File: dlg.c

package info (click to toggle)
drawmap 2.3-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,140 kB
  • ctags: 701
  • sloc: ansic: 12,940; makefile: 108; sh: 2
file content (1576 lines) | stat: -rw-r--r-- 55,456 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
/*
 * =========================================================================
 * dlg.c - Routines to handle DLG data.
 * Copyright (c) 2000  Fred M. Erickson
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * =========================================================================
 */

#include <fcntl.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include "drawmap.h"
#include "dlg.h"



/*
 * Storage for attribute types.
 */
static long num_A_attrib;
static long num_L_attrib;
struct maj_min attributes_A[MAX_A_ATTRIB];
struct maj_min attributes_L[MAX_L_ATTRIB];


/*
 * The code that processes DLG files is very spaghetti-like, since
 * it got squeezed and twisted and stretched while I figured out how
 * DLG files are put together.
 *
 * Because of this, and because I don't like to write functions that
 * take 35 arguments, there are a lot of global variables used by the
 * DLG code.  Most of them are accumulated here.
 */

/*
 * The sizes of the nodes, areas, and lines arrays are their theoretical maximum values.
 * It would probably be cooler to malloc() these as we go, but coolness was not an
 * objective of this program.  It would still be cool to read the maximum values from
 * the DLG file headers and check them against the values below to verify that
 * the standards haven't changed and left this program behind.
 */
struct nodes nodes[MAX_NODES];
struct areas areas[MAX_AREAS];
struct lines lines[MAX_LINES];

static double lat_se, long_se, lat_sw, long_sw, lat_ne, long_ne, lat_nw, long_nw;
static double grid_x_se, grid_y_se, grid_x_sw, grid_y_sw, grid_x_ne, grid_y_ne, grid_x_nw, grid_y_nw;
static long dlg_x_low, dlg_y_low, dlg_x_high, dlg_y_high;
long x_prime;

long utm_zone;

long right_border = RIGHT_BORDER;


/*
 * Process the data from an optional-format DLG file.
 * If you haven't read the DLG file guide and looked at a
 * DLG file, this code will probably be incomprehensible.
 */
void
process_dlg_optional(int fdesc, int gz_flag, struct image_corners *image_corners, long info_flag)
{
	long i, j, ret_val;
	long count;
	long color;
	char *end_ptr;
	char buf[DLG_RECORD_LENGTH + 1];
	char buf2[DLG_RECORD_LENGTH + 1];
	struct point **current_point;
	struct point *tmp_point;
	struct attribute **current_attrib;
	struct attribute *tmp_attrib;
	long attrib;
	long line_list;
	long num_nodes = 0;
	long num_areas = 0;
	long num_lines = 0;
	long data_type = 0;
	double latitude1, longitude1, latitude2, longitude2;
	ssize_t (* read_function)(int, void *, size_t);
	long plane_ref;
	char save_byte;
	long datum_number;
	struct datum datum;

	x_prime = image_corners->x + LEFT_BORDER + right_border;


	if (gz_flag == 0)  {
		read_function = buf_read;
	}
	else  {
		read_function = buf_read_z;
	}

	/*
	 * Some newer DLG files now come with newlines embedded in them.
	 * (Older files - at least the ones I checked - did not.  They
	 * were one long blob of ASCII text, without any newlines at all.)
	 * In these newer files, the records aren't of fixed length.
	 * Figure out which type of file we have by examining the
	 * first record.  Since the old records were DLG_RECORD_LENGTH bytes long,
	 * we examine up to DLG_RECORD_LENGTH bytes of the first record.  If no newline
	 * is found, we read fixed-length records.  If a newline is found,
	 * then we switch our reading routine to be get_a_line or get_a_line_z,
	 * which read up to a newline and stop.
	 */
	for (i = 0; i < DLG_RECORD_LENGTH; i++)  {
		if ((ret_val = read_function(fdesc, &buf[i], 1)) != 1)  {
			fprintf(stderr, "1 record DLG read returns %d\n", ret_val);
			exit(0);
		}
		/*
		 * We assume here that all files with both '\n' and '\r' at the end
		 * have the '\n' at the end.
		 */
		if (buf[i] == '\n')  {
			if (read_function == buf_read)  {
				read_function = get_a_line;
			}
			else  {
				read_function = get_a_line_z;
			}
			break;
		}
	}
	/* Set ret_val, just in case we need to parse this record some day. */
	ret_val = i;
	if (buf[ret_val - 1] == '\r')  {
		ret_val--;
	}

	/*
	 * There is a lot of information in the file header.  We extract
	 * those items we care about and ignore the rest.
	 * We aren't interested in the first 10 records (for now), so ignore them.
	 * We already read the first record, so continue with the second.
	 */
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "2 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if (info_flag != 0)  {
		/*
		 * If we are trying to print file information, then find the text that
		 * tells which postal codes (e.g. MT, RI, TX) this DLG file touches.
		 * In the process of doing this, we will also delimit the DLG name,
		 * and can print that out as well.
		 */
		buf[ret_val] = '\0'; 
		for (i = 0; i < ret_val; i++)  { 
			if (buf[i] == ',')  { 
				fprintf(stdout, "\t%.*s", i, buf);	// Print DLG name
				i++;
				for (; i < ret_val; i++)  { 
					if (buf[i] != ' ')  { 
						goto BEGUINE;
					}
				}
				break;
			}
		}
BEGUINE:
		for (j = i + 1; j < ret_val; j++)  { 
			/* Sometimes, postal codes are separated by a space, so check for two spaces. */
			if ((buf[j] == ' ') && (buf[j + 1] == ' '))  {
				buf[j] = '\0'; 
				break;
			}
		}
		fprintf(stdout, "\t%s", &buf[i]);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "3 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		/*
		 * We are interested in three fields from this record.
		 * Bytes 7-12 (numbered from 1) contain the ground
		 * planimetric reference system.  This should be 1 for
		 * UTM (used with both 24K and 100K files) or 3 for Albers
		 * Conical Equal Area (used for 2M files).
		 * Bytes 13-18 give the zone for the given planimetric
		 * reference system, which for 24K and 100K files is the
		 * UTM zone, and which is set to 9999 for 2M files.
		 * Bytes 67-69 give the horizontal datum for the given planimetric
		 * reference system.  'b' or 0 = NAD 27, 1 = NAD 83, 2 = Puerto Rico,
		 * 3 = Old Hawaiian, 4 = local (astro).
		 */
		fprintf(stderr, "4 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	else  {
		save_byte = buf[12]; buf[12] = '\0'; plane_ref = strtol(&buf[6], &end_ptr, 10); buf[12] = save_byte;
		if (plane_ref != 1)  {
			fprintf(stderr, "DLG file does not use UTM ground planimetric coordinates.\nDrawmap can't handle it.  Exiting.  (Plane_ref = %d)\n", plane_ref);
			exit(0);
		}

		save_byte = buf[18]; buf[18] = '\0'; utm_zone = strtol(&buf[12], &end_ptr, 10); buf[18] = save_byte;
		if ((utm_zone < 1) || (utm_zone > 60))  {
			fprintf(stderr, "DLG file contains bad UTM zone %d.  Drawmap can't handle it.  Exiting.\n", utm_zone);
			exit(0);
		}

