - latitude1));
tmp_x = round((double)(DEM_SIZE - 1) * (longitude1 - longitude_dem));
tmp_y = DEM_SIZE - 1 - round((double)(DEM_SIZE - 1) * (latitude2 - latitude_dem));
x_low = round((double)x * (longitude1 - longitude_low) / (longitude_high - longitude_low));
x_high = round((double)(x + 1) * (longitude2 - longitude_low) / (longitude_high - longitude_low));
y_low = y - round((double)y * (latitude2 - latitude_low) / (latitude_high - latitude_low));
y_high = y + 1 - round((double)y * (latitude1 - latitude_low) / (latitude_high - latitude_low));
if ((x_low < 0) || (x_high > (x + 1)) || (y_low < 0) || (y_high > (y + 1))) {
fprintf(stderr, "One of x_low=%d, x_high=%d, y_low=%d, y_high=%d out of range\n", x_low, x_high, y_low, y_high);
exit(0);
}
/*
* Prepare a smoothing kernel in case we have more data than pixels to display it.
* The kernel is a square, a maximum of 2*SMOOTH_MAX+1 on a side.
*
* Here is one possible kernel, that I have tried:
* If a kernel element is a distance of x from the
* center, then its weight is 10*1.5^(-x/2)
* Implemented by:
* smooth[k + smooth_size][l + smooth_size] = round(10.0 * pow(1.0, - sqrt(k * k + l * l) / 2.0));
*
* For now, we just take the straight average over the kernel, since it seems to work reasonbly
* well.
*/
smooth_size = min3(SMOOTH_MAX,
(long)(600.0 * (longitude_high - longitude_low) / (double)x),
(long)(600.0 * (latitude_high - latitude_low) / (double)y));
for (k = -smooth_size; k <= smooth_size; k++) {
for (l = -smooth_size; l <= smooth_size; l++) {
smooth[k + smooth_size][l + smooth_size] = 1;
}
}
/*
* This is the loop that transfers the data for a single DEM into the image_in array.
* The image_in array will eventually hold the data from all DEM files given by the user.
*/
for (i = y_low; i < y_high; i++) {
for (j = x_low; j < x_high; j++) {
k = tmp_y + round((double)(tmp_height * (i - y_low)) / (double)(y_high - 1 - y_low));
l = tmp_x + round((double)(tmp_width * (j - x_low)) / (double)(x_high - 1 - x_low));
if ((l < 0) || (l > (DEM_SIZE - 1)) || (k < 0) || (k > (DEM_SIZE - 1))) {
fprintf(stderr, "One of l=%d, k=%d out of range, (i=%d, j=%d, tmp_y=%d, tmp_x=%d, tmp_height=%d, tmp_width=%d)\n",
l, k, i, j, tmp_y, tmp_x, tmp_height, tmp_width);
exit(0);
}
/*
* Note: In the denominator of the left-hand-side of each comparison,
* we should have simply "x" or "y", but we add 1 to x or y
* to avoid having the comparison succeed due to quantization error.
*/
if ((((latitude_high - latitude_low) / (double)(x + 1)) > (1.0 / (double)(DEM_SIZE - 1))) ||
(((latitude_high - latitude_low) / (double)(y + 1)) > (1.0 / (double)(DEM_SIZE - 1)))) {
/*
* We have an image that has less than (DEM_SIZE - 1)
* pixels per degree of longitude.
*
* Do some smoothing.
*/
sum = 0;
sum_count = 0;
for (m = -smooth_size; m <= smooth_size; m++) {
for (n = -smooth_size; n <= smooth_size; n++) {
if (((k + m) < 0) || ((k + m) >= DEM_SIZE) || ((l + n) < 0) || ((l + n) >= DEM_SIZE)) {
continue;
}
sum += *(image_tmp + (k + m) * DEM_SIZE + l + n) * smooth[m + smooth_size][n + smooth_size];
sum_count += smooth[m + smooth_size][n + smooth_size];
}
}
*(image_in + i * (x + 1) + j) = round((double)sum / (double)sum_count);
}
else {
/*
* We have an image that is either one-to-one, or has
* more than (DEM_SIZE - 1) pixels per degree of longitude.
*
* Don't do any smoothing. Simply pick the nearest
* point from image_tmp.
*
* If the x and y image size, given by the user, is
* not related by an integer factor to the number of elevation samples
* in the available data, then the image will contain some
* stripy anomalies because the rounding (above) to arrive
* at the k and l values will periodically give two k or
* l values in a row that have the same value. Since
* the image color at a given point depends on changes in
* elevation around that point, having repeated elevation
* values can result in anomalous flat areas (with a neutral
* color) in an area of generally steep terrain (with generally
* bright or dark colors).
*/
*(image_in + i * (x + 1) + j) = *(image_tmp + k * DEM_SIZE + l);
}
}
}
if (gz_flag == 0) {
close(dem_fdesc);
}
else {
buf_close_z(dem_fdesc);
}
}
free(image_tmp);
/*
* Get memory for the actual output image.
*
* The index values for image_out, in the "y" and "x" directions, can each
* be -1 (when the latitude goes to latitude_high or the longitude goes to
* longitude_low, respectively).
* We allow this negative index because it makes it conceptually easier to
* translate latitudes and longitudes into x and y index values.
* We depend on the borders around the image to absorb these negative values
* so that we don't scribble memory outside the memory assigned to image_out.
*
* (Say that we have an image that covers a 1x1 degree block, and
* 1200x1200 pixels. It makes sense that we assign either latitude_low
* or latitude_high to the zeroeth pixel in the x direction. In this
* program, latitude_low/longitude_low is placed in the lower left
* corner of the image (at pixel (-1,1199)), and latitude increases going
* toward the top while longitude increases going toward the right.
* (Remember that, in the western hemisphere, longitude is negative.)
* Thus, in theory, latitude_high/longitude_high is at the top right
* corner of the image (pixel (1199,-1)). If you think about it,
* it makes sense that latitude_high and longitude_low are actually
* outside the image space since, as we reach a new integral value
* for these two values, we should begin cycling over at 0 again
* for a pixel index. In other words, latitude_high and longitude_low
* would be part of the three images corresponding to the three 1x1 degree
* blocks that border the top left corner of the image we are working on.
* In order to take this into account, we set up the calculations so that
* longitude_low corresponds to an x pixel index of -1, and latitude_high
* corresponds to a y pixel index of -1. Thus, as we generate the image,
* there is an extra strip of pixels along the top edge and the left edge.
* We come back later and change these to WHITE so that they merge back
* into the WHITE border around the edge of the actual map area.
* If you look closely at a map for a 1 degree by 1 degree block, you
* will note that the tick marks for the low longitude and high latitude
* are actually one pixel beyond the edge of the map area, at the locations
* that would be specified by horizontal and vertical indexes of -1.
* This may seem convoluted and silly, but it made sense
* to me at the time, and it does make it conceptually easier to
* verify that everything is working properly, and to join blocks together
* when a map spans more than one 1-degree DEM block.)
*
* Note that these negative index values aren't used for the DEM data, since
* the gradient calculations throw the extra data away.
*/
x_prime = x + LEFT_BORDER + RIGHT_BORDER;
image_out = (unsigned char *)malloc((y + TOP_BORDER + BOTTOM_BORDER) * x_prime);
if (image_out == (unsigned char *)0) {
fprintf(stderr, "malloc of image_out failed\n");
exit(0);
}
/*
* Do the big calculation for processing the DEM data.
*
* This is where we transform elevation data into pixel colors
* in the output image.
*
* Note that the zeroeth row and zeroeth column of the elevation data
* (in image_in) are discarded during this process. They consist of the
* data that would be plotted at the -1 horizontal and vertical index values
* in image_out.
*
* In order to do the gradient calculations, we need to have some
* reduction/expansion factors to figure out the approximate ground distance
* between image points. We could normalize all of this out, but then it would be
* difficult to understand the geometrical implications when trying to modify the
* algorithms.
*/
reduction_y = (double)(DEM_SIZE - 1) / (double)y;
reduction_xy = (double)DEM_SIZE * sqrt(2.0 / ((double)x * (double)x + (double)y * (double)y));
for (i = 1; i <= y; i++) {
for (j = 1; j <= x; j++) {
/*
* Note: spacing of sample points is nominally about 92.76 meters
* in the continental U.S. Note the ridiculously precise value for a number that
* is inherently approximate. Actually, this number is reasonably accurate
* for north-south spacing, except for the errors introduced by deviations of the
* earth from a perfect sphere. But, for east-west spacing, the number is
* only correct at the equator and approaches zero as we approach the poles.
* Although the spacing obviously varies as we move away from the equator (and
* a 1x1 degree block starts to look more trapezoidal) it
* doesn't matter all that much to the gradient calculations
* since the number is only used to get a gross idea of the shape
* of the terrain so that we can assign a color to it. At the extreme
* ends of the latitude range, we probably get a little distortion of the
* gradient shading, but it shouldn't be a really big deal. If it becomes
* a big deal, it wouldn't be all that difficult to change the number a bit,
* based on the latitude. At present, it doesn't seem worthwhile.
*/
/*
* We vary the shade of the DEM data to correspond to the slope of the
* terrain at each point. The gradient calculations determine the slope
* in two directions and choose the largest of the two.
*
* The basic idea is to assume that the sun is shining from the northwest
* corner of the image. Then, terrain with a negative gradient (toward the northwest
* or west) will be brightly colored, and terrain with a positive gradient will be dark, and
* level terrain will be somewhere in between.