		if (ret_val >= 69)  {
			save_byte = buf[69]; buf[69] = '\0'; datum_number = strtol(&buf[66], &end_ptr, 10); buf[69] = save_byte;
		}
		else  {
			datum_number = 0;
		}
		if ((buf[68] == 'b') || (datum_number == 0))  {
			/*
			 * The file uses the NAD-27 datum.
			 * Initialize the datum parameters.
			 */
			datum.a = NAD27_SEMIMAJOR;
			datum.b = NAD27_SEMIMINOR;
			datum.e_2 = NAD27_E_SQUARED;
			datum.f_inv = NAD27_F_INV;
			datum.k0 = UTM_K0;
			datum.a0 = NAD27_A0;
			datum.a2 = NAD27_A2;
			datum.a4 = NAD27_A4;
			datum.a6 = NAD27_A6;
		}
		else if (datum_number == 1)  {
			/*
			 * The file uses the NAD-83 datum.
			 * Initialize the datum parameters.
			 */
			datum.a = NAD83_SEMIMAJOR;
			datum.b = NAD83_SEMIMINOR;
			datum.e_2 = NAD83_E_SQUARED;
			datum.f_inv = NAD83_F_INV;
			datum.k0 = UTM_K0;
			datum.a0 = NAD83_A0;
			datum.a2 = NAD83_A2;
			datum.a4 = NAD83_A4;
			datum.a6 = NAD83_A6;
		}
		else  {
			/*
			 * We don't currently handle any other datums.
			 * Default to tne NAD-27 datum.
			 */
			datum.a = NAD27_SEMIMAJOR;
			datum.b = NAD27_SEMIMINOR;
			datum.e_2 = NAD27_E_SQUARED;
			datum.f_inv = NAD27_F_INV;
			datum.k0 = UTM_K0;
			datum.a0 = NAD27_A0;
			datum.a2 = NAD27_A2;
			datum.a4 = NAD27_A4;
			datum.a6 = NAD27_A6;

			fprintf(stderr, "DLG file uses a horizontal datum that drawmap doesn't know about.\n");
			fprintf(stderr, "Defaulting to NAD-27.  This may result in positional errors in the map.\n");
		}
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "5 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "6 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "7 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "8 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "9 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "10 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "11 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	else  {
		for (i = 0; i < ret_val; i++)  {
			/* The DLG files use 'D' for exponentiation.  strtod() expects 'E' or 'e'. */
			if (buf[i] == 'D') buf[i] = 'E';
		}
		i = 6;
		lat_sw = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		long_sw = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_x_sw = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_y_sw = strtod(&buf[i], &end_ptr);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "12 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	else  {
		for (i = 0; i < ret_val; i++)  {
			/* The DLG files use 'D' for exponentiation.  strtod() expects 'E' or 'e'. */
			if (buf[i] == 'D') buf[i] = 'E';
		}
		i = 6;
		lat_nw = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		long_nw = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_x_nw = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_y_nw = strtod(&buf[i], &end_ptr);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "13 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	else  {
		for (i = 0; i < ret_val; i++)  {
			/* The DLG files use 'D' for exponentiation.  strtod() expects 'E' or 'e'. */
			if (buf[i] == 'D') buf[i] = 'E';
		}
		i = 6;
		lat_ne = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		long_ne = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_x_ne = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_y_ne = strtod(&buf[i], &end_ptr);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "14 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	else  {
		for (i = 0; i < ret_val; i++)  {
			/* The DLG files use 'D' for exponentiation.  strtod() expects 'E' or 'e'. */
			if (buf[i] == 'D') buf[i] = 'E';
		}
		i = 6;
		lat_se = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		long_se = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_x_se = strtod(&buf[i], &end_ptr);
		i = i + end_ptr - &buf[i];

		grid_y_se = strtod(&buf[i], &end_ptr);
	}
	if ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) <= 0)  {
		fprintf(stderr, "15 record DLG read returns %d\n", ret_val);
		exit(0);
	}
	else  {
		/*
		 * According to the DLG standard, the first four characters of the short-form
		 * theme name from the header are verified.  Thus, it should be okay
		 * to key off the first two characters to find the type of data.
		 */
		switch(buf[0])  {
		case 'B':	/* BOUNDARIES */
			color = GRAY;
			data_type = BOUNDARIES;
			break;
		case 'H':
			if (buf[2] == 'D')  {
				/* HYDROGRAPHY */
				color = B_BLUE;
				data_type = HYDROGRAPHY;
				break;
			}
			else  {
				/* HYPSOGRAPHY */
				color = L_ORANGE;
				data_type = HYPSOGRAPHY;
				break;
			}
		case 'P':
			if (buf[1] == 'I')  {
				/* PIPE & TRANS LINES */
				color = BLACK;
				data_type = PIPE_TRANS_LINES;
				break;
			}
			else  {
				/* PUBLIC LAND SURVEYS */
				color = BLACK;
				data_type = PUBLIC_LAND_SURVEYS;
				break;
			}
		case 'R':
			if (buf[1] == 'A')  {
				/* RAILROADS */
				color = BLACK;
				data_type = RAILROADS;
				break;
			}
			else  {
				/* ROADS AND TRAILS */
				color = B_RED;
				data_type = ROADS_AND_TRAILS;
				break;
			}
		case 'M':	/* MANMADE FEATURES */
			color = BLACK;
			data_type = MANMADE_FEATURES;
			break;
		case 'S':	/* SURVEY CONTROL */
			color = BLACK;
			data_type = SURVEY_CONTROL;
			break;
		case 'V':	/* VEG SURFACE COVER */
			color = B_GREEN;
			data_type = VEG_SURFACE_COVER;
			break;
		case 'N':	/* NON-VEG FEATURES */
			color = BLACK;
			data_type = NON_VEG_FEATURES;
			break;
		default:
			fprintf(stderr, "Unknown record type %20.20s\n", buf);
			exit(0);
			break;
		}
	}

	/* If info_flag is non-zero, then we just want to print some info about the DLG file and return. */
	if (info_flag != 0)  {
		/* Put a null character at the end of the category name (theme). */
		for (i = 19; i >= 0; i--)  {
			if (buf[i] != ' ')  {
				buf[i + 1] = '\0';
				break;
			}
		}
		if (i == -1)  {
			buf[0] = '\0';
		}
		fprintf(stdout, "\t%.20s\t%g:%g:%g:%g\t%s\n", buf, lat_se, long_se, lat_nw, long_nw,
			(read_function == get_a_line || read_function == get_a_line_z) ? "linefeeds=yes" : "linefeeds=no");
		return;
	}


	/*
	 * Within the Optional-format DLG file, locations are specified with pairs of
	 * Universal Transverse Mercator (x,y) coordinates.
	 *
	 * The header information at the top of the DLG file gives 4 reference
	 * points for the corners of the polygon represented by the DLG data.  Here is a
	 * typical set of them:
	 *
	 *	SW       45.750000 -112.000000         422218.03  5066539.80                    
	 *	NW       46.000000 -112.000000         422565.07  5094315.16                    
	 *	NE       46.000000 -111.750000         441923.83  5094103.38                    
	 *	SE       45.750000 -111.750000         441663.14  5066327.07                    
	 *
	 * Note that the latitude-longitude points form a square area in latitude/longitude
	 * space (if latitudes and longitudes on a pseudo-sphere can ever be thought of as
	 * forming a square).  The UTM (x,y) grid coordinates, however, form a quadrilateral
	 * in which no two sides have the same length.  Thus, if we are to convert the grid
	 * points in the DLG file into latitudes and longitudes, we need to develop a general
	 * transformation between these grid points and the desired latitudes and longitudes.
	 *
	 *
	 * Do a quick check here to find out if the data is off the map boundaries.
	 * If so, then we can return now and save a lot of work.
	 */
	if ((lat_sw > image_corners->ne_lat) ||
	    (long_sw > image_corners->ne_long) ||
	    (lat_ne < image_corners->sw_lat) ||
	    (long_ne < image_corners->sw_long))  {
		return;
	}


	/*
	 * Following the DLG header information, there is a sequence of data records for
	 * Nodes, Areas, and Lines.
	 * Parse these data records and put the data into the appropriate arrays.
	 * At present, we make absolutely no use of the Node information, but we parse
	 * and store it anyway.
	 */
	while ((ret_val = read_function(fdesc, buf, DLG_RECORD_LENGTH)) > 0)  {
		switch(buf[0])  {
		case 'N':
			i = 1;
			nodes[num_nodes].id = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			nodes[num_nodes].x = strtod(&buf[i], &end_ptr);
			i = i + end_ptr - &buf[i];

			nodes[num_nodes].y = strtod(&buf[i], &end_ptr);

			i = 36;
			line_list = strtol(&buf[i], &end_ptr, 10);

			i = 48;
			attrib = strtol(&buf[i], &end_ptr, 10);

			if (line_list != 0)  {
				while(line_list > 0)  {
					if ((ret_val = read_function(fdesc, buf2, DLG_RECORD_LENGTH)) <= 0)  {
						fprintf(stderr, "Line_list read 1 returns %d\n", ret_val);
						fprintf(stderr, "%80.80s\n", buf);
						exit(0);
					}

					line_list = line_list - 12;
				}
			}

			if (attrib != 0)  {
				while (attrib > 0)  {
					if ((ret_val = read_function(fdesc, buf2, DLG_RECORD_LENGTH)) <= 0)  {
						fprintf(stderr, "Attribute read 1 returns %d\n", ret_val);
						fprintf(stderr, "%80.80s\n", buf);
						exit(0);
					}

					attrib = attrib - 6;
				}
			}

			num_nodes++;
			break;

		case 'A':
			i = 1;
			areas[num_areas].id = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			areas[num_areas].x = strtod(&buf[i], &end_ptr);
			i = i + end_ptr - &buf[i];

			areas[num_areas].y = strtod(&buf[i], &end_ptr);

			i = 36;
			line_list = strtol(&buf[i], &end_ptr, 10);

			i = 48;
			attrib = strtol(&buf[i], &end_ptr, 10);
			areas[num_areas].number_attrib = attrib;

			if (line_list != 0)  {
				while (line_list > 0)  {
					if ((ret_val = read_function(fdesc, buf2, DLG_RECORD_LENGTH)) <= 0)  {
						fprintf(stderr, "Line_list read 2 returns %d\n", ret_val);
						fprintf(stderr, "%80.80s\n", buf);
						exit(0);
					}

					line_list = line_list - 12;
				}
			}

			if (attrib != 0)  {
				while (attrib > 0)  {
					if ((ret_val = read_function(fdesc, buf2, DLG_RECORD_LENGTH)) <= 0)  {
						fprintf(stderr, "Attribute read 2 returns %d\n", ret_val);
						fprintf(stderr, "%80.80s\n", buf);
						exit(0);
					}

					current_attrib = &areas[num_areas].attribute;

					if (attrib > 6)  {
						i = 6;
						attrib = attrib - 6;
					}
					else  {
						i = attrib;
						attrib = 0;
					}

					end_ptr = buf2;

					while (i > 0)  {
						*current_attrib = (struct attribute *)malloc(sizeof(struct attribute));
						if (*current_attrib == (struct attribute *)0)  {
							fprintf(stderr, "malloc failed\n");
							exit(0);
						}

						(*current_attrib)->major = strtol(end_ptr, &end_ptr, 10);
						(*current_attrib)->minor = strtol(end_ptr, &end_ptr, 10);

						current_attrib = &((*current_attrib)->attribute);
						i--;
					}
					*current_attrib = (struct attribute *)0;
				}
			}

			num_areas++;
			break;

		case 'L':
			i = 1;
			lines[num_lines].id = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			lines[num_lines].start_node = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			lines[num_lines].end_node = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			lines[num_lines].left_area = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			lines[num_lines].right_area = strtol(&buf[i], &end_ptr, 10);

			i = 42;
			lines[num_lines].number_coords = strtol(&buf[i], &end_ptr, 10);
			i = i + end_ptr - &buf[i];

			attrib = strtol(&buf[i], &end_ptr, 10);
			lines[num_lines].number_attrib = attrib;

			current_point = &lines[num_lines].point;
			count = lines[num_lines].number_coords;
			while (count != 0)  {
				if ((ret_val = read_function(fdesc, buf2, DLG_RECORD_LENGTH)) <= 0)  {
					fprintf(stderr, "Coordinate read returns %d\n", ret_val);
					fprintf(stderr, "%80.80s\n", buf);
					exit(0);
				}
				if ((buf2[ret_val - 1] == '\n') || (buf2[ret_val - 1] == '\r'))  {
					ret_val--;
				}
				if ((buf2[ret_val - 1] == '\n') || (buf2[ret_val - 1] == '\r'))  {
					ret_val--;
				}

				i = 0;
				while (i < ret_val)  {
					while ((i < ret_val) && (buf2[i] == ' '))  {
						i++;
					}
					if (i >= ret_val)  {
						break;
					}

					*current_point = (struct point *)malloc(sizeof(struct point));
					if (*current_point == (struct point *)0)  {
						fprintf(stderr, "malloc failed\n");
						exit(0);
					}

					(*current_point)->x = (long)strtod(&buf2[i], &end_ptr);
					i = i + end_ptr - &buf2[i];
					(*current_point)->y = (long)strtod(&buf2[i], &end_ptr);
					i = i + end_ptr - &buf2[i];

					current_point = &((*current_point)->point);
					count--;
				}
			}
			*current_point = (struct point *)0;

			if (attrib != 0)  {
				while (attrib > 0)  {
					if ((ret_val = read_function(fdesc, buf2, DLG_RECORD_LENGTH)) <= 0)  {
						fprintf(stderr, "Attribute read 3 returns %d\n", ret_val);
						fprintf(stderr, "%80.80s\n", buf);
						exit(0);
					}

					current_attrib = &lines[num_lines].attribute;

					if (attrib > 6)  {
						i = 6;
						attrib = attrib - 6;
					}
					else  {
						i = attrib;
						attrib = 0;
					}

					end_ptr = buf2;
					while (i > 0)  {
						*current_attrib = (struct attribute *)malloc(sizeof(struct attribute));
						if (*current_attrib == (struct attribute *)0)  {
							fprintf(stderr, "malloc failed\n");
							exit(0);
						}