*/
tangent1 = (((double)*(image_in + (i - 1) * (x + 1) + j - 1)) - ((double)*(image_in + i * (x + 1) + j))) / (92.76425 * reduction_xy);
tangent2 = (((double)*(image_in + (i - 1) * (x + 1) + j)) - ((double)*(image_in + i * (x + 1) + j))) / (92.76425 * reduction_y);
tangent3 = -10000000000.0;
tangent = max3(tangent1, tangent2, tangent3);
factor = get_factor(tangent);
/* histogram[factor]++; */ /* Information for debugging. */
/*
* Set the color based on the elevation and the factor
* retrieved from the gradient calculations.
* This is called a "factor" for historical reasons.
* At one time, I experimented with finding a multiplicative
* factor instead of the current additive modifier.
* It wasn't worth going through the code and changing the name.
* Besides, I might want to try a factor again someday.
*
* Elevations are in meters. The intervals are chosen
* so that each color represents 1000 feet.
*/
if (*(image_in + i * (x + 1) + j) < 0) {
/* Elevations can theoretically be less than 0, but it's unusual, so report it. */
/* fprintf(stderr, "An elevation was less than 0: %d\n", *(image_in + i * (x + 1) + j)); */
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = CYAN + factor;
}
else if (*(image_in + i * (x + 1) + j) == 0) {
/*
* Special case for sea level. If things are totally flat,
* assume it's water. Otherwise treat it like it's Death Valley.
*
* If this proves to be a problem, then get rid of the water assumption.
* The reason it is there is that the DLG files for coastal regions
* don't appear to treat oceans as bodies of water. This was resulting
* in the ocean areas being set to GREEN. Thus, I kludged in this special
* check; and it appears to work fine, in general.
*
* I later commented it out because, for example, sacramento-w.gz gets colored
* oddly, because there are areas below sea level within areas that meet the
* criterion for ocean.
*/
/*
if (tangent == 0.0) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = B_BLUE;
}
else {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = CYAN + factor;
}
*/
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = GREEN + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 305) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = GREEN + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 610) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = YELLOW + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 914) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = ORANGE + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 1219) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = RED + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 1524) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = MAGENTA + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 1829) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = CYAN + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 2134) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_GREEN + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 2438) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_YELLOW + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 2743) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_ORANGE + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 3048) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_RED + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 3353) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_MAGENTA + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 3658) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_BLUE + factor;
}
else if (*(image_in + i * (x + 1) + j) <= 3962) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = L_CYAN + factor;
}
else if (*(image_in + i * (x + 1) + j) < HIGHEST_ELEVATION) {
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = WHITE + factor;
}
else {
/*
* Special case for creating WHITE areas by setting the
* DEM elevation data to HIGHEST_ELEVATION.
*/
*(image_out + (i - 1 + TOP_BORDER) * x_prime + j - 1 + LEFT_BORDER) = WHITE;
}
}
}
free(image_in);
/*
* Process any DLG files.
* These files contain line and area information, for drawing
* things like streams, roads, boundaries, lakes, and such.
*/
file_index = 0;
while (file_index < num_dlg) {
if (strcmp(argv[optind + file_index] + strlen(argv[optind + file_index]) - 3, ".gz") == 0) {
gz_flag = 1;
if ((dlg_fdesc = buf_open_z(argv[optind + file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", argv[optind + file_index], errno);
exit(0);
}
}
else {
gz_flag = 0;
if ((dlg_fdesc = buf_open(argv[optind + file_index], O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", argv[optind + file_index], errno);
exit(0);
}
}
fprintf(stderr, "Processing DLG file: %s\n", argv[optind + file_index]);
process_optional_dlg_file(dlg_fdesc, gz_flag);
file_index++;
if (gz_flag == 0) {
buf_close(dlg_fdesc);
}
else {
buf_close_z(dlg_fdesc);
}
}
/* Select a font size, based on the image size. */
if ((x >= 1000) && (y >= 1000)) {
font_width = 6;
font_height = 10;
font = &font_6x10[0][0];
}
else {
font_width = 5;
font_height = 8;
font = &font_5x8[0][0];
}
/*
* Process any GNIS data.
* GNIS data consists of place names, with specific latitude/longitude
* coordinates, and other data. We put a cursor at each given location
* and add the place name beside it.
*/
if (gnis_file != (char *)0) {
if (strcmp(gnis_file + strlen(gnis_file) - 3, ".gz") == 0) {
gz_flag = 1;
if ((gnis_fdesc = buf_open_z(gnis_file, O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", gnis_file, errno);
exit(0);
}
}
else {
gz_flag = 0;
if ((gnis_fdesc = buf_open(gnis_file, O_RDONLY)) < 0) {
fprintf(stderr, "Can't open %s for reading, errno = %d\n", gnis_file, errno);
exit(0);
}
}
fprintf(stderr, "Processing GNIS file: %s\n", gnis_file);
while ( 1 ) {
/*
* Note that there is nothing special about the "170" in the following "if"
* statements. I chose it because it is large enough to guarantee that
* we get enough GNIS data to include both the place name and the latitude/longitude.
* I didn't make it as large as a full-sized GNIS record (239 bytes with a newline, 240
* bytes with a newline and carriage return), because I thought it might be useful to
* be able to chop the unused data from the end of each line in a GNIS file and save
* some storage space.
*/
if (gz_flag == 0) {
if ((ret_val = get_a_line(gnis_fdesc, buf, BUF_SIZE)) <= 170) {
break;
}
}
else {
if ((ret_val = get_a_line_z(gnis_fdesc, buf, BUF_SIZE)) <= 170) {
break;
}
}
/*
* Note: We assume latitude_low, longitude_low, latitude_high, and longitude_high
* were entered in decimal degrees.
* latitude and longitude from the GNIS files, however are in DDDMMSS format, and
* require special conversion functions.
*/
latitude = lat_conv(&buf[149]);
longitude = lon_conv(&buf[156]);
/* Ignore this entry if it is out of the map area. */
if ((latitude < latitude_low) || (latitude > latitude_high)) {
continue;
}
if ((longitude < longitude_low) || (longitude > longitude_high)) {
continue;
}
/* draw a cursor at the specified point */
xx = - 1 + round((longitude - longitude_low) * (double)x / (longitude_high - longitude_low));
yy = y - 1 - round((latitude - latitude_low) * (double)y / (latitude_high - latitude_low));
for (i = -3; i <= 3; i++) {
if (((xx + i) >= 0) && ((xx + i) <= (x - 1))) {
*(image_out + (yy + TOP_BORDER) * x_prime + xx + LEFT_BORDER + i) = dem_flag == 0 ? BLACK : WHITE;
}
if (((yy + i) >= 0) && ((yy + i) <= (y - 1))) {
*(image_out + (yy + TOP_BORDER + i) * x_prime + xx + LEFT_BORDER) = dem_flag == 0 ? BLACK : WHITE;
}
}
/* Check for a feature name and find it's length */
for (length = 79; length >= 0; length--) {
if (buf[length] != ' ') {
break;
}
}
length++;
buf[length] = '\0';
/* If there was a feature name, then put it into the image near the cursor */
if (length > 0) {
if ((xx + 5 + length * font_width) >= x) {
start_x = xx - 5 - length * font_width;
}
else {
start_x = xx + 5;
}
if ((yy + (font_height >> 1) - 1) >= y) {
start_y = y - font_height;
}
else if ((yy - (font_height >> 1)) < 0) {
start_y = 0;
}
else {
start_y = yy - (font_height >> 1);
}
add_text(buf, length, start_x + LEFT_BORDER,
start_y + TOP_BORDER, font, font_width, font_height, WHITE, -1);
}
}
if (gz_flag == 0) {
buf_close(gnis_fdesc);
}
else {
buf_close_z(gnis_fdesc);
}
}
/*
* Put a white border around the edges of the output image.
* Note that this will cover up the one-pixel slop over the left
* and top edges that is the result of the fact that we
* set the latitude and longitude to whole-number values, while
* the pixels don't quite cover that whole area.
* This was discussed at length in a previous comment.
*
* Note that the DEM file data don't slop over the edges because,
* when we process them, they are already in the form of an array of
* points, and we can cleanly discard the data we don't need.
* However, the DLG and GNIS data are in the form of
* latitude/longitude or UTM grid coordinates, and it is possible
* for array index values of -1 to crop up at the image edges.
* (In the case of GNIS data, we explicitly check for this and
* don't slop over. For DLG data, we don't bother because it is
* cheaper in CPU time to just null out the border here.)
*/
for (i = 0; i < TOP_BORDER; i++) {
for (j = 0; j < (x + LEFT_BORDER + RIGHT_BORDER); j++) {
*(image_out + i * x_prime + j) = WHITE;
}
}
for (i = y + TOP_BORDER; i < (y + TOP_BORDER + BOTTOM_BORDER); i++) {
for (j = 0; j < (x + LEFT_BORDER + RIGHT_BORDER); j++) {
*(image_out + i * x_prime + j) = WHITE;
}
}
for (i = TOP_BORDER; i < (y + TOP_BORDER); i++) {
for (j = 0; j < LEFT_BORDER; j++) {
*(image_out + i * x_prime + j) = WHITE;
}
}
for (i = TOP_BORDER; i < (y + TOP_BORDER); i++) {
for (j = x + LEFT_BORDER; j < (x + LEFT_BORDER + RIGHT_BORDER); j++) {
*(image_out + i * x_prime + j) = WHITE;
}
}
/*
* Add a copyright notice to the image if, when the program was compiled, the
* makefile contained a non-null COPYRIGHT_NAME.