						(*current_attrib)->major = strtol(end_ptr, &end_ptr, 10);
						(*current_attrib)->minor = strtol(end_ptr, &end_ptr, 10);

						current_attrib = &((*current_attrib)->attribute);
						i--;
					}
					*current_attrib = (struct attribute *)0;
				}
			}

			num_lines++;
			break;

		default:
			fprintf(stderr, "Unknown record type: %c  (hexadecimal: %x)\n", buf[0], buf[0]);
//			fprintf(stderr, "%80.80s\n", buf);
//			exit(0);
			break;
		}
	}


	/*
	 * All of the useful data is parsed.
	 * Now do something with it.
	 *
	 * First find the x and y image coordinates that border this DLG chunk.
	 *
	 * Then draw the lines for which we have appropriate atribute codes stored,
	 * but don't go outside the x-y border.
	 *
	 * Then fill in all of the areas for which we have
	 * appropriate attribute codes stored, but don't go outside
	 * the x-y border.
	 */
	dlg_x_low = -1 + round((long_sw - image_corners->sw_long) * (double)image_corners->x / (image_corners->ne_long - image_corners->sw_long));
	dlg_y_low = image_corners->y - 1 - round((lat_ne - image_corners->sw_lat) * (double)image_corners->y / (image_corners->ne_lat - image_corners->sw_lat));
	dlg_x_high = -1 + round((long_ne - image_corners->sw_long) * (double)image_corners->x / (image_corners->ne_long - image_corners->sw_long));
	dlg_y_high = image_corners->y - 1 - round((lat_sw - image_corners->sw_lat) * (double)image_corners->y / (image_corners->ne_lat - image_corners->sw_lat));
	if (dlg_x_low < -1)  {
		dlg_x_low = -1;
	}
	if (dlg_y_low < -1)  {
		dlg_y_low = -1;
	}
	if (dlg_x_high >= image_corners->x)  {
		dlg_x_high = image_corners->x - 1;
	}
	if (dlg_y_high >= image_corners->y)  {
		dlg_y_high = image_corners->y - 1;
	}

	/*
	 * Cycle through all of the line data and draw all of the appropriate lines
	 * onto the image (overlaying any previous data).
	 */
	for (i = 0; i < num_lines; i++)  {
		/*
		 * In the DLG-3 format, the first area element listed
		 * represents the universe outside of the map area.
		 * Thus, lines that have area 1 as a boundary should be
		 * "neatlines" that bound the map area.
		 * Since these clutter up a map, we normally discard them.
		 * (If you want to keep them, then change the #define of OMIT_NEATLINES
		 * so that it is zero, rather than non-zero.)
		 *
		 * Here are relevant quotes from the DLG-3 guide:
		 *
		 *	expressed by network data is that of connectivity.  The network case
		 *	differs from the area case in that, irrespective of the number of closed
		 *	areas forming the graph, only two areas are encoded:  (1) the area out-
		 *	side the graph, termed the outside area; and (2) the area within the
		 *	graph, termed the background area.  All lines except the graph boundary,
		 *	or neatline, are considered to be contained within the background area.
		 *
		 *	map border.  There is one outside area for each DLG-3. It is always the
		 *	first area encountered (its ID is 1) and has the attribute code 000 0000.
		 */

		/*
		 * If the user provided a file full of attributes, then
		 * use them to control whether or not the lines are drawn.
		 * If not, then just go ahead and draw everything.
		 *
		 * Note:  If a major or minor attribute code in the attribute
		 *        file (supplied by the user) is less than
		 *        zero, it is treated as a wild card and matches
		 *        anything.
		 */
		if ((num_A_attrib > 0) || (num_L_attrib > 0))  {
			if ((OMIT_NEATLINES == 0) || ((lines[i].left_area != 1) && (lines[i].right_area != 1)))  {
				current_attrib = &lines[i].attribute;
				if (*current_attrib != (struct attribute *)0)  {
					while (*current_attrib != (struct attribute *)0)  {
						for (j = 0; j < num_L_attrib; j++)  {
							if (((attributes_L[j].major < 0) ||
							     (attributes_L[j].major == ((*current_attrib)->major))) &&
							    ((attributes_L[j].minor < 0) ||
							     (attributes_L[j].minor == ((*current_attrib)->minor))))  {
								draw_lines(&datum, lines[i].point, color, image_corners);
								goto FIN1;
							}
						}
						current_attrib = &((*current_attrib)->attribute);
					}
				}
				else  {
					/*
					 * If the feature had no attribute codes, then check if
					 * it is covered by a wild card in the attributes file.
					 */
					for (j = 0; j < num_L_attrib; j++)  {
						if (((attributes_L[j].major < 0) ||
						     (attributes_L[j].major == data_type)) &&
						    (attributes_L[j].minor < 0))  {
							draw_lines(&datum, lines[i].point, color, image_corners);
							goto FIN1;
						}
					}
				}
			}

			/*
			 * For those (hopefully rare) occasions in which something
			 * goes wrong, we provide the capability for a user to
			 * specifically request a single line from a DLG file so that
			 * the cause of the problem can be isolated.
			 * The user specifies a specific line by providing a major
			 * attribute number of 10000, and a minor attribute number
			 * equal to the desired line ID number.  Since no
			 * valid attribute (as far as I know) is ever as large as
			 * 10,000, such user-specified attribute pairs will not
			 * affect the search for legitimate attributes above (since
			 * they can't possibly match anything).  If we reach this point,
			 * then we failed to draw a line due to the legitimate-attribute
			 * checks above; so we give it one more try here, based on
			 * user-requested ID numbers.
			 *
			 * Note:  If you are using this feature, then it doesn't make
			 *        a lot of sense to process more than one DLG file,
			 *        since the ID number you give (as the minor attribute)
			 *        will be matched in every DLG file that has a
			 *        Line with that ID.  If you are trying to isolate
			 *        one (or a few) Line(s), then you probably want to
			 *        be certain which file is the source of the data.
			 */
			for (j = 0; j < num_L_attrib; j++)  {
				if ((attributes_L[j].major == 10000) &&
				     (attributes_L[j].minor == lines[i].id))  {
					draw_lines(&datum, lines[i].point, color, image_corners);
					goto FIN1;
				}
			}
		}
		else  {
			if ((OMIT_NEATLINES == 0) || ((lines[i].left_area != 1) && (lines[i].right_area != 1)))  {
				draw_lines(&datum, lines[i].point, color, image_corners);
			}
		}
FIN1:
	}

	/*
	 * Now we fill in each interesting area on the map with the
	 * same color that bounds the area.  (For example,
	 * lakes (attribute code 050 0421) might be filled in.)
	 * However, sometimes areas might be filled in improperly.
	 * The code assumes that the reference point for an area falls
	 * within the polygon of lines that define that area.
	 * According to the DLG guide, this isn't guaranteed
	 * to always be the case, but the assumption has nonetheless
	 * worked reasonably well in practice.
	 *
	 * Area attributes are processed a bit differently than the
	 * attributes for lines:  no areas are filled in automatically.
	 * If the user did not specify any Area attributes in the attribute
	 * file, then no areas are filled in.  This is because the area-fill
	 * algorithm can occasionally run amok, and therefore the appropriate
	 * default is to not give it a chance.  For extensive details on the
	 * area-fill algorithm, see the comments at the top of fill_area().
	 */
	if (num_A_attrib > 0)  {
		for (i = 0; i < num_areas; i++)  {
			if (areas[i].number_attrib <= 0)  {
				continue;
			}

			current_attrib = &areas[i].attribute;
			while (*current_attrib != (struct attribute *)0)  {
				for (j = 0; j < num_A_attrib; j++)  {
					if (((attributes_A[j].major < 0) ||
					     (attributes_A[j].major == ((*current_attrib)->major))) &&
					    ((attributes_A[j].minor < 0) ||
					     (attributes_A[j].minor == ((*current_attrib)->minor))))  {
						fill_area(&datum, areas[i].x, areas[i].y, color, image_corners);
						goto FIN2;
					}
				}
				current_attrib = &((*current_attrib)->attribute);
			}

			/*
			 * As with the Line attributes, we provide an interface
			 * for the user to select specific areas, via their IDs.
			 */
			for (j = 0; j < num_A_attrib; j++)  {
				if ((attributes_A[j].major == 10000) &&
				     (attributes_A[j].minor == areas[i].id))  {
					fill_area(&datum, areas[i].x, areas[i].y, color, image_corners);
					goto FIN2;
				}
			}
FIN2:
		}
	}


	/* Free up all of the malloc() memory */
	for (i = 0; i < num_lines; i++)  {
		if (lines[i].number_coords > 0)  {
			current_point = &lines[i].point;

			while (*current_point != (struct point *)0)  {
				tmp_point = (*current_point)->point;
				free(*current_point);
				*current_point = tmp_point;
			}
		}
		if (lines[i].number_attrib > 0)  {
			current_attrib = &lines[i].attribute;

			while (*current_attrib != (struct attribute *)0)  {
				tmp_attrib = (*current_attrib)->attribute;
				free(*current_attrib);
				*current_attrib = tmp_attrib;
			}
		}
	}
	for (i = 0; i < num_areas; i++)  {
		if (areas[i].number_attrib > 0)  {
			current_attrib = &areas[i].attribute;

			while (*current_attrib != (struct attribute *)0)  {
				tmp_attrib = (*current_attrib)->attribute;
				free(*current_attrib);
				*current_attrib = tmp_attrib;
			}
		}
	}
}



/*
 * Draw a series of line segments, as defined by a linked list of
 * points from an optional-format DLG file.
 *
 * This routine is recursive, not because it has to be, but because
 * it was slightly simpler that way.  Since it doesn't recurse very
 * far (on average), it isn't a performance or memory problem.
 *
 * It is a nasty routine to understand, because it has a generalized
 * interpolation algorithm to capture line segments that go beyond the
 * image boundaries.
 */
void
draw_lines(struct datum *datum, struct point *cur_point, long color, struct image_corners *image_corners)
{
	double latitude1, longitude1;
	double latitude2, longitude2;
	long xx1, yy1;
	long xx2, yy2;
	double fxx, fyy;
	double delta_x, delta_y;
	long steps;
	long i;
	double m_lat, m_long, b_lat, b_long;
	double p_lat1, p_long1, p_lat2, p_long2;
	double d_lat, d_long;
	long pointflags = 0;
	long bothflag = 0;

	/*
	 * We recurse to the end of the linked list, and then draw line
	 * segments as we pop back up the recursion stack.
	 */
	if (cur_point->point != (struct point *)0)  {
		draw_lines(datum, cur_point->point, color, image_corners);

		/*
		 * Draw a segment between this point and the next one down the linked list.
		 *
		 * Begin by figuring out the latitude and longitude of the endpoints.
		 */
		(void)redfearn_inverse(datum, cur_point->x, cur_point->y, utm_zone, &latitude1, &longitude1);
		(void)redfearn_inverse(datum, (cur_point->point)->x, (cur_point->point)->y, utm_zone, &latitude2, &longitude2);
//fprintf(stderr, "x=%g, y=%g, zone=%d, lat=%g, long=%g\n", (cur_point->point)->x, (cur_point->point)->y, utm_zone, latitude1, longitude1);


		/*
		 * Find out whether only one endpoint, or both of them, fall
		 * outside the map area.
		 */
		if ((latitude1 < image_corners->sw_lat) || (latitude1 > image_corners->ne_lat) ||
		    (longitude1 < image_corners->sw_long) || (longitude1 > image_corners->ne_long))  {
			bothflag++;
		}
		if ((latitude2 < image_corners->sw_lat) || (latitude2 > image_corners->ne_lat) ||
		    (longitude2 < image_corners->sw_long) || (longitude2 > image_corners->ne_long))  {
			bothflag++;
		}


		/*
		 * If at least one endpoint of a line segment is outside of the area
		 * covered by the map image, then interpolate the segment.
		 *
		 * This isn't just to catch errors in a DLG file.  Since the user
		 * can specify arbitrary latitude/longitude boundaries for the
		 * map image, either or both endpoints of a segment can easily
		 * be outside of the map boundaries.
		 */
		if (bothflag > 0)  {
			/*
			 * Construct two equations for the line passing through the two
			 * endpoints.  These equations can be solved for four potential
			 * intercepts with the edge of the map area, only zero or two of
			 * which should be actual intercepts.  (In theory, there can
			 * be a single intercept at a corner, but this code should find
			 * it twice.)
			 *
			 * We construct the two lines using the classic Y = m * X + b formula,
			 * where, in one case, we let Y be the latitude and X be the longitude,
			 * and in the other case they switch roles.
			 */
			m_lat = (latitude2 - latitude1) / (longitude2 - longitude1);
			b_lat = latitude1 - m_lat * longitude1;
			m_long = 1.0 / m_lat;
			b_long = longitude1 - m_long * latitude1;

			/*
			 * We need the distance (in the Manhattan (city-block) metric) between
			 * the two endpoints.
			 * It will be used to determine whether one of the intercepts with
			 * the map edges falls between the two given endpoints.
			 */
			d_lat = fabs(latitude1 - latitude2);
			d_long = fabs(longitude1 - longitude2);

			/*
			 * Solve the two equations for the four possible intercepts, and check
			 * that they are truly intercepts.
			 * Set a flag to remember which points turned out to be intercepts.
			 */
			p_lat1 = m_lat * image_corners->sw_long + b_lat;
			if ((p_lat1 >= image_corners->sw_lat) && (p_lat1 <= image_corners->ne_lat))  {
				if ((fabs(image_corners->sw_long - longitude1) <= d_long) && (fabs(image_corners->sw_long - longitude2) <= d_long))  {
					pointflags |= 1;
				}
			}
			p_lat2 = m_lat * image_corners->ne_long + b_lat;
			if ((p_lat2 >= image_corners->sw_lat) && (p_lat2 <= image_corners->ne_lat))  {
				if ((fabs(image_corners->ne_long - longitude1) <= d_long) && (fabs(image_corners->ne_long - longitude2) <= d_long))  {
					pointflags |= 2;
				}
			}
			p_long1 = m_long * image_corners->sw_lat + b_long;
			if ((p_long1 >= image_corners->sw_long) && (p_long1 <= image_corners->ne_long))  {
				if ((fabs(image_corners->sw_lat - latitude1) <= d_lat) && (fabs(image_corners->sw_lat - latitude2) <= d_lat))  {
					pointflags |= 4;
				}
			}
			p_long2 = m_long * image_corners->ne_lat + b_long;
			if ((p_long2 >= image_corners->sw_long) && (p_long2 <= image_corners->ne_long))  {
				if ((fabs(image_corners->ne_lat - latitude1) <= d_lat) && (fabs(image_corners->ne_lat - latitude2) <= d_lat))  {
					pointflags |= 8;
				}
			}