*/
if (COPYRIGHT_NAME[0] != '\0') {
time_val = time((time_t *)0);
sprintf(buf, "Copyright (c) %4.4s %s", ctime(&time_val) + 20, COPYRIGHT_NAME);
length = strlen(buf);
add_text(buf, length, x + LEFT_BORDER + RIGHT_BORDER - (length * font_width + 4),
y + TOP_BORDER + BOTTOM_BORDER - font_height - 4, font, font_width, font_height, BLACK, WHITE);
}
/*
* Put some latitude/longitude tick marks on the edges of the image.
*
* The purpose of the 0.049999999999 is to round the latitude/longitude up to
* the nearest tenth. Since we put a tick mark every tenth of a degree,
* we need to find the first round tenth above latitude_low/longitude_low.
*/
i = (long)round((latitude_low + 0.049999999999) * 10.0);
for (; i <= (latitude_high * 10.0); i++) {
k = TOP_BORDER - 1 + y - round((double)y * ((double)i * 0.1 - latitude_low) / (latitude_high - latitude_low));
if (((i % 10) == 0) || ((i % 10) == 5) || ((i % 10) == -5)) {
tick_width = 6;
sprintf(buf, "%.2f %c", fabs((double)i / 10.0), i < 0 ? 'S' : 'N');
length = strlen(buf);
add_text(buf, length, x + LEFT_BORDER + 7, k - (font_height >> 1), font, font_width, font_height, BLACK, WHITE);
add_text(buf, length, LEFT_BORDER - 8 - font_width * length, k - (font_height >> 1), font, font_width, font_height, BLACK, WHITE);
}
else {
tick_width = 4;
}
for (j = LEFT_BORDER - 1; j > (LEFT_BORDER - 1 - tick_width); j--) { /* Left side */
*(image_out + k * x_prime + j) = BLACK;
}
for (j = x + LEFT_BORDER; j < (x + LEFT_BORDER + tick_width); j++) { /* Right side */
*(image_out + k * x_prime + j) = BLACK;
}
}
i = (long)round((longitude_low + 0.049999999999) * 10.0);
for (; i <= (longitude_high * 10.0); i++) {
k = LEFT_BORDER - 1 + round((double)x * ((double)i * 0.1 - longitude_low) / (longitude_high - longitude_low));
if (((i % 10) == 0) || ((i % 10) == 5) || ((i % 10) == -5)) {
tick_width = 6;
sprintf(buf, "%.2f %c", fabs((double)i / 10.0), i < 0 ? 'W' : 'E');
length = strlen(buf);
add_text(buf, length, k - ((length * font_width) >> 1), y + TOP_BORDER + 6, font, font_width, font_height, BLACK, WHITE);
add_text(buf, length, k - ((length * font_width) >> 1), TOP_BORDER - 7 - font_height, font, font_width, font_height, BLACK, WHITE);
}
else {
tick_width = 4;
}
for (j = TOP_BORDER - 1; j > (TOP_BORDER - 1 - tick_width); j--) { /* Top */
*(image_out + j * x_prime + k) = BLACK;
}
for (j = y + TOP_BORDER; j < (y + TOP_BORDER + tick_width); j++) { /* Bottom */
*(image_out + j * x_prime + k) = BLACK;
}
}
/* Add some information at the top of the image, as an image label (if there is room). */
if (dem_name[0] != '\0') {
sprintf(buf, "%s --- ", dem_name);
}
else {
buf[0] = '\0';
}
sprintf(buf + strlen(buf), "%.2f %c, %.2f %c to %.2f %c, %.2f %c",
fabs(latitude_low), latitude_low < 0 ? 'S' : 'N',
fabs(longitude_low), longitude_low < 0 ? 'W' : 'E',
fabs(latitude_high), latitude_high < 0 ? 'S' : 'N',
fabs(longitude_high), longitude_high < 0 ? 'W' : 'E');
length = strlen(buf);
if ((length * font_width) <= x) {
add_text(buf, length, (x >> 1) + LEFT_BORDER - 1 - ((length * font_width) >> 1),
(TOP_BORDER >> 1) - 1 - (font_height >> 1), font, font_width,
font_height, BLACK, WHITE);
}
/* Add an elevation color chart at the bottom of the image, if there is room. */
if ((num_dem > 0) && (x >= COLOR_CHART_WIDTH) && (BOTTOM_BORDER >= (30 + 3 * font_height))) {
for (i = 0; i < COLOR_CHART_WIDTH; i++) {
for (j = 0; j < 16; j++) {
/*
* To represent a given range of elevation, we draw a square of
* a given color. We pick one of the 16 possible colors for each elevation.
* This is not perfect, but it at least gives the user some
* clue as to how to decode the image. I tried filling in
* all 16 colors within each elevation square, but it didn't
* look all that good.
*/
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) - ((16 + 4 + font_height * 2) >> 1) + j) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + i) = (i & ~0xf) + 3;
}
if ((i & 0xf) == 0) {
/* Add a tick mark */
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 6 - font_height) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 7 - font_height) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 8 - font_height) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
sprintf(buf, "%d", (i >> 4));
length = strlen(buf);
add_text(buf, length, LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0) - ((font_width * length) >> 1),
TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, WHITE);
}
}
/* Add a tick mark at the right end of the scale */
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 6 - font_height) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 7 - font_height) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
*(image_out + (TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 8 - font_height) * x_prime +
LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0)) = BLACK;
/* Attempt to put in an "infinity" sign by jamming two 'o' characters together. */
sprintf(buf, "o");
length = strlen(buf);
add_text(buf, length, LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0) - 1,
TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, -2);
add_text(buf, length, LEFT_BORDER + (x >> 1) - (COLOR_CHART_WIDTH >> 1) + (i & 0xf0) - ((font_width * length) >> 1) - 2,
TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 9 - font_height,
font, font_width, font_height, BLACK, -2);
/* Add a line to describe the units. */
sprintf(buf, "Thousands of feet.");
length = strlen(buf);
add_text(buf, length, (x >> 1) + LEFT_BORDER - 1 - ((length * font_width) >> 1),
TOP_BORDER + y + (BOTTOM_BORDER >> 1) + 9, font, font_width,
font_height, BLACK, WHITE);
}
/* Output the image data. */
for (i = 0; i < (y + TOP_BORDER + BOTTOM_BORDER); i++) {
write(output_fdesc, image_out + i * x_prime, x + LEFT_BORDER + RIGHT_BORDER);
}
free(image_out);
close(output_fdesc);
/* For debugging. */
/* for (i = 0; i < 256; i++) {
/* if (histogram[i] != 0) {
/* fprintf(stderr, "histogram[%3d] = %d\n", i, histogram[i]);
/* }
/* }
*/
}
/*
* Convert elevation gradient information into an index that
* can be used to select a color from the color table.
* This routine was largely developed by trial and error.
* There is no deep theory associated with the numeric values
* contained herein.
*/
long
get_factor(double tangent)
{
double angle, fraction;
long i;
/*
* A symmetrical table that works fairly well:
*
* 0.405,
* 0.445,
* 0.470,
* 0.485,
* 0.495,
* 0.497,
* 0.499,
* 0.500,
* 0.501,
* 0.503,
* 0.505,
* 0.515,
* 0.530,
* 0.555,
* 0.595,
*
* The table is duplicated in this comment so that we can
* play with the actual table without losing track of a set of
* values that work reasonably well.
*/
double table[15] = {
0.405,
0.445,
0.470,
0.485,
0.495,
0.497,
0.499,
0.500,
0.501,
0.503,
0.505,
0.515,
0.530,
0.555,
0.595,
};
/* One possible way to create the table automatically. */
/* for (i = 0; i < 15; i++) {
/* table[i] = table[0] + (table[14] - table[0]) * pow((table[i] - table[0]) / (table[14] - table[0]), 0.9);
/* }
*/
angle = atan(tangent) + (M_PI/2.0);
fraction = angle / (M_PI);
/* angle_hist[round(fraction * 100000.0)]++; */ /* For debugging. */
/* total++; */ /* For debugging. */
if (fraction > 1.0) {
fprintf(stderr, "bad fraction in get_factor(%f): %f\n", tangent, fraction);
}
if (fraction < table[0]) {
return(0);
}
else if (fraction < table[1]) {
return(1);
}
else if (fraction < table[2]) {
return(2);
}
else if (fraction < table[3]) {
return(3);
}
else if (fraction < table[4]) {
return(4);
}
else if (fraction < table[5]) {
return(5);
}
else if (fraction < table[6]) {
return(6);
}
else if (fraction < table[7]) {
return(7);
}
else if (fraction < table[8]) {
return(8);
}
else if (fraction < table[9]) {
return(9);
}
else if (fraction < table[10]) {
return(10);
}
else if (fraction < table[11]) {
return(11);
}
else if (fraction < table[12]) {
return(12);
}
else if (fraction < table[13]) {
return(13);
}
else if (fraction < table[14]) {
return(14);
}
else {
return(15);
}
}
/*
* Write a text string into the image.