			/*
			 * If both endpoints fall outside the map area, and there aren't exactly two
			 * intercepts, then there should be none.  (In theory, when a segment
			 * just touches a corner of the map area, then there is only one intercept,
			 * but the above code will find the same intercept twice.)
			 */
			if ((bothflag == 2) && (pointflags != 3) && (pointflags != 5) && (pointflags != 6) &&
			    (pointflags != 9) && (pointflags != 10) && (pointflags != 12))  {
				if (pointflags != 0)  {
			    		fprintf(stderr, " should have had exactly two intercepts:  0x%x  (%f %f) (%f %f)\n",
						pointflags, latitude1, longitude1, latitude2, longitude2);
				}
				return;
			}

			/* If the first endpoint is out of range, then replace it with an intercept. */
			if ((latitude1 < image_corners->sw_lat) || (latitude1 > image_corners->ne_lat) ||
			    (longitude1 < image_corners->sw_long) || (longitude1 > image_corners->ne_long))  {
				if (pointflags & 1)  {
					latitude1 = p_lat1;
					longitude1 = image_corners->sw_long;
					pointflags &= ~1;
					goto DONE1;
				}
				if (pointflags & 2)  {
					latitude1 = p_lat2;
					longitude1 = image_corners->ne_long;
					pointflags &= ~2;
					goto DONE1;
				}
				if (pointflags & 4)  {
					latitude1 = image_corners->sw_lat;
					longitude1 = p_long1;
					pointflags &= ~4;
					goto DONE1;
				}
				if (pointflags & 8)  {
					latitude1 = image_corners->ne_lat;
					longitude1 = p_long2;
					pointflags &= ~8;
					goto DONE1;
				}
			}
DONE1:

			/* If the second endpoint is out of range, then replace it with an intercept. */
			if ((latitude2 < image_corners->sw_lat) || (latitude2 > image_corners->ne_lat) ||
			    (longitude2 < image_corners->sw_long) || (longitude2 > image_corners->ne_long))  {
				if (pointflags & 1)  {
					latitude2 = p_lat1;
					longitude2 = image_corners->sw_long;
					goto DONE2;
				}
				if (pointflags & 2)  {
					latitude2 = p_lat2;
					longitude2 = image_corners->ne_long;
					goto DONE2;
				}
				if (pointflags & 4)  {
					latitude2 = image_corners->sw_lat;
					longitude2 = p_long1;
					goto DONE2;
				}
				if (pointflags & 8)  {
					latitude2 = image_corners->ne_lat;
					longitude2 = p_long2;
					goto DONE2;
				}
			}
DONE2:
		}



		/*
		 * Convert the latitude/longitude pairs into pixel locations within the image.
		 *
		 * Note:  because there may be small errors in longitude1, latitude1, longitude2,
		 * and latitude2, the values of xx1, yy1, xx2, or yy2 may occasionally be off by
		 * one pixel.
		 * This appears to be acceptable in the middle of the image, since one pixel
		 * doesn't amount to much linear distance in the image.  At the edges, one might
		 * worry that the discrepancy would cause us to go over the image edges.
		 * However, the interpolation code above should successfully eliminate this
		 * potential problem.
		 *
		 * As noted above, it is okay for the array index values to go to -1, since that
		 * is the appropriate value for image_corners->sw_long or image_corners->ne_lat.
		 */
		xx1 = -1 + round((longitude1 - image_corners->sw_long) * (double)image_corners->x / (image_corners->ne_long - image_corners->sw_long));
		yy1 = image_corners->y - 1 - round((latitude1 - image_corners->sw_lat) * (double)image_corners->y / (image_corners->ne_lat - image_corners->sw_lat));
		xx2 = -1 + round((longitude2 - image_corners->sw_long) * (double)image_corners->x / (image_corners->ne_long - image_corners->sw_long));
		yy2 = image_corners->y - 1 - round((latitude2 - image_corners->sw_lat) * (double)image_corners->y / (image_corners->ne_lat - image_corners->sw_lat));
		if ((xx1 < -1) || (yy1 < -1) || (xx1 >= image_corners->x) || (yy1 >= image_corners->y))  {
			fprintf(stderr, "In draw_lines(), a coordinate exceeds the image boundaries, %f %f   %f %f\n", xx1, yy1, xx2, yy2);
			exit(0);
		}


		/*
		 * Now all that remains is to draw the line segment.
		 * We begin by deciding whether x or y is the fastest-changing
		 * coordinate.
		 */
		delta_x = xx2 - xx1;
		delta_y = yy2 - yy1;

		if (fabs(delta_x) < fabs(delta_y))  {
			steps = (long)fabs(delta_y) - 1;

			if (delta_y > 0.0)  {
				delta_x = delta_x / delta_y;
				delta_y = 1.0;
			}
			else if (delta_y < 0.0)  {
				delta_x = -delta_x / delta_y;
				delta_y = -1.0;
			}
			else  {
				delta_x = 1.0;
			}
		}
		else  {
			steps = (long)fabs(delta_x) - 1;

			if (delta_x > 0.0)  {
				delta_y = delta_y / delta_x;
				delta_x = 1.0;
			}
			else if (delta_x < 0.0)  {
				delta_y = -delta_y / delta_x;
				delta_x = -1.0;
			}
			else  {
				delta_y = 1.0;
			}
		}

		/* Put dots at the two endpoints. */
		*(image_corners->ptr + (yy1 + TOP_BORDER) * x_prime + xx1 + LEFT_BORDER) = color;
		*(image_corners->ptr + (yy2 + TOP_BORDER) * x_prime + xx2 + LEFT_BORDER) = color;

		/* Fill in pixels between the two endpoints. */
		fxx = xx1;
		fyy = yy1;
		for (i = 0; i < steps; i++)  {
			fxx = fxx + delta_x;
			fyy = fyy + delta_y;
			*(image_corners->ptr + (round(fyy) + TOP_BORDER) * x_prime + round(fxx) + LEFT_BORDER) = color;
		}
	}
}



/*
 * Fill in an area bounded by a polygon of the given color, beginning at the
 * given representative point.  (The polygon was previously created by the
 * line-drawing algorithm.)  The algorithm does this by filling in a given
 * point and then recursively calling itself to fill in the four nearest neighbors
 * (to the left, right, top, and bottom).
 *
 * Two functions handle this:  fill_area() sets things up, and then
 * fill_small_area() recursively does the work.  An enterprising reader might
 * want to convert the recursion into something less likely to consume all
 * computing resources on the planet.  However, these routines generally
 * work well unless somehow the representative point falls outside of a bounded
 * polygon.  (This problem can and does occur, particularly if we aren't using a
 * one-to-one mapping between DEM elevation samples and image pixels.  Stretching
 * and scaling can goof things up and, in my experience, more often than not lead
 * to area fill problems.)
 * If this happens, then, as the routine attempts to fill large swaths of the image,
 * the recursion chomps up all available stack memory and the program goes kaboom.
 * (More commonly, the program doesn't crash, but areas of the image are incorrectly
 * covered with swaths of blue.)  Less resources would be gobbled if, instead of using
 * recursion, we simply built a stack datatype, and pushed and popped coordinates
 * onto/from it.  No program is so perfect that it can't be improved.  However,
 * the recursion itself is not the problem, but rather the errors that
 * lead to the wrong areas being filled, and thus to excess recursion.
 *
 * One other problem with the approach taken here is that, if a lake has a narrow
 * neck, the line segments at the sides of the neck may touch.  If this is the case,
 * then only one side of the lake will be filled in (the side containing the
 * representative point) because the neck forms a solid boundary.
 *
 * Yet another problem is that the representative point may be off the map boundaries
 * if, say, a lake is at the edge of the map and the whole lake doesn't show up on
 * the map.  In such a case, the lake won't get filled in because the representative
 * point is rejected by the sanity-checking code.
 *
 * Yet another possible problem (although I have not checked into this) may be that there
 * may not necessarily be a representative point in each DLG file, when a large
 * lake spans multiple DLG files.  Thus, the DLG files may depend on a single
 * representative point, in one of the files, to do duty for all of the chunks
 * of the lake in all of the relevant files.  This would be a problem for drawmap,
 * because the program is structured on the assumption that each DLG file can be processed
 * separately from all of the others.  (Again, I have not verified that this is actually
 * a problem, I am just pointing it out as a possibility based on some anomalies I
 * have seen on output maps.)
 *
 * This algorithm is very crude at this point.  We assume that the given
 * coordinates actually do fall within the bounded area that they represent,
 * something that the DLG guide says is normal for these points, but not guaranteed.
 * It would appear that a general solution not relying on this assumption would be
 * difficult to produce.  For a convex bounding polygon, one can determine if the
 * representative point is within the bounding polygon by following the line segments
 * around the boundaries of the area and checking that the point is always on the same side
 * of the line segment (relative to the direction of motion).  However, this wouldn't
 * do us a whole lot of good.  First, the polygons are not, in general, convex.
 * Second, unless we change the area fill algorithm in some fundamental way,
 * knowing a single point (one that is guaranteed to be within the boundaries of the area)
 * still won't guarantee that the area gets filled properly (see the discussion of a
 * lake with a neck, above).  Third, knowing that a point is within the boundaries of
 * the area is not adequate to guarantee that it is within the boundaries drawn on
 * the image.  The lines drawn around the boundaries are "jagged", because we try
 * to draw slanted lines using pixels that
 * can only be placed on a square grid.  (This problem is often called "aliasing,"
 * which is a reference to Nyquist Sampling Theory; but that is a subject far
 * beyond the scope of this long, rambling comment block.)  It is theoretically possible
 * for the representative point to land on a pixel that falls outside the drawn
 * boundaries, because it just happens to fall at a place where a slanted line
 * segment "jags."  This problem can be exacerbated when the image is stretched
 * (for example, when a map area that is 2 degrees of longitude by 1 degree of
 * latitude is plotted on a 2400 by 2400 pixel grid, thus stretching the latitude
 * direction by a factor of 2).
 *
 * We also assume that the area is totally bounded on the right, left, top, and
 * bottom by points of the given color (or the edges of the DLG data).  The line-drawing
 * algorithm, above, should ensure this, as long as the line segments given in the
 * DLG file don't leave gaps (which they normally don't appear to do).
 *
 * There may be some cool, sexy way to write an area-fill algorithm that would
 * be completely general and would run fast.  However, without giving it a massive
 * amount of thought, the only truly general algorithms I have come up with are very
 * slow, involving a detailed check of each candidate point to verify that it is indeed
 * withing the given area.  As an example, here is a very clunky algorithm that seems
 * likely to work without running amok:
 *
 * Determine which collection(s) of line segments is associated with the given area.
 *     (Multiple multi-segment "curves" can bound an area, including the neatlines
 *      that bound the entire area encompassed by the DLG file.)
 * Follow the line segments around the bounding polygon and break the polygon into
 *     multiple polygons, each of which is convex.  This can be done by examining the
 *     angles between successive line segments.
 * For each convex sub-polygon:
 *     Find the largest and smallest longitude and latitude associated with all of the
 *         segments in the sub-polygon.
 *     Sweep through all points within the rectangle determined by the longitude/latitude
 *         bounding box and check each point to determine whether it is within the area
 *         in question.  This can be done by following the line segments around the polygon
 *         and checking that the point is always on the same side of each segment.  (The
 *         sign of the line segment identifier(s) determines which side the point is
 *         supposed to be on.  See the DLG documentation for details.)
 *
 * Although there is a lot of handwaving in the above description, it should be obvious
 * that this algorithm would be incredibly slow.  One could obviously come up with some
 * ways to speed it up, since it is designed for simplicity of description rather than
 * efficiency of operation, but it is not immediately obvious how to make it really fast.
 * Nor is it immediately obvious (at least to me) how to come up with a different algorithm
 * that would be both robust and fast.  Also, the current version appears to work much of the
 * time, with occasional inevitable glitches.  Thus, for the time being, we are stuck with
 * the code that follows.
 *
 * The bottom line is that I have never been satisfied with the area fill algorithm, but
 * I haven't been able to convince myself to put a massive effort into replacing it.
 * Instead, I usually turn off area-fill entirely, and then use an image editor to fill
 * in the areas myself.
 */
void
fill_small_area(struct image_corners *image_corners, long x1, long y1, long color)
{
	/*
	 * Check that we have not wandered outside of the area
	 * covered by the data from this DLG file.
	 */
	if ((x1 < dlg_x_low) || (x1 > dlg_x_high) || (y1 < dlg_y_low) || (y1 > dlg_y_high))  {
		return;
	}

	/*
	 * Fill in the given pixel, and recusively fill in the pixels to the
	 * left, right, top, and bottom.
	 */
	*(image_corners->ptr + (y1 + TOP_BORDER) * x_prime + x1 + LEFT_BORDER) = color;

	if (*(image_corners->ptr + (y1 - 1 + TOP_BORDER) * x_prime + x1 + LEFT_BORDER) != color)  {
		fill_small_area(image_corners, x1, y1 - 1, color);
	}
	if (*(image_corners->ptr + (y1 + 1 + TOP_BORDER) * x_prime + x1 + LEFT_BORDER) != color)  {
		fill_small_area(image_corners, x1, y1 + 1, color);
	}
	if (*(image_corners->ptr + (y1 + TOP_BORDER) * x_prime + x1 - 1 + LEFT_BORDER) != color)  {
		fill_small_area(image_corners, x1 - 1, y1, color);
	}
	if (*(image_corners->ptr + (y1 + TOP_BORDER) * x_prime + x1 + 1 + LEFT_BORDER) != color)  {
		fill_small_area(image_corners, x1 + 1, y1, color);
	}
}
void
fill_area(struct datum *datum, double px1, double py1, long color, struct image_corners *image_corners)
{
	double latitude1, longitude1;
	long xx1, yy1;