*/
void
add_text(char *text_string, long text_string_length, long top_left_x,
long top_left_y, unsigned char *font, long font_width, long font_height, long foreground, long background)
{
long i, j, k;
long bit;
/*
* Cycle through the font table for each given character in the text string.
* Characters are represented as bit maps, with a 1 indicating part of the
* character, and a 0 indicating part of the background.
*/
for (i = 0; i < text_string_length; i++) {
for (j = 0; j < font_width; j++) {
for (k = 0; k < font_height; k++) {
bit = (*(font + k * 128 + *(text_string + i)) >> (font_width - 1 - j)) & 1;
if (bit != 0) {
/* foreground */
*(image_out + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) = foreground;
}
else {
/* background */
if (background < 0) {
/*
* If the background color map index is -1, then
* we don't insert a specific background value, but rather
* reduce the existing background in intensity.
*
* If the background color map index is any other negative
* number, then we use a clear background.
*/
if (background == -1) {
*(image_out + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) +=
(16 - (*(image_out + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) & 0xf)) >> 1;
}
}
else {
*(image_out + (top_left_y + k) * x_prime + top_left_x + i * font_width + j) = background;
}
}
}
}
}
}
/*
* The code that processes DLG files is very spaghetti-like, since
* it got squeezed and twisted and stretched while I figured out how
* DLG files are put together.
*
* Because of this, and because I don't like to write functions that
* take 35 arguments (the add_text() function, above, greatly offends
* my sensibilities), there are a lot of global variables used by the
* DLG code. Most of them are accumulated here.
*/
#define BOUNDARIES 90
#define HYDROGRAPHY 50
#define HYPSOGRAPHY 20
#define PIPE_TRANS_LINES 190
#define RAILROADS 180
#define ROADS_AND_TRAILS 170
#define PUBLIC_LAND_SURVEYS 300
struct attribute {
long major;
long minor;
struct attribute *attribute;
};
/*
* The sizes of the nodes, areas, and lines arrays are their theoretical maximum values.
* It would probably be cooler to malloc() these as we go, but coolness was not an
* objective of this program. It would still be cool to read the maximum values from
* the DLG file headers and check them against the values below to verify that
* the standards haven't changed and left this program behind.
*/
struct nodes {
long id;
double x;
double y;
} nodes[25960];
struct areas {
long id;
double x;
double y;
long number_attrib;
struct attribute *attribute;
} areas[25960];
struct lines {
long id;
long start_node;
long end_node;
long left_area;
long right_area;
long number_coords;
struct point *point;
long number_attrib;
struct attribute *attribute;
} lines[25938];
double lat_reference, long_reference;
double grid_x_reference, grid_y_reference;
double lat_se, long_se, lat_sw, long_sw, lat_ne, long_ne, lat_nw, long_nw;
double grid_x_se, grid_y_se, grid_x_sw, grid_y_sw, grid_x_ne, grid_y_ne, grid_x_nw, grid_y_nw;
double c1, c2, c3, c4, lat_offset, long_offset;
long dlg_x_low, dlg_y_low, dlg_x_high, dlg_y_high;
/*
* Process the data from an optional-format 100K DLG file.
* If you haven't read the DLG file guide and looked at a
* DLG file, this code will probably be incomprehensible.
*/
void
process_optional_dlg_file(int fdesc, int gz_flag)
{
long i, j, ret_val;
long count;
long color;
char *end_ptr;
char buf[144];
char buf2[144];
struct point **current_point;
struct point *tmp_point;
struct attribute **current_attrib;
struct attribute *tmp_attrib;
long attrib;
long line_list;
long num_nodes = 0;
long num_areas = 0;
long num_lines = 0;
long data_type = 0;
double latitude1, longitude1, latitude2, longitude2;
ssize_t (* read_function)(int, void *, size_t);
if (gz_flag == 0) {
read_function = buf_read;
}
else {
read_function = buf_read_z;
}
/*
* There is a lot of information in the file header. We extract
* those items we care about and ignore the rest.
* We aren't interested in the first 10 records (for now), so ignore them.
*/
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "1 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "2 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "3 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "4 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "5 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "6 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "7 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "8 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "9 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "10 record DLG read returns %d\n", ret_val);
exit(0);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "11 record DLG read returns %d\n", ret_val);
exit(0);
}
else {
for (i = 0; i < 80; i++) {
/* The DLG files use 'D' for exponentiation. strtod() expects 'E' or 'e'. */
if (buf[i] == 'D') buf[i] = 'E';
}
i = 6;
lat_sw = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
long_sw = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_x_sw = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_y_sw = strtod(&buf[i], &end_ptr);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "12 record DLG read returns %d\n", ret_val);
exit(0);
}
else {
for (i = 0; i < 80; i++) {
/* The DLG files use 'D' for exponentiation. strtod() expects 'E' or 'e'. */
if (buf[i] == 'D') buf[i] = 'E';
}
i = 6;
lat_nw = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
long_nw = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_x_nw = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_y_nw = strtod(&buf[i], &end_ptr);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "13 record DLG read returns %d\n", ret_val);
exit(0);
}
else {
for (i = 0; i < 80; i++) {
/* The DLG files use 'D' for exponentiation. strtod() expects 'E' or 'e'. */
if (buf[i] == 'D') buf[i] = 'E';
}
i = 6;
lat_ne = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
long_ne = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_x_ne = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_y_ne = strtod(&buf[i], &end_ptr);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "14 record DLG read returns %d\n", ret_val);
exit(0);
}
else {
for (i = 0; i < 80; i++) {
/* The DLG files use 'D' for exponentiation. strtod() expects 'E' or 'e'. */
if (buf[i] == 'D') buf[i] = 'E';
}
i = 6;
lat_se = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
long_se = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_x_se = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
grid_y_se = strtod(&buf[i], &end_ptr);
}
if ((ret_val = read_function(fdesc, buf, 80)) != 80) {
fprintf(stderr, "15 record DLG read returns %d\n", ret_val);
exit(0);
}
else {
switch(buf[0]) {
case 'B': /* BOUNDARIES */
color = WHITE + 12;
data_type = BOUNDARIES;
break;
case 'H':
if (buf[2] == 'D') {
/* HYDROGRAPHY */
color = B_BLUE;
data_type = HYDROGRAPHY;
break;
}
else {
/* HYPSOGRAPHY */
color = L_ORANGE;
data_type = HYPSOGRAPHY;
break;
}
case 'P':
if (buf[1] == 'I') {
/* PIPE & TRANS LINES */
color = BLACK;
data_type = PIPE_TRANS_LINES;
break;
}
else {
/* PUBLIC LAND SURVEYS */
color = BLACK;
data_type = PUBLIC_LAND_SURVEYS;
break;
}
case 'R':
if (buf[1] == 'A') {
/* RAILROADS */
color = BLACK;
data_type = RAILROADS;
break;
}
else {
/* ROADS AND TRAILS */
color = B_RED;
data_type = ROADS_AND_TRAILS;
break;
}
default:
fprintf(stderr, "Unknown record type %20.20s\n", buf);
exit(0);
break;
}
}
/*
* Do a quick check here to find out if the data is off the map boundaries.
* If so, then we can return now and save a lot of work.
*/
if ((lat_sw > latitude_high) ||
(long_sw > longitude_high) ||
(lat_ne < latitude_low) ||
(long_ne < longitude_low)) {
return;
}
/*
* Within the Optional-format DLG file, locations are specified with pairs of
* Universal Transverse Mercator (x,y) coordinates.
*
* The header information at the top of the DLG file gives 4 reference
* points for the corners of the polygon represented by the DLG data. Here is a
* typical set of them:
*
* SW 45.750000 -112.000000 422218.03 5066539.80
* NW 46.000000 -112.000000 422565.07 5094315.16
* NE 46.000000 -111.750000 441923.83 5094103.38
* SE 45.750000 -111.750000 441663.14 5066327.07
*
* Note that the latitude-longitude points form a square area in latitude/longitude
* space (if latitudes and longitudes on a pseudo-sphere can ever be thought of as
* forming a square). The UTM (x,y) grid coordinates, however, form a quadrilateral
* in which no two sides have the same length. Thus, if we are to convert the grid
* points in the DLG file into latitudes and longitudes, we need to develop a general
* transformation between these grid points and the desired latitudes and longitudes.
*
* We begin by using the latitude and longitude (and associated
* grid points) of the UTM origin (for this zone) as a reference,
* and subtracting the reference values from the
* coordinates for the four corners to arrive at:
*
* lat_sw, long_sw, grid_y_sw, grid_x_sw
* lat_se, long_ne, grid_y_se, grid_x_se
* lat_nw, long_nw, grid_y_nw, grid_x_nw
* lat_ne, long_ne, grid_y_ne, grid_x_ne
*
* As mentioned in the UTM tutorial above, the reference for latitude
* is the equator (zero degrees latitude), and the reference for
* longitude is the Central Meridian (in this example case, it is at
* 111 degrees west latitude for zone 12). See the discussion of zones
* in an earlier comment. The vertical (latitude) grid reference is zero
* at the equator, and the horizontal (longitude) grid reference is 500,000
* at the Central Meridian.
*
* Now we write the matrix equation:
*
* --- --- --- --- --- --- --- ---
* | | | | | | | |
* | c1 c2 | | grid_y | | lat_offset | | lat |
* | | | | + | | = | |
* | | | | | | | |
* | c3 c4 | | grid_x | | long_offset | | long |
* | | | | | | | |
* --- --- --- --- --- --- --- ---
*
* From which we can calculate a desired latitude and longitude by plugging
* given grid_x and grid_y values into the equations (after subtracting the
* reference values):
*
* lat = c1 * grid_y + c2 * grid_x + lat_offset
* long = c3 * grid_y + c4 * grid_x + long_offset
*
* First, however, we must find values for c1, c2, c3, c4, lat_offset, and long_offset.
* Plugging in the data from three of the corners, we get six equations for
* six unknowns. Our handy-dandy symbolic math program spits out equations
* for the unknowns. These equations appear in the following code.
*
* Note: This linear mapping from grid values into latitudes and longitudes is
* a linear approximation to the what actually occurs on the surface of the (approximately)
* spherical Earth. Corrections could be applied to make the map more accurate, but we
* leave that for another day.
*
* Note further: Enterprising readers will want to verify that the equations
* convert the unused pair of grid values into the correct latitude/longitude
* values for the fourth corner (the corner that wasn't used to find the 6 constants).
*
* For reference:
* 4.0076594e7 meters is the equatorial circumference of the earth.
* 3.9942e7 meters is the polar circumference of the earth.
* 4.0024e7 meters is the average circumference of the earth.
*/
lat_reference = 0.0;
long_reference = -186.0 + (double)(zone * 6) + 3.0;
grid_y_reference = 0.0;
grid_x_reference = 500000.0;
lat_nw = lat_nw - lat_reference;
long_nw = long_nw - long_reference;
lat_ne = lat_ne - lat_reference;
long_ne = long_ne - long_reference;
lat_sw = lat_sw - lat_reference;
long_sw = long_sw - long_reference;
lat_se = lat_se - lat_reference;
long_se = long_se - long_reference;
grid_y_nw = grid_y_nw - grid_y_reference;
grid_x_nw = grid_x_nw - grid_x_reference;
grid_y_ne = grid_y_ne - grid_y_reference;
grid_x_ne = grid_x_ne - grid_x_reference;
grid_y_sw = grid_y_sw - grid_y_reference;
grid_x_sw = grid_x_sw - grid_x_reference;
grid_y_se = grid_y_se - grid_y_reference; /* Never used */
grid_x_se = grid_x_se - grid_x_reference; /* Never used */
c1 = (lat_nw*grid_x_ne - lat_sw*grid_x_ne - lat_ne*grid_x_nw +
lat_sw*grid_x_nw + lat_ne*grid_x_sw - lat_nw*grid_x_sw) /
(-(grid_x_nw*grid_y_ne) + grid_x_sw*grid_y_ne + grid_x_ne*grid_y_nw - grid_x_sw*grid_y_nw -
grid_x_ne*grid_y_sw + grid_x_nw*grid_y_sw);
c2 = (lat_nw*grid_y_ne - lat_sw*grid_y_ne - lat_ne*grid_y_nw +
lat_sw*grid_y_nw + lat_ne*grid_y_sw - lat_nw*grid_y_sw) /
(grid_x_nw*grid_y_ne - grid_x_sw*grid_y_ne - grid_x_ne*grid_y_nw + grid_x_sw*grid_y_nw +
grid_x_ne*grid_y_sw - grid_x_nw*grid_y_sw);
c3 = (long_nw*grid_x_ne - long_sw*grid_x_ne - long_ne*grid_x_nw +
long_sw*grid_x_nw + long_ne*grid_x_sw - long_nw*grid_x_sw) /
(-(grid_x_nw*grid_y_ne) + grid_x_sw*grid_y_ne + grid_x_ne*grid_y_nw -
grid_x_sw*grid_y_nw - grid_x_ne*grid_y_sw + grid_x_nw*grid_y_sw);
c4 = (long_nw*grid_y_ne - long_sw*grid_y_ne - long_ne*grid_y_nw +
long_sw*grid_y_nw + long_ne*grid_y_sw - long_nw*grid_y_sw) /
(grid_x_nw*grid_y_ne - grid_x_sw*grid_y_ne - grid_x_ne*grid_y_nw +
grid_x_sw*grid_y_nw + grid_x_ne*grid_y_sw - grid_x_nw*grid_y_sw);
lat_offset = (lat_sw*grid_x_nw*grid_y_ne - lat_nw*grid_x_sw*grid_y_ne - lat_sw*grid_x_ne*grid_y_nw +
lat_ne*grid_x_sw*grid_y_nw + lat_nw*grid_x_ne*grid_y_sw - lat_ne*grid_x_nw*grid_y_sw) /
(grid_x_nw*grid_y_ne - grid_x_sw*grid_y_ne - grid_x_ne*grid_y_nw +
grid_x_sw*grid_y_nw + grid_x_ne*grid_y_sw - grid_x_nw*grid_y_sw);
long_offset = (long_sw*grid_x_nw*grid_y_ne - long_nw*grid_x_sw*grid_y_ne - long_sw*grid_x_ne*grid_y_nw +
long_ne*grid_x_sw*grid_y_nw + long_nw*grid_x_ne*grid_y_sw - long_ne*grid_x_nw*grid_y_sw) /
(grid_x_nw*grid_y_ne - grid_x_sw*grid_y_ne - grid_x_ne*grid_y_nw +
grid_x_sw*grid_y_nw + grid_x_ne*grid_y_sw - grid_x_nw*grid_y_sw);
/*
* Following the header information, there is a sequence of data records for
* Nodes, Areas, and Lines.
* Parse these data records and put the data into the appropriate arrays.
* At present, we make absolutely no use of the Node information.
*/
while ((ret_val = read_function(fdesc, buf, 80)) == 80) {
switch(buf[0]) {
case 'N':
i = 1;
nodes[num_nodes].id = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
nodes[num_nodes].x = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
nodes[num_nodes].y = strtod(&buf[i], &end_ptr);
i = 36;
line_list = strtol(&buf[i], &end_ptr, 10);
i = 48;
attrib = strtol(&buf[i], &end_ptr, 10);
if (line_list != 0) {
while(line_list > 0) {
if ((ret_val = read_function(fdesc, buf2, 80)) != 80) {
fprintf(stderr, "Line_list read 1 returns %d\n", ret_val);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
}
line_list = line_list - 12;
}
}
if (attrib != 0) {
while (attrib > 0) {
if ((ret_val = read_function(fdesc, buf2, 80)) != 80) {
fprintf(stderr, "Attribute read 1 returns %d\n", ret_val);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
}
attrib = attrib - 6;
}
}
num_nodes++;
break;
case 'A':
i = 1;
areas[num_areas].id = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
areas[num_areas].x = strtod(&buf[i], &end_ptr);
i = i + end_ptr - &buf[i];
areas[num_areas].y = strtod(&buf[i], &end_ptr);
i = 36;
line_list = strtol(&buf[i], &end_ptr, 10);
i = 48;
attrib = strtol(&buf[i], &end_ptr, 10);
areas[num_areas].number_attrib = attrib;
if (line_list != 0) {
while (line_list > 0) {
if ((ret_val = read_function(fdesc, buf2, 80)) != 80) {
fprintf(stderr, "Line_list read 2 returns %d\n", ret_val);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
}
line_list = line_list - 12;
}
}
if (attrib != 0) {
while (attrib > 0) {
if ((ret_val = read_function(fdesc, buf2, 80)) != 80) {
fprintf(stderr, "Attribute read 2 returns %d\n", ret_val);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
}
current_attrib = &areas[num_areas].attribute;
if (attrib > 6) {
i = 6;
attrib = attrib - 6;
}
else {
i = attrib;
attrib = 0;
}
end_ptr = buf2;
while (i > 0) {
*current_attrib = (struct attribute *)malloc(sizeof(struct attribute));
if (*current_attrib == (struct attribute *)0) {
fprintf(stderr, "malloc failed\n");
exit(0);
}
(*current_attrib)->major = strtol(end_ptr, &end_ptr, 10);
(*current_attrib)->minor = strtol(end_ptr, &end_ptr, 10);
current_attrib = &((*current_attrib)->attribute);
i--;
}
*current_attrib = (struct attribute *)0;
}
}
num_areas++;
break;
case 'L':
i = 1;
lines[num_lines].id = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
lines[num_lines].start_node = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
lines[num_lines].end_node = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
lines[num_lines].left_area = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
lines[num_lines].right_area = strtol(&buf[i], &end_ptr, 10);
i = 42;
lines[num_lines].number_coords = strtol(&buf[i], &end_ptr, 10);
i = i + end_ptr - &buf[i];
attrib = strtol(&buf[i], &end_ptr, 10);
lines[num_lines].number_attrib = attrib;
current_point = &lines[num_lines].point;
count = lines[num_lines].number_coords;
while (count != 0) {
if ((ret_val = read_function(fdesc, buf2, 80)) != 80) {
fprintf(stderr, "Coordinate read returns %d\n", ret_val);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
}
i = 0;
while (i < 80) {
while ((i < 80) && (buf2[i] == ' ')) {
i++;
}
if (i >= 80) {
continue;
}
*current_point = (struct point *)malloc(sizeof(struct point));
if (*current_point == (struct point *)0) {
fprintf(stderr, "malloc failed\n");
exit(0);
}
(*current_point)->x = (long)strtod(&buf2[i], &end_ptr);
i = i + end_ptr - &buf2[i];
(*current_point)->y = (long)strtod(&buf2[i], &end_ptr);
i = i + end_ptr - &buf2[i];
current_point = &((*current_point)->point);
count--;
}
}
*current_point = (struct point *)0;
if (attrib != 0) {
while (attrib > 0) {
if ((ret_val = read_function(fdesc, buf2, 80)) != 80) {
fprintf(stderr, "Attribute read 3 returns %d\n", ret_val);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
}
current_attrib = &lines[num_lines].attribute;
if (attrib > 6) {
i = 6;
attrib = attrib - 6;
}
else {
i = attrib;
attrib = 0;
}
end_ptr = buf2;
while (i > 0) {
*current_attrib = (struct attribute *)malloc(sizeof(struct attribute));
if (*current_attrib == (struct attribute *)0) {
fprintf(stderr, "malloc failed\n");
exit(0);
}
(*current_attrib)->major = strtol(end_ptr, &end_ptr, 10);
(*current_attrib)->minor = strtol(end_ptr, &end_ptr, 10);
current_attrib = &((*current_attrib)->attribute);
i--;
}
*current_attrib = (struct attribute *)0;
}
}
num_lines++;
break;
default:
fprintf(stderr, "Unknown record type: %c (hexadecimal: %x)\n", buf[0], buf[0]);
fprintf(stderr, "%80.80s\n", buf);
exit(0);
break;
}
}
/*
* All of the useful data is parsed.