	/* Find the latitude and longitude of the representative point and convert them into index values. */
	(void)redfearn_inverse(datum, px1, py1, utm_zone, &latitude1, &longitude1);

	xx1 = -1 + round((longitude1 - image_corners->sw_long) * (double)image_corners->x / (image_corners->ne_long - image_corners->sw_long));
	yy1 = image_corners->y - 1 - round((latitude1 - image_corners->sw_lat) * (double)image_corners->y / (image_corners->ne_lat - image_corners->sw_lat));
	if ((xx1 < -1) || (xx1 >= image_corners->x) || (yy1 < -1) || (yy1 >= image_corners->y))  {
/*		fprintf(stderr, "fill_area() was given a starting point outside the map area:  (%d %d) (%f %f)\n", xx1, yy1, latitude1, longitude1); */
		return;
	}

	if ((xx1 < dlg_x_low) || (xx1 > dlg_x_high) || (yy1 < dlg_y_low) || (yy1 > dlg_y_high))  {
		fprintf(stderr, "fill_area() was passed a bad starting point:  (%d %d) (%f %f)\n\tlimits are: %d %d   %d %d\n",
			xx1, yy1, latitude1, longitude1, dlg_x_low, dlg_x_high, dlg_y_low, dlg_y_high);
		return;
	}


	/*
	 * Some debugging code to figure out where the representative point
	 * for each area falls on the image.
	 */
//	{
//	static h = 0;
//	long la, lo;
//	double long_prime = fabs(longitude1) - 0.5;
//	la = latitude1;
//	lo = long_prime;
//	la = la * 10000 + ((int)((latitude1 - la) * 60.0)) * 100 + (int)((latitude1 - la - ((int)((latitude1 - la) * 60.0)) / 60.0) * 3600.0 + 0.5);
//	lo = lo * 10000 + ((int)((long_prime - lo) * 60.0)) * 100 + (int)((long_prime - lo - ((int)((long_prime - lo) * 60.0)) / 60.0) * 3600.0 + 0.5);
//	
//	fprintf(stderr, "lat=%f long=%f     %d %d\n", la, lo, xx1, yy1);
//	fprintf(stdout, "Area %2.2d                                                                             island   Blaine                                             30005%6.6dN%7.7dW                     %f %f                         \n", h, la, lo, px1, py1);
//	h++;
//	
//	*(image_corners.ptr + (yy1 + TOP_BORDER) * x_prime + xx1 + LEFT_BORDER) = B_GREEN;
//	return;
//	}


	/*
	 * Some small areas are so small that the lines around their borders have
	 * already filled them in.  If the representative point is already set to
	 * the target color, then we assume we are in such an area.  In such cases,
	 * we immediately return, because otherwise (if we happen to be sitting
	 * right on the boundary) we will begin filling in the area outside the
	 * boundary and potentially fill large swaths of the image.  The risk of
	 * simply returning (rather than doing a more thorough investigation of
	 * what is going on) is that the boundary lines may not have actually
	 * filled the area in, but rather
	 * that the representative point just happens to fall very near
	 * (or on) the boundary.  There is not much we can do about this potential
	 * problem, unless we re-write the whole area-filling algorithm
	 * (not necessarily a bad idea).  However, in practice, things seem
	 * to generally work out semi-okay for many of the data sets I have tried.
	 * I have detected a number of area-fill problems, but haven't done the research
	 * to determine the individual causes.  Some or all of the unfilled lakes that
	 * I have found could conveivably have been caused by this test.
	 */
	if (*(image_corners->ptr + (yy1 + TOP_BORDER) * x_prime + xx1 + LEFT_BORDER) == color)  {
		return;
	}

	/* Recursively call fill_small_area() to do most of the work. */
	fill_small_area(image_corners, xx1, yy1, color);
}




/*
 * Parse the given attribute file and store the results
 * in the appropriate storage areas.
 */
void
process_attrib(char *attribute_file)
{
	int gz_flag;
	int attribute_fdesc;
	long ret_val;
	char *ptr;
	char buf[MAX_ATTRIB_RECORD_LENGTH];


	num_A_attrib = 0;
	num_L_attrib = 0;
	if (attribute_file != (char *)0)  {
		if (strcmp(attribute_file + strlen(attribute_file) - 3, ".gz") == 0)  {
			gz_flag = 1;
			if ((attribute_fdesc = buf_open_z(attribute_file, O_RDONLY)) < 0)  {
				fprintf(stderr, "Can't open %s for reading, errno = %d\n", attribute_file, errno);
				exit(0);
			}
		}
		else  {
			gz_flag = 0;
			if ((attribute_fdesc = buf_open(attribute_file, O_RDONLY)) < 0)  {
				fprintf(stderr, "Can't open %s for reading, errno = %d\n", attribute_file, errno);
				exit(0);
			}
		}

		fprintf(stderr, "Processing Attribute file:  %s\n", attribute_file);

		while ( 1 )  {
			if (gz_flag == 0)  {
				if ((ret_val = get_a_line(attribute_fdesc, buf, MAX_ATTRIB_RECORD_LENGTH)) <= 0)  {
					break;
				}
			}
			else  {
				if ((ret_val = get_a_line_z(attribute_fdesc, buf, MAX_ATTRIB_RECORD_LENGTH)) <= 0)  {
					break;
				}
			}

			buf[ret_val - 1] = '\0';	/* Put a null in place of the newline */

			switch(buf[0])  {
			case '\0':
			case '\n':
			case '\r':
			case ' ':
			case '\t':
				/* Blank line, or line that begins with white space.  Ignore. */
				break;
			case '#':
				/* Comment line.  Ignore. */
				break;
			case 'N':
				/* We don't currently use Node attributes, so do nothing with them. */
				fprintf(stderr, "Ignoring Node attribute:  %s\n", buf);
				break;
			case 'A':
				/* Area attribute. */
				if (num_A_attrib >= MAX_A_ATTRIB)  {
					fprintf(stderr, "Out of space for Area attributes, ignoring:  %s\n", buf);
					break;
				}
				attributes_A[num_A_attrib].major = strtol(&buf[1], &ptr, 10);
				attributes_A[num_A_attrib].minor = strtol(ptr, &ptr, 10);
				num_A_attrib++;
				break;
			case 'L':
				/* Line attribute. */
				if (num_L_attrib >= MAX_L_ATTRIB)  {
					fprintf(stderr, "Out of space for Line attributes, ignoring:  %s\n", buf);
					break;
				}
				attributes_L[num_L_attrib].major = strtol(&buf[1], &ptr, 10);
				attributes_L[num_L_attrib].minor = strtol(ptr, &ptr, 10);
				num_L_attrib++;
				break;
			default:
				fprintf(stderr, "Ignoring unknown attribute type:  %s\n", buf);
				break;
			}
		}

		if (gz_flag == 0)  {
			buf_close(attribute_fdesc);
		}
		else  {
			buf_close_z(attribute_fdesc);
		}
	}
}