* Now do something with it.
*
* First find the x and y image coordinates that border this DLG chunk.
*
* Then draw the lines that we have found, but don't go outside
* the x-y border.
*
* Then fill in all of the areas for which we have
* appropriate attribute codes stored, but don't go outside
* the x-y border.
*/
latitude1 = lat_se + lat_reference;
longitude1 = long_se + long_reference;
latitude2 = lat_nw + lat_reference;
longitude2 = long_nw + long_reference;
dlg_x_low = -1 + round((longitude2 - longitude_low) * (double)x / (longitude_high - longitude_low));
dlg_y_low = y - 1 - round((latitude2 - latitude_low) * (double)y / (latitude_high - latitude_low));
dlg_x_high = -1 + round((longitude1 - longitude_low) * (double)x / (longitude_high - longitude_low));
dlg_y_high = y - 1 - round((latitude1 - latitude_low) * (double)y / (latitude_high - latitude_low));
if (dlg_x_low < -1) {
dlg_x_low = -1;
}
if (dlg_y_low < -1) {
dlg_y_low = -1;
}
if (dlg_x_high >= x) {
dlg_x_high = x - 1;
}
if (dlg_y_high >= y) {
dlg_y_high = y - 1;
}
/*
* Cycle through all of the line data and draw all of the appropriate lines
* onto the image (overlaying any previous data).
*/
for (i = 0; i < num_lines; i++) {
/*
* In the DLG-3 format, the first area element listed
* represents the universe outside of the map area.
* Thus, lines that have area 1 as a boundary should be
* "neatlines" that bound the map area.
* Since these clutter up a map, we normally discard them.
* (If you want to keep them, then change the #define of OMIT_NEATLINES
* so that it is zero, rather than non-zero.)
*
* Here are relevant quotes from the DLG-3 guide:
*
* expressed by network data is that of connectivity. The network case
* differs from the area case in that, irrespective of the number of closed
* areas forming the graph, only two areas are encoded: (1) the area out-
* side the graph, termed the outside area; and (2) the area within the
* graph, termed the background area. All lines except the graph boundary,
* or neatline, are considered to be contained within the background area.
*
* map border. There is one outside area for each DLG-3. It is always the
* first area encountered (its ID is 1) and has the attribute code 000 0000.
*/
/*
* If the user provided a file full of attributes, then
* use them to control whether or not the lines are drawn.
* If not, then just go ahead and draw everything.
*
* Note: If a major or minor attribute code in the attribute
* file (supplied by the user) is less than
* zero, it is treated as a wild card and matches
* anything.
*/
if ((num_A_attrib > 0) || (num_L_attrib > 0)) {
if ((OMIT_NEATLINES == 0) || ((lines[i].left_area != 1) && (lines[i].right_area != 1))) {
current_attrib = &lines[i].attribute;
if (*current_attrib != (struct attribute *)0) {
while (*current_attrib != (struct attribute *)0) {
for (j = 0; j < num_L_attrib; j++) {
if (((attributes_L[j].major < 0) ||
(attributes_L[j].major == ((*current_attrib)->major))) &&
((attributes_L[j].minor < 0) ||
(attributes_L[j].minor == ((*current_attrib)->minor)))) {
draw_lines(lines[i].point, color);
goto FIN1;
}
}
current_attrib = &((*current_attrib)->attribute);
}
}
else {
/*
* If the feature had no attribute codes, then check if
* it is covered by a wild card in the attributes file.
*/
for (j = 0; j < num_L_attrib; j++) {
if (((attributes_L[j].major < 0) ||
(attributes_L[j].major == data_type)) &&
(attributes_L[j].minor < 0)) {
draw_lines(lines[i].point, color);
goto FIN1;
}
}
}
}
/*
* For those (hopefully rare) occasions in which something
* goes wrong, we provide the capability for a user to
* specifically request a single line from a DLG file so that
* the cause of the problem can be isolated.
* The user specifies a specific line by providing a major
* attribute number of 10000, and a minor attribute number
* equal to the desired line ID number. Since no
* valid attribute (as far as I know) is ever as large as
* 10,000, such user-specified attribute pairs will not
* affect the search for legitimate attributes above (since
* they can't possibly match anything). If we reach this point,
* then we failed to draw a line due to the legitimate-attribute
* checks above; so we give it one more try here, based on
* user-requested ID numbers.
*
* Note: If you are using this feature, then it doesn't make
* a lot of sense to process more than one DLG file,
* since the ID number you give (as the minor attribute)
* will be matched in every DLG file that has a
* Line with that ID. If you are trying to isolate
* one (or a few) Line(s), then you probably want to
* be certain which file is the source of the data.
*/
for (j = 0; j < num_L_attrib; j++) {
if ((attributes_L[j].major == 10000) &&
(attributes_L[j].minor == lines[i].id)) {
draw_lines(lines[i].point, color);
goto FIN1;
}
}
}
else {
if ((OMIT_NEATLINES == 0) || ((lines[i].left_area != 1) && (lines[i].right_area != 1))) {
draw_lines(lines[i].point, color);
}
}
FIN1:
}
/*
* Now we fill in each interesting area on the map with the
* same color that bounds the area. (For example,
* lakes (attribute code 050 0421) might be filled in.)
* However, sometimes areas might be filled in improperly.
* The code assumes that the reference point for an area falls
* within the polygon of lines that define that area.
* According to the DLG guide, this isn't guaranteed
* to always be the case, but the assumption has nonetheless
* worked well in practice.
*
* Area attributes are processed a bit differently than the
* attributes for lines: no areas are filled in automatically.
* If the user did not specify any Area attributes in the attribute
* file, then no areas are filled in. This is because the area-fill
* algorithm can occasionally run amok, and therefore the appropriate
* default is to not give it a chance. For extensive details on the
* area-fill algorithm, see the comments at the top of fill_area().
*/
if (num_A_attrib > 0) {
for (i = 0; i < num_areas; i++) {
if (areas[i].number_attrib <= 0) {
continue;
}
current_attrib = &areas[i].attribute;
while (*current_attrib != (struct attribute *)0) {
for (j = 0; j < num_A_attrib; j++) {
if (((attributes_A[j].major < 0) ||
(attributes_A[j].major == ((*current_attrib)->major))) &&
((attributes_A[j].minor < 0) ||
(attributes_A[j].minor == ((*current_attrib)->minor)))) {
fill_area(areas[i].x, areas[i].y, color);
goto FIN2;
}
}
current_attrib = &((*current_attrib)->attribute);
}
/*
* As with the Line attributes, we provide an interface
* for the user to select specific areas, via their IDs.
*/
for (j = 0; j < num_A_attrib; j++) {
if ((attributes_A[j].major == 10000) &&
(attributes_A[j].minor == areas[i].id)) {
fill_area(areas[i].x, areas[i].y, color);
goto FIN2;
}
}
FIN2:
}
}
/* Free up all of the malloc() memory */
for (i = 0; i < num_lines; i++) {
if (lines[i].number_coords > 0) {
current_point = &lines[i].point;
while (*current_point != (struct point *)0) {
tmp_point = (*current_point)->point;
free(*current_point);
*current_point = tmp_point;
}
}
if (lines[i].number_attrib > 0) {
current_attrib = &lines[i].attribute;
while (*current_attrib != (struct attribute *)0) {
tmp_attrib = (*current_attrib)->attribute;
free(*current_attrib);
*current_attrib = tmp_attrib;
}
}
}
for (i = 0; i < num_areas; i++) {
if (areas[i].number_attrib > 0) {
current_attrib = &areas[i].attribute;
while (*current_attrib != (struct attribute *)0) {
tmp_attrib = (*current_attrib)->attribute;
free(*current_attrib);
*current_attrib = tmp_attrib;
}
}
}
}
/*
* Draw a series of line segments, as defined by a linked list of
* points from an optional-format DLG file.
*
* This routine is recursive, not because it has to be, but because
* it was slightly simpler that way. Since it doesn't recurse very
* far (on average), it isn't a performance or memory problem.
*
* It is a nasty routine to understand, because it has a generalized
* interpolation algorithm to capture line segments that go beyond the
* image boundaries.
*/
void
draw_lines(struct point *cur_point, long color)
{
double latitude1, longitude1;
double latitude2, longitude2;
long xx1, yy1;
long xx2, yy2;
double fxx, fyy;
double delta_x, delta_y;
long steps;
long i;
double m_lat, m_long, b_lat, b_long;
double p_lat1, p_long1, p_lat2, p_long2;
double d_lat, d_long;
long pointflags = 0;
long bothflag = 0;
/*
* We recurse to the end of the linked list, and then draw line
* segments as we pop back up the recursion stack.
*/
if (cur_point->point != (struct point *)0) {
draw_lines(cur_point->point, color);
/*
* Draw a segment between this point and the next one down the linked list.
*
* Begin by figuring out the latitude and longitude of the endpoints.
*/
latitude1 = lat_reference + lat_offset +
c1 * (cur_point->y - grid_y_reference) +
c2 * (cur_point->x - grid_x_reference);
longitude1 = long_reference + long_offset +
c3 * (cur_point->y - grid_y_reference) +
c4 * (cur_point->x - grid_x_reference);
latitude2 = lat_reference + lat_offset +
c1 * ((cur_point->point)->y - grid_y_reference) +
c2 * ((cur_point->point)->x - grid_x_reference);
longitude2 = long_reference + long_offset +
c3 * ((cur_point->point)->y - grid_y_reference) +
c4 * ((cur_point->point)->x - grid_x_reference);
/*
* Find out whether only one endpoint, or both of them, fall
* outside the map area.
*/
if ((latitude1 < latitude_low) || (latitude1 > latitude_high) ||
(longitude1 < longitude_low) || (longitude1 > longitude_high)) {
bothflag++;
}
if ((latitude2 < latitude_low) || (latitude2 > latitude_high) ||
(longitude2 < longitude_low) || (longitude2 > longitude_high)) {
bothflag++;
}
/*
* If at least one endpoint of a line segment is outside of the area
* covered by the map image, then interpolate the segment.
*
* This isn't just to catch errors in a DLG file. Since the user
* can specify arbitrary latitude/longitude boundaries for the
* map image, either or both endpoints of a segment can easily
* be outside of the map boundaries.
*/
if (bothflag > 0) {
/*
* Construct two equations for the line passing through the two
* endpoints. These equations can be solved for four potential
* intercepts with the edge of the map area, only zero or two of
* which should be actual intercepts. (In theory, there can
* be a single intercept at a corner, but this code should find
* it twice.)
*
* We construct the two lines using the classic Y = m * X + b formula,
* where, in one case, we let Y be the latitude and X be the longitude,
* and in the other case they switch roles.
*/
m_lat = (latitude2 - latitude1) / (longitude2 - longitude1);
b_lat = latitude1 - m_lat * longitude1;
m_long = 1.0 / m_lat;
b_long = longitude1 - m_long * latitude1;
/*
* We need the distance (in the Manhattan (city-block) metric) between
* the two endpoints.
* It will be used to determine whether one of the intercepts with
* the map edges falls between the two given endpoints.
*/
d_lat = fabs(latitude1 - latitude2);
d_long = fabs(longitude1 - longitude2);
/*
* Solve the two equations for the four possible intercepts, and check
* that they are truly intercepts.
* Set a flag to remember which points turned out to be intercepts.
*/
p_lat1 = m_lat * longitude_low + b_lat;
if ((p_lat1 >= latitude_low) && (p_lat1 <= latitude_high)) {
if ((fabs(longitude_low - longitude1) <= d_long) && (fabs(longitude_low - longitude2) <= d_long)) {
pointflags |= 1;
}
}
p_lat2 = m_lat * longitude_high + b_lat;
if ((p_lat2 >= latitude_low) && (p_lat2 <= latitude_high)) {
if ((fabs(longitude_high - longitude1) <= d_long) && (fabs(longitude_high - longitude2) <= d_long)) {
pointflags |= 2;
}
}
p_long1 = m_long * latitude_low + b_long;
if ((p_long1 >= longitude_low) && (p_long1 <= longitude_high)) {
if ((fabs(latitude_low - latitude1) <= d_lat) && (fabs(latitude_low - latitude2) <= d_lat)) {
pointflags |= 4;
}
}
p_long2 = m_long * latitude_high + b_long;
if ((p_long2 >= longitude_low) && (p_long2 <= longitude_high)) {
if ((fabs(latitude_high - latitude1) <= d_lat) && (fabs(latitude_high - latitude2) <= d_lat)) {
pointflags |= 8;
}
}
/*
* If both endpoints fall outside the map area, and there aren't exactly two
* intercepts, then there should be none. (In theory, when a segment
* just touches a corner of the map area, then there is only one intercept,
* but the above code will find the same intercept twice.)
*/
if ((bothflag == 2) && (pointflags != 3) && (pointflags != 5) && (pointflags != 6) &&
(pointflags != 9) && (pointflags != 10) && (pointflags != 12)) {
if (pointflags != 0) {
fprintf(stderr, " should have had exactly two intercepts: 0x%x (%f %f) (%f %f)\n",
pointflags, latitude1, longitude1, latitude2, longitude2);
}
return;
}
/* If the first endpoint is out of range, then replace it with an intercept. */
if ((latitude1 < latitude_low) || (latitude1 > latitude_high) ||
(longitude1 < longitude_low) || (longitude1 > longitude_high)) {
if (pointflags & 1) {
latitude1 = p_lat1;
longitude1 = longitude_low;
pointflags &= ~1;
goto DONE1;
}
if (pointflags & 2) {
latitude1 = p_lat2;
longitude1 = longitude_high;
pointflags &= ~2;
goto DONE1;
}
if (pointflags & 4) {
latitude1 = latitude_low;
longitude1 = p_long1;
pointflags &= ~4;
goto DONE1;
}
if (pointflags & 8) {
latitude1 = latitude_high;
longitude1 = p_long2;
pointflags &= ~8;
goto DONE1;
}
}
DONE1:
/* If the second endpoint is out of range, then replace it with an intercept. */
if ((latitude2 < latitude_low) || (latitude2 > latitude_high) ||
(longitude2 < longitude_low) || (longitude2 > longitude_high)) {
if (pointflags & 1) {
latitude2 = p_lat1;
longitude2 = longitude_low;
goto DONE2;
}
if (pointflags & 2) {
latitude2 = p_lat2;
longitude2 = longitude_high;
goto DONE2;
}
if (pointflags & 4) {
latitude2 = latitude_low;
longitude2 = p_long1;
goto DONE2;
}
if (pointflags & 8) {
latitude2 = latitude_high;
longitude2 = p_long2;
goto DONE2;
}
}
DONE2:
}
/*
* Convert the latitude/longitude pairs into pixel locations within the image.
*
* Note: because there may be small errors in longitude1, latitude1, longitude2,
* and latitude2, the values of xx1, yy1, xx2, or yy2 may occasionally be off by
* one pixel.
* This appears to be acceptable in the middle of the image, since one pixel
* doesn't amount to much linear distance in the image. At the edges, one might
* worry that the discrepancy would cause us to go over the image edges.
* However, the interpolation code above should successfully eliminate this
* potential problem.
*
* As noted above, it is okay for the array index values to go to -1, since that
* is the appropriate value for longitude_low or latitude_high.
*/
xx1 = -1 + round((longitude1 - longitude_low) * (double)x / (longitude_high - longitude_low));
yy1 = y - 1 - round((latitude1 - latitude_low) * (double)y / (latitude_high - latitude_low));
xx2 = -1 + round((longitude2 - longitude_low) * (double)x / (longitude_high - longitude_low));
yy2 = y - 1 - round((latitude2 - latitude_low) * (double)y / (latitude_high - latitude_low));
if ((xx1 < -1) || (yy1 < -1) || (xx1 >= x) || (yy1 >= y)) {
fprintf(stderr, "In drawlines(), a coordinate exceeds the image boundaries, %f %f %f %f\n", xx1, yy1, xx2, yy2);
exit(0);
}
/*
* Now all that remains is to draw the line segment.
* We begin by deciding whether x or y is the fastest-changing
* coordinate.
*/
delta_x = xx2 - xx1;
delta_y = yy2 - yy1;
if (fabs(delta_x) < fabs(delta_y)) {
steps = (long)fabs(delta_y) - 1;
if (delta_y > 0.0) {
delta_x = delta_x / delta_y;
delta_y = 1.0;
}
else if (delta_y < 0.0) {
delta_x = -delta_x / delta_y;
delta_y = -1.0;
}
else {
delta_x = 1.0;
}
}
else {
steps = (long)fabs(delta_x) - 1;
if (delta_x > 0.0) {
delta_y = delta_y / delta_x;
delta_x = 1.0;
}
else if (delta_x < 0.0) {
delta_y = -delta_y / delta_x;
delta_x = -1.0;
}
else {
delta_y = 1.0;
}
}
/* Put dots at the two endpoints. */
*(image_out + (yy1 + TOP_BORDER) * x_prime + xx1 + LEFT_BORDER) = color;
*(image_out + (yy2 + TOP_BORDER) * x_prime + xx2 + LEFT_BORDER) = color;
/* Fill in pixels between the two endpoints. */
fxx = xx1;
fyy = yy1;
for (i = 0; i < steps; i++) {
fxx = fxx + delta_x;
fyy = fyy + delta_y;
*(image_out + (round(fyy) + TOP_BORDER) * x_prime + round(fxx) + LEFT_BORDER) = color;
}
}
}
/*
* Fill in an area bounded by a polygon of the given color, beginning at the
* given representative point. (The polygon was previously created by the
* line-drawing algorithm.) The algorithm does this by filling in a given
* point and then recursively calling itself to fill in the four nearest neighbors
* (to the left, right, top, and bottom).
*
* Two functions handle this: fill_area() sets things up, and then
* fill_small_area() recursively does the work. An enterprising reader might
* want to convert the recursion into something less likely to consume all
* computing resources on the planet. However, these routines generally
* work well unless somehow the representative point falls outside of a bounded
* polygon (which appears not to be a common event, based on my limited testing).
* If this happens, then, as the routine attempts to fill large swaths of the image,
* the recursion chomps up all available stack memory and the program goes kaboom.
* Less resources would be gobbled if, instead of using recursion, we simply built
* a stack datatype, and pushed and popped coordinates onto/from it. No program is
* so perfect that it can't be improved.
*
* One other problem with the approach taken here is that, if a lake has a narrow
* neck, the line segments at the sides of the neck may touch. If that is the case,
* then only one side of the lake will be filled in (the side containing the
* representative point) because the neck forms a solid boundary.
*
* Yet another problem is that the representative point may be off the map boundaries
* if, say, a lake is at the edge of the map and the whole lake doesn't show up on
* the map. In such a case, the lake won't get filled in because the representative
* point is rejected by the sanity-checking code.
*
* This algorithm is very crude at this point. We assume that the given
* coordinates actually do fall within the bounded area that they represent,
* something that the DLG guide says is normal for these points, but not guaranteed.
* It would appear that a general solution not relying on this assumption would be
* difficult to produce. For a convex bounding polygon, one can determine if the
* representative point is within the bounding polygon by following the line segments
* around the boundaries of the area and checking that the point is always on the same side
* of the line segment (relative to the direction of motion). However, this wouldn't
* do us a whole lot of good. First, the polygons are not, in general, convex.
* Second, unless we change the area fill algorithm in some fundamental way,
* knowing a single point (that is guaranteed to be within the boundaries of the area)
* still won't guarantee that the area gets filled properly (see the discussion of a
* lake with a neck, above). Third, knowing that a point is within the boundaries of
* the area is not adequate to guarantee that it is within the boundaries drawn on
* the image. The lines drawn around the boundaries are "jagged", because we try
* to draw slanted lines using pixels that
* can only be placed on a square grid. (This problem is often called "aliasing,"
* which is a reference to Nyquist Sampling Theory; but that is a subject far
* beyond the scope of this long, rambling comment block.) It is possible for
* the representative point to land on a pixel that falls outside the drawn
* boundaries, because it just happens to fall at a place where a slanted line
* segment "jags." This problem can be exacerbated when the image is stretched
* (for example, when a map area that is 2 degrees of longitude by 1 degree of
* latitude is plotted on a 600 by 600 pixel grid, thus stretching the latitude
* direction by a factor of 2).
*
* We also assume that the area is totally bounded on the right, left, top, and
* bottom by points of the given color (or the map-area edges). The line-drawing
* algorithm, above, should ensure this, as long as the line segments given in the
* DLG file don't leave gaps (which they normally don't appear to do).
*
* There may be some cool, sexy way to write an area-fill algorithm that would
* be completely general and would run fast. However, without giving it a massive
* amount of thought, the only truly general algorithms I have come up with are very
* slow, involving a detailed check of each candidate point to verify that it is indeed
* withing the given area. As an example, here is a very clunky algorithm that is
* "guaranteed" to work without running amok:
*
* Determine which collection(s) of line segments is associated with the given area.
* (Multiple multi-segment linear features can bound an area, including the neatlines
* that bound the entire area encompassed by the DLG file.)
* Follow the line segments around the bounding polygon and break the polygon into
* multiple polygons, each of which is convex. This can be done by examining the
* angles between successive line segments.
* For each convex sub-polygon:
* Find the largest and smallest longitude and latitude associated with all of the
* segments in the sub-polygon.
* Sweep through all points within the rectangle determined by the longitude/latitude
* bounding box and check each point to determine whether it is within the area
* in question. This can be done by following the line segments around the polygon
* and checking that the point is always on the same side of each segment. (The
* sign of the line segment identifier(s) determines which side the point is
* supposed to be on. See the DLG documentation for details.)
*
* Although there is a lot of handwaving in the above description, it should be obvious
* that this algorithm would be incredibly slow. One could obviously come up with some
* ways to speed it up, since it is designed for simplicity of description rather than
* efficiency of operation, but it is not immediately obvious how to make it really fast.
* Nor is it immediately obvious (at least to me) how to come up with a different algorithm
* that would be both robust and fast. Also, the current version appears to work pretty
* well, with occasional inevitable glitches. Thus, for the time being, we are stuck with
* the code that follows.
*/
void
fill_small_area(long x1, long y1, long color)
{
/*
* Check that we have not wandered outside of the area
* covered by the data from this DLG file.
*/
if ((x1 < dlg_x_low) || (x1 > dlg_x_high) || (y1 < dlg_y_low) || (y1 > dlg_y_high)) {
return;
}
/*
* Fill in the given pixel, and recusively fill in the pixels to the
* left, right, top, and bottom.
*/
*(image_out + (y1 + TOP_BORDER) * x_prime + x1 + LEFT_BORDER) = color;
if (*(image_out + (y1 - 1 + TOP_BORDER) * x_prime + x1 + LEFT_BORDER) != color) {
fill_small_area(x1, y1 - 1, color);
}
if (*(image_out + (y1 + 1 + TOP_BORDER) * x_prime + x1 + LEFT_BORDER) != color) {
fill_small_area(x1, y1 + 1, color);
}
if (*(image_out + (y1 + TOP_BORDER) * x_prime + x1 - 1 + LEFT_BORDER) != color) {
fill_small_area(x1 - 1, y1, color);
}
if (*(image_out + (y1 + TOP_BORDER) * x_prime + x1 + 1 + LEFT_BORDER) != color) {
fill_small_area(x1 + 1, y1, color);
}
}
void
fill_area(double px1, double py1, long color)
{
double latitude1, longitude1;
long xx1, yy1;
/* Find the latitude and longitude of the representative point and convert them into index values. */
latitude1 = lat_reference + lat_offset + c1 * (py1 - grid_y_reference) + c2 * (px1 - grid_x_reference);
longitude1 = long_reference + long_offset + c3 * (py1 - grid_y_reference) + c4 * (px1 - grid_x_reference);
xx1 = -1 + round((longitude1 - longitude_low) * (double)x / (longitude_high - longitude_low));
yy1 = y - 1 - round((latitude1 - latitude_low) * (double)y / (latitude_high - latitude_low));
if ((xx1 < -1) || (xx1 >= x) || (yy1 < -1) || (yy1 >= y)) {
/* fprintf(stderr, "fill_area() was given a starting point outside the map area: (%d %d) (%f %f)\n", xx1, yy1, latitude1, longitude1); */
return;
}
if ((xx1 < dlg_x_low) || (xx1 > dlg_x_high) || (yy1 < dlg_y_low) || (yy1 > dlg_y_high)) {
fprintf(stderr, "fill_area() was passed a bad starting point: (%d %d) (%f %f)\n\tlimits are: %d %d %d %d\n",
xx1, yy1, latitude1, longitude1, dlg_x_low, dlg_x_high, dlg_y_low, dlg_y_high);
return;
}
/*
* Some debugging code to figure out where the representative point
* for each area falls on the image.
*/
/*
{
static h = 0;
long la, lo;
double long_prime = fabs(longitude1) - 0.5;
la = latitude1;
lo = long_prime;
la = la * 10000 + ((int)((latitude1 - la) * 60.0)) * 100 + (int)((latitude1 - la - ((int)((latitude1 - la) * 60.0)) / 60.0) * 3600.0 + 0.5);
lo = lo * 10000 + ((int)((long_prime - lo) * 60.0)) * 100 + (int)((long_prime - lo - ((int)((long_prime - lo) * 60.0)) / 60.0) * 3600.0 + 0.5);
fprintf(stderr, "lat=%f long=%f %d %d\n", la, lo, xx1, yy1);
fprintf(stdout, "Area %2.2d island Blaine 30005%6.6dN%7.7dW %f %f \n", h, la, lo, px1, py1);
h++;
*(image_out + (yy1 + TOP_BORDER) * x_prime + xx1 + LEFT_BORDER) = B_GREEN;
return;
}
*/
/*
* Some small areas are so small that the lines around their borders have
* already filled them in. If the representative point is already set to
* the target color, then we assume we are in such an area. In such cases,
* we immediately return, because otherwise (if we happen to be sitting
* right on the boundary) we will begin filling in the area outside the
* boundary and potentially fill large swaths of the image. The risk of
* simply returning (rather than doing a more thorough investigation of
* what is going on) is that the boundary lines may not have actually
* filled the area in, but rather
* that the representative point just happens to fall very near
* (or on) the boundary. There is not much we can do about this potential
* problem, unless we re-write the whole area-filling algorithm
* (not necessarily a bad idea). However, in practice, things seem
* to generally work out okay for the data sets I have tried.
*/
if (*(image_out + (yy1 + TOP_BORDER) * x_prime + xx1 + LEFT_BORDER) == color) {
return;
}
/* Recursively call fill_small_area() to do most of the work. */
fill_small_area(xx1, yy1, color);
}
